雌激素调节骨髓源性内皮祖细胞修复梗死心肌
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死是心力衰竭的主要原因。一些临床研究显示绝经前的心力衰竭女性预后比相应年龄的男性好。而且,多中心有关心力衰竭试验的回顾性分析表明,使用雌激素的绝经女性心力衰竭的预后比未使用雌激素的绝经女性预后好,这些都提示雌激素对心血管系统具有保护作用。但随机临床试验显示雌激素会增加发生不良心血管事件的风险,使在绝经妇女中普遍使用雌激素替代治疗的方案受到质疑。然而,动物实验研究和流行病学研究强烈提示雌激素对心血管系统有益,使得雌激素对心血管系统的有益作用研究开始转向新的可能机制和途径,即近十年来始终是研究的热点之一:内皮祖细胞(endothelial progenitor cells,EPCs)。
     EPCs修复梗死心脏主要是通过促进心肌梗死部位新生血管形成,增加血流灌注,促进组织再生,限制梗死部位疤痕发展,延缓心室重塑,从而改善心功能。在冠心病和有患冠心病危险因素的患者,EPCs的数量及其迁移、增殖、归巢及血管新生等功能明显降低。因此,在EPCs移植治疗心肌梗死过程中,如何提高EPCs的归巢及其血管新生功能成为当前研究的焦点。
     基质细胞衍生因子-1α(stromal cell-derived factor-1α,SDF-1α)与其唯一受体CXCR4构成的SDF-1α/CXCR4轴在EPCs归巢及新生血管形成过程中起着重要作用。有关雌激素是否可通过作用于SDF-1α/CXCR4轴调节EPCs的归巢和血管新生功能及其作用机制,目前研究尚少。由于全身应用雌激素副作用大,且作用的组织细胞广泛,难以阐述清楚雌激素的具体作用机制。因此,本实验首先通过建立卵巢切除模型,初步研究生理性雌激素对骨髓源性内皮祖细胞(bonemarrow-derived endothelial progenitor cells,BM-EPCs)在体外向SDF-1α迁移和血管新生功能的影响及作用机制;然后在体外进一步研究雌激素预处理对BM-EPCs迁移和血管新生功能的影响及其作用机制;最后研究雌激素预处理BM-EPCs对其在移植治疗心肌梗死中体内归巢的影响,并研究雌激素预处理BM-EPCs在移植治疗心肌梗死中的作用及其机制。
     第一部分生理性雌激素对骨髓源性内皮祖细胞迁移及血管新生功能的影响
     [目的]研究生理性雌激素对骨髓源性内皮祖细胞(BM-EPCs)迁移及血管新生功能的影响及其机制。
     [方法]6周龄雌性BALB/C小鼠随机分成卵巢切除组、假手术组和正常组。分别于1周和4周后,ELISA法检测各组小鼠血清雌激素浓度。4周后,取胫骨和股骨骨髓,培养、鉴定BM-EPCs。Transwell小室检测各组BM-EPCs经或未经CXCR4抑制剂AMD3100处理后向基质细胞衍生因子-1α(SDF-1α)的迁移功能。血管生成试验检测各组BM-EPCs经或未经CXCR4抑制剂AMD3100处理后形成管样物的长度。RT-PCR、流式细胞术和Western blot检测各组BM-EPCs CXCR4的表达。
     [结果]卵巢切除1周和4周后,卵巢切除组小鼠血清雌激素浓度(23.09±4.01pmol/L)(20.75±2.75 pmol/L)均明显低于假手术组(894.53±71.98 pmol/L)(910.18±58.77 pmol/L)(P<0.01)和正常组(867.52±77.08 pmol/L)(901.66±78.57pmol/L)(P<0.01),而假手术组和正常组无显著差异(P>0.05)。卵巢切除组BM-EPCs向SDF-1α迁移的数量(102.67±7.02/400倍视野)明显低于假手术组(172.00±9.17/400倍视野)(P<0.01)和正常组(174.67±10.41/400倍视野)(P<0.01),而假手术组和正常组无明显差异(P>0.05)。经CXCR4抑制剂AMD3100处理后,卵巢切除组、假手术组和正常组向SDF-1α迁移的数量均明显减少(55.33±5.51/400倍视野vs 102.67±7.02/400倍视野)(57.00±4.58/400倍视野vs172.00±9.17/400倍视野)(60.00±5.00/400倍视野vs 174.67±10.41/400倍视野)(P<0.01),但组间比较没有显著差异(P>0.05)。卵巢切除组BM-EPCs形成管样物的长度(5386±405μm/50倍视野)明显低于假手术组(7768±466μm/50倍视野)(P<0.01)和正常组(7514±547μm/50倍视野)(P<0.01),而假手术组和正常组无显著差异(P>0.05)。正常组BM-EPCs经CXCR4抑制剂AMD3100处理后,形成管样物的长度明显降低(3292±310μm/50倍视野vs 7514±547μm/50倍视野)(P<0.01)。卵巢切除组BM-EPCs CXCR4的表达明显低于假手术组和正常组(P<0.01),而假手术组和正常组无显著差异(P>0.05)。
     [结论]生理性雌激素通过调节BM-EPCs功能性CXCR4的表达而增强其迁移及血管新生功能。
     第二部分雌激素预处理提高骨髓源性内皮祖细胞迁移及血管新生功能的体外实验研究
     [目的]研究体外雌激素预处理对骨髓源性内皮祖细胞(BM-EPCs)迁移及血管新生功能的影响及其机制。
     [方法]6周龄雌性BALB/C小鼠卵巢切除4周后,取胫骨和股骨骨髓,培养、鉴定BM-EPCs。分别采用0nmol/L、1nmol/L、10nmol/L、100nmol/L 17β-雌二醇或相应浓度17β-雌二醇和雌激素受体拮抗剂ICI182 780与BM-EPCs共培养。48小时后,Transwell小室检测各组BM-EPCs经或未经CXCR4抑制剂AMD3100处理后向基质细胞衍生因子-1α(SDF-1α)的迁移功能。血管生成试验检测BM-EPCs经或未经AMD3100处理后形成管样物的长度。RT-PCR、流式细胞术和Western blot检测各组BM-EPCs CXCR4的表达。
     [结果]17β-雌二醇呈剂量依赖性增强BM-EPCs的迁移及CXCR4的表达(P<0.05),但被雌激素受体拮抗剂ICl182 780完全阻断(P>0.05)。同样,17β-雌二醇明显增强BM-EPCs的血管新生功能(P<0.05),但被雌激素受体拮抗剂ICI182780完全阻断(P>0.05)。经CXCR4抑制剂AMD3100处理后,17β-雌二醇预处理的BM-EPCs的迁移和血管新生功能均明显受损(P<0.05)。
     [结论]雌激素通过雌激素受体途径上调BM-EPCs功能性CXCR4的表达而增强其迁移及血管新生功能。
     第三部分雌激素预处理骨髓源性内皮祖细胞提高细胞移植治疗急性心肌梗死疗效的体内实验研究
     [目的]研究雌激素预处理骨髓源性内皮祖细胞(BM-EPCs)对其体内归巢及治疗急性心肌梗死疗效的影响。
     [方法]6周龄雌性BALB/C小鼠切除卵巢4周后,结扎前降支建立心肌梗死模型,RT-PCR及免疫组化检测心肌梗死前和心肌梗死后1d、3d、7d、14d、21d心肌梗死区基质细胞衍生因子-1α(SDF-1α)的表达。心肌梗死后3d小鼠分成3组,分别经尾静脉注射经17β-雌二醇预处理的BM-EPCs、未经17β-雌二醇预处理的BM-EPCs和生理盐水作为空白对照。BM-EPCs移植后4d、11d,MRI实时示踪和普鲁士蓝染色分析心肌梗死区BM-EPCs的归巢量。BM-EPCs移植后25d,超声心动图检测3组小鼠的左室收缩末内径(LVDs)、左室舒张末内径(LVDd)、缩短分数(FS)和射血分数(EF);免疫组化检测3组小鼠心肌梗死区新生血管密度;Masson染色检测3组小鼠左室纤维化面积与左室总面积的百分比。
     [结果](1)心肌梗死后1d,SDF-1α表达即明显增高;在心肌梗死后3d达高峰;心肌梗死后7d仍维持在较高水平(P<0.01)。但在心肌梗死后14d、21d,SDF-1α表达明显降低,与正常心肌中SDF-1α表达水平无明显差异(P>0.05)。(2)BM-EPCs移植后4d、11d,17β-雌二醇预处理组心肌梗死区中归巢的BM-EPCs数量明显高于未经17β-雌二醇预处理组(P<0.05)。(3)BM-EPCs移植后25d,17β-雌二醇预处理组小鼠心室扩张程度明显轻于空白对照组(LVDs:3.09±0.05 vs3.27±0.10 mm,P<0.05:LVDd:4.18±0.07 vs 4.3±0.05 mm,P<0.05),未经17β-雌二醇预处理组小鼠心室扩张程度与空白对照组无明显差异(LVDs:3.18±0.07 vs 3.27±0.10 mm,P>0.05:LVDd:4.24±0.06 vs 4.31±0.05 mm,P>0.05)。17β-雌二醇预处理组小鼠的心功能也好于空白对照组(FS,%:33±3.8 vs26±3.2,P<0.05),未经17β-雌二醇预处理组小鼠的心功能与空白对照组无明显差异(FS,%:28±4.7 vs 26±3.2,P>0.05)。虽然17β-雌二醇预处理组和未经17β-雌二醇预处理组小鼠EF值分别比对照组增加了4.72%和3.29%,但3组小鼠的EF值无统计学差异(P>0.05)。(4)17β-雌二醇预处理BM-EPCs移植组心肌梗死区域新生血管密度明显高于对照组(1428±214/mm~2 vs 1070±168/mm~2,P<0.05),未经17β-雌二醇预处理BM-EPCs移植组心肌梗死区域新生血管密度与对照组无显著差异(1214±157/mm~2 vs 1070±168/mm~2,P>0.05)。(5)经17β-雌二醇预处理BM-EPCs移植组左室纤维化面积占整个左室面积的百分比明显低于对照组(8.8±4.9%vs 49.0±4.6%,P<0.05),而未经17β-雌二醇预处理组与对照组无显著差异(41.6±5.2%vs 49.0±4.6%,P>0.05)。
     [结论](1)急性心肌梗死后1周内,心肌梗死区中SDF-1α表达水平处于较高水平,为BM-EPCs移植最佳时期。(2)雌激素预处理可增强BM-EPCs归巢,促进心肌梗死区新生血管形成,减轻心室重塑,从而改善心功能。
Myocardial infarction has been a major cause of heart failure.Several studies demonstrated that premenopausal women with heart failure have a better prognosis than age-matched men.Whether endogenous sex hormones contribute to these differences in prognosis remains unknown.However,observational studies have demonstrated that postmenopausal women taking estrogen after a myocardial infarction have a lower incidence of heart failure.Furthermore,retrospective analysis of multicenter heart failure trials have shown that postmenopausal women taking estrogen have a better prognosis than women not on estrogen,supporting that estrogen may have beneficial effects on cardiovascular system.Hormone replacement therapy(HRT) in postmenopausal women was the accepted standard of care for many years until a randomized clinical trial showed that HRT actually increased the risk of cardiac events.Nevertheless,extensive experimental and epidemiological evidence indicates that estrogen has a protective role against cardiovascular system,which connects current studies about effects of estrogen on cardiovascular system with endothelial progenitor cells(EPCs) being a research focus for ten years.
     Experimental studies from several laboratories have reported that EPCs repair infarcted heart primarily through inducing neovascularization,resulting in enhancing perfusion,contributing to regeneration,confining extension of scar,inhibiting left ventricular remodeling and improving cardiac function.However,EPCs from patients with coronary artery disease and with risk factors for coronary artery disease show a lower number and impaired functions including migration,proliferation,homing, angiogenic activity and so on,compared with healthy volunteers.Accordingly,in an effort to enhance EPCs-mediated cardiovascular reparative benefits,current studies are focused on how to improve homing and neovascularization of EPCs.
     Stromal cell-derived factor-1αexclusively binds to CXCR4 and has CXCR4 as its only receptor.The SDF-1α/CXCR4 axis plays a pivotal role in homing and neovascularization of EPCs.Now,it is still not clear that whether estrogen mediates the homing and angiogenesis of EPCs by regulating SDF-1α/CXCR4 axis.Because of adverse reaction due to systemically applying estrogen and wide tissues and cells being targeted by estrogen,the effects and molecular mechanisms of estrogen on EPCs is hard to be clarified.Therefore,first,in this experiment,we investigated the effects and mechanisms of physiological estrogen on the migratory and angiogenic activity of bone marrow-derived endothelial progenitor cells(BM-EPCs) through establishing ovariectomized mouse models.Second,the effects and specific mechanisms of 17β-estradiol preconditioning in vitro on the migratory and angiogenic capacity of BM-EPCs were further illuminated.Finally,we studied the effects of 17β-estradiol preconditioning on homing of BM-EPCs in vivo and deciphered the effects and mechanisms of 17β-estradiol preconditioned BM-EPCs-mediated cardiac repair after acute myocardial infarction.
     PartⅠEffects of physiological estrogen on the migratory and angiogenic capacity of bone marrow-derived endothelial progenitor cells
     Objective To investigate the effects and mechanisms of physiological estrogen on the migratory and angiogenic capacity of bone marrow-derived endothelial progenitor cells(BM-EPCs).
     Methods Six weeks female BALB/C mice were randomly divided into ovariectomized group,sham operative group and normal group.ELISA was taken to measure serum levels of estrogen in each group 1 and 4 weeks after observation.4 weeks later,we cultured and identified BM-EPCs,assessed migratory capacity of BM-EPCs of each group toward stromal cell-derived factor-1α(SDF-1α) with or without treatment of CXCR4 inhibitor AMD3100 by Transwell chamber,measured tube length of BM-EPCs of each group with or without AMD3100,and detected expression of CXCR4 by RT-PCR,fluorescence-activated cell sorting(FACS),and Western blotting.
     Results First,serum levels of estrogen in the ovariectomized group 1 and 4 weeks after ovariectomy were both significantly lower than sham operative group and normal group(23.09±4.01 pmol/L vs 894.53±71.98 pmol/L,23.09±4.01 pmol/L vs 867.52±77.08 pmol/L,respectively,after 1 week,P<0.01;20.75±2.75 pmol/L vs 910.18±58.77 pmol/L,20.75±2.75 pmol/L vs 901.66±78.57 pmol/L,respectively, after 4 weeks,P<0.01),but there were no difference between sham and normal group (P>0.05).Second,the number of BM-EPCs migrated toward SDF-1αin ovariectomized group(102.67±7.02 per high power field) was significantly decreased than in sham operative group(172.00±9.17 per high power field;P<0.01) and in normal group(174.67±10.41 per high power field;P<0.01),respectively.However, there were no difference between sham and normal group(P>0.05).After administration of AMD3100,the number of BM-EPCs migrated to SDF-1αin each group was significantly reduced(ovariectomized group,55.33±5.51 vs 102.67±7.02 per high power field,P<0.01;sham group,57.00±4.58 vs 172.00±9.17 per high power field,P<0.01;normal group,60.00±5.00 vs 174.67±10.41 per high power field,P<0.01),but there was no difference between them(P>0.05).Third,tube length of BM-EPCs in ovariectomized group(5386±405μm per power field) significantly decreased than in sham operative group(7768±466μm per power field; P<0.01) and in normal group(7514±547μm per power field;P<0.01),but there were no difference between sham group and normal group(P>0.05).After treatment with AMD3100,the tube length of BM-EPCs in normal group was significantly impaired(3292±310μm with AMD3100 vs 7514±547μm per power field without AMD3100;P<0.01).Finally,CXCR4 expression of BM-EPCs from ovariectomized group significantly decreased than sham operative group and normal group, respectively(P<0.01).However,the difference was not shown between sham group and normal group(P>0.05).
     Conclusion Physiological estrogen improves migratory and angiogenic capacity of BM-EPCs by up-regulating functional CXCR4 expression.
     PartⅡIn vitro experimental study of estrogen preconditioning for enhancing the migratory and angiogenic activity of bone marrow-derived endothelial progenitor cells
     Objective To investigate the effects and mechanisms of estrogen preconditioning in vitro on the migratory and angiogenic capacity of bone marrow-derived endothelial progenitor cells(BM-EPCs).
     Methods 6 weeks aged BALB/C mice were ovariectomized and 4 weeks later, BM-EPCs were cultured and identified from ovariectomized BALB/C mice tibia and femur.After 48 hours coculture with 0 nmol/L,1 nmol/L,10 nmol/L,100 nmol/L 17β-estradiol,or,corresponding concentration of 17β-estradiol and estrogen receptors antagonist ICI182 780,BM-EPCs migratory activity toward stromal cell-derived factor-1αwere assessed by transwell chamber with or without treatment of CXCR4 inhibitor AMD3100,angiogenic capacity of BM-EPCs was evaluated by measuring tube length also with or without administration of AMD3100,and CXCR4 expression of BM-EPCs were detected by RT-PCR,FACS,and Western blotting.
     Results Migratory activity and CXCR4 expression of BM-EPCs were increased by 17β-estradiol in a dose-dependent manner(P<0.05),however,these effects were completely blocked by ICI182 780(P>0.05).17β-estradiol prominently enhances angiogenic capacity of BM-EPCs which was fully blocked by ICI182 780 as well. After administration of AMD3100,both migratory and angiogenic activity of BM-EPCs preconditioned with 17β-estradiol were significantly impaired(P<0.05).
     Conclusion Estrogen enhances migratory and angiogenic activity of BM-EPCs by up-regulating functional CXCR4 expression via estrogen receptors pathway.
     PartⅢIn vivo experimental study of estrogen preconditioned bone marrow-derived endothelial progenitor cells transplanted for enhancing recovery after acute myocardial infarction
     Objective To investigate the effects of estrogen preconditioning on homing and treatment of bone marrow-derived endothelial progenitor cells(BM-EPCs) transplanted for infarcted myocardium.
     Methods Female BALB/C mice aged six weeks were ovariectomized.Four weeks later,acute myocardial infarction models were established by ligating the anterior descending(LAD) branch of the left coronary artery.RT-PCR and immunohistochemistry were taken to detect the expression of stromal cell-derived factor-1αin myocardial infarcted area just before myocardial infarction and 1,3,14, 21days after myocardial infaction.3 Days after myocardial infarction,mice were randomly divided into three groups,and each group received 17β-estradiol preconditioned BM-EPCs,non-17β-estradiol preconditioned BM-EPCs,and saline as control through tail vein,respectively.4 and 11 days after BM-EPCs transplantation, MRI trafficking and Prussian staining were used to quantify BM-EPCs homed to infarcted myocardium.25 Days after BM-EPCs transplantation,transthoracic echocardiography was performed to measure left ventricular systolic(LVDs) and diastolic(LVDd) dimensions,fractional shortening(FS) and ejection fraction(EF).At the same time,immunohistochemistry and Masson's trichrome staining were used to assess the capillary density and the average ratio of fibrosis area to total left ventricular area,respectively.
     Results(1) SDF-1αexpression in infarcted myocardium area showed a higher level just 1 day after myocardial infarction,reached the highest level 3 days after myocardial infarction,and still maintained at a higher level 7 days after myocardial infarction(P<0.01).However,14 and 21 days after myocardial infarction,expression of SDF-1αsignificantly decreased and had no statistic significance compared with in normal myocardium(P>0.05).(2) Quantity of homed BM-EPCs in infarcted myocardium of 17β-estradiol preconditioned group is larger than of non-17β-estradiol preconditioned group(P<0.01).(3) 25 Days after transplantation,echocardiography revealed less ventricular dilation in 17β-estradiol preconditioned group versus controlled group(LVDs:3.09±0.05 vs 3.27±0.10 mm,P<0.05;LVDd,4.18±0.07 vs 4.3±0.05 mm,P<0.05),but there were no significance between non-17β-estradiol preconditioned group versus controlled group(LVDs:3.18±0.07 vs 3.27±0.10 mm,P>0.05;LVDd:4.24±0.06 vs 4.31±0.05 mm,P>0.05).LV function was also significantly better in 17β-estradiol preconditioned group versus controlled group(FS, %:33±3.8 vs 26±3.2,P<0.05),however,LV function of non-17β-estradiol preconditioned group was not significantly improved compared with of control(FS, %:28±4.7 vs 26±3.2,P>0.05).Although EF value of 17β-estradiol and non-17β-estradiol preconditioned group increased 4.72%and 3.29%than of controlled group,respectively,there were no significance between them(P>0.05).(4) Capillary density 25days after BM-EPCs transplantation in infarcted myocardium of 17β-estradiol preconditioned group was significantly greater than of controlled group (1428±214/mm~2 vs 1070±168/mm~2,P<0.05).However,capillary density was similar between non-17β-estradiol preconditioned group and controlled group (1214±157/mm~2 vs 1070±168/mm~2,P>0.05).(5) 25 Days after BM-EPCs transplantation,the area of left ventricular fibrosis was significantly less in 17β-estradiol preconditioned group than in controlled group(8.8±4.9%vs 49.0±4.6%, P<0.05).Nevertheless,the area of left ventricular fibrosis of non-17β-estradiol preconditioned group had no significance compared with control(41.6±5.2%vs 49.0±4.6%,P>0.05).
     Conclusions(1) During 1 week after acute myocardial infarction is optimal period for BM-EPCs transplantation for treating ischemic heart disease for SDF-1αexpression in infarcted myocardium showing a higher level.(2) estrogen preconditioning enhances homing of BM-EPCs which contributes to neovascularization,attenuating left ventricular remodeling,and improving cardiac function.
引文
1.American Heart Association:Heart and Stroke Facts:2003 Statistical Supplement.Dallas:American Heart Association;2003.
    2.Ghali JK,Pina IL,Gottlieb SS,et al.Metoprolol CR/XL in female patients with heart failure:analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure(MERIT-HF).Circulation,2002,105:1585-1591.
    3.Simon T,Mary-Krause M,Funck-Brentano C,et al.Sex differences in the prognosis of congestive heart failure:results from the Cardiac Insufficiency Bisoprolol Study(CIBIS Ⅱ).Circulation,2001,103:375-380.
    4.Levy D,Kenchaiah S,Larson MG,et al.Long-term trends in the incidence of and survival with heart failure.N Engl J Med,2002,347:1397-1402.
    5.Shlipak MG,Angeja BG,Go AS,et al.Hormone therapy and in-hospital survival after myocardial infarction in postmenopausal women.Circulation,2001,104:2300-2304.
    6.Newton KM,LaCroix AZ,McKnight B,et al.Estrogen replacement therapy and prognosis after first myocardial infarction.Am J Epidemiol,1997,145:269-277.
    7.Reis SE,Holubkov R,Young JB,et al.Estrogen is associated with improved survival in aging women with congestive heart failure:analysis of the vesnarinone studies.J Am Coll Cardiol,2000,36:529-533.
    8.Lindenfeld J,Ghali JK,Krause-Steinrauf HJ,et al.Hormone replacement therapy is associated with improved survival in women with advanced heart failure.J Am Coll Cardiol,2003,42:1238-1245.
    9. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998, 280: 605-613.
    
    10. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275:964-967.
    
    11. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001, 103: 634-637.
    
    12. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7: 430-436.
    
    13. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002,106:3009-3017.
    
    14. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005,97:1142-1151.
    
    15. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med, 2003,348: 593-600.
    
    16. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001, 89: e1-e7.
    
    17. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 2003,108:2511-2516.
    
    18. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med, 2003, 9: 1370-1376.
    
    19. Yamaguchi Jun-ichi, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003,107:1322-1328.
    
    20. Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res, 2006,98:1219-1227.
    
    21. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    
    22. Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006,20(11): 1915-1924.
    
    23. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004, 110: 3300-3305.
    
    24. Honold J, Lehmann R, Heeschen C, et al. Effects of Granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    25. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 2005,25:2321-2327.
    
    26. Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol, 2007, 27: 275-282.
    
    27. Iwakura A, Shastry S, Luedemann C, et al. Estrogen enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemic-inducible neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 2006, 113: 1605-1614.
    
    28. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors a and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 2006, 114:2261-2270.
    
    29. Patten R, Pourati I, Aronovitz MJ, et al. 17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res, 2004, 95: 692-699.
    
    30. Arbab AS, Frenkel V, Pandit SD, et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells, 2006,24: 671-678
    1. Ghali JK, Pina IL, Gottlieb SS, et al. Metoprolol CR/XL in female patients with heart failure: analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF). Circulation, 2002,105:1585-1591.
    
    2. Simon T, Mary-Krause M, Funck-Brentano C, et al. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation, 2001,103: 375-380.
    
    3. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med, 2002,347:1397-1402.
    
    4. Shlipak MG, Angeja BG, Go AS, et al. Hormone therapy and in-hospital survival after myocardial infarction in postmenopausal women. Circulation, 2001, 104: 2300-2304.
    
    5. Reis SE, Holubkov R, Young JB, et al. Estrogen is associated with improved survival in aging women with congestive heart failure: analysis of the vesnarinone studies. J Am Coll Cardiol, 2000,36: 529-533.
    
    6. Lindenfeld J, Ghali JK, Krause-Steinrauf HJ, et al. Hormone replacement therapy is associated with improved survival in women with advanced heart failure. J Am Coll Cardiol, 2003,42:1238-1245.
    
    7. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001,103: 634-637.
    
    8. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7: 430-436.
    
    9. Iwakura A, Shastry S, Luedemann C, et al. Estrogen enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemic-inducible neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 2006,113:1605-1614.
    
    10. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors a and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 2006,114:2261-2270.
    
    11. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005, 97: 1142-1151.
    
    12. Yamaguchi Jun-ichi, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003,107:1322-1328.
    
    13. Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1 -driven postischemic vasculogenesis. Circ Res, 2006,98:1219-1227.
    
    14. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    
    15. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004, 110: 3300-3305.
    
    16. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275: 964-967.
    
    17. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood, 1998, 92: 362-367.
    
    18. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95: 343-353.
    
    19. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest, 2000, 105: 71-77.
    
    20. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol, 2004, 24:288-293.
    21. Aicher A, Heeschen C, Sasaki K, et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation, 2006,114:2823-2830.
    
    22. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 2005,25:2321-2327.
    
    23. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation, 2003,108:2212-2218.
    
    24. Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    25. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hypoxia and SDF-1α. J Clin Invest, 2007,117:1249-1359.
    
    26. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial progenitor cells. Circulation, 2005,112:1618-1627.
    
    27. Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation, 2005,111:1114-1120.
    
    28. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 2003,108:2511-2516.
    
    29. Foresta C, Zuccarello D, Biaqioli A, et al. Oestrogen stimulates endothelial progenitor cells via estrogen receptor-alpha. Clin Endocrinol, 2007,67: 520-525.
    
    30. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res, 2007, 101:598-606.
    1.Patten RD,Pourati I,Aronovitz MJ,et al.17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling.Circ Res,2004,95:692-699.
    2. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004,110: 3300-3305.
    
    3. American Heart Association: Heart and Stroke Facts: 2003 Statistical Supplement. Dallas: American Heart Association; 2003.
    
    4. Ghali JK, Pina IL, Gottlieb SS, et al. Metoprolol CR/XL in female patients with heart failure: analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF). Circulation, 2002,105:1585-1591.
    
    5. Simon T, Mary-Krause M, Funck-Brentano C, et al. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation, 2001,103: 375-380.
    
    6. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med, 2002,347:1397-1402.
    
    7. Shlipak MG, Angeja BG, Go AS, et al. Hormone therapy and in-hospital survival after myocardial infarction in postmenopausal women. Circulation, 2001, 104: 2300-2304.
    
    8. Newton KM, LaCroix AZ, McKnight B, et al. Estrogen replacement therapy and prognosis after first myocardial infarction. Am J Epidemiol, 1997,145:269-277.
    
    9. Reis SE, Holubkov R, Young JB, et al. Estrogen is associated with improved survival in aging women with congestive heart failure: analysis of the vesnarinone studies. J Am Coll Cardiol, 2000, 36: 529-533.
    
    10. Lindenfeld J, Ghali JK, Krause-Steinrauf HJ, et al. Hormone replacement therapy is associated with improved survival in women with advanced heart failure. J Am Coll Cardiol, 2003,42:1238-1245.
    
    11. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998, 280: 605-613.
    
    12. Anderson GL, Linacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy, the Women's Health Initiative Randomized Controlled Trial. JAMA, 2004,291: 1701-1712.
    
    13. Rossouw JE, Anderson GL. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative Randomized Controlled Trial. JAMA, 2002, 288: 321-333.
    14. Grady D, Herrington D, Bittner V, et al. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study Follow-up (HERS II). JAMA, 2002,288:49-57.
    
    15. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001, 103: 634-637.
    
    16. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7: 430-436.
    
    17. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95: 343-353.
    
    18. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005, 97:1142-1151.
    
    19. Yamaguchi Jun-ichi, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003,107:1322-1328.
    
    20. Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res, 2006,98:1219-1227.
    
    21. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    
    22. Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006, 20(11): 1915-1924.
    
    23. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 2005, 25: 2321-2327.
    
    24. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med, 2003, 348: 593-600.
    
    25. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001, 89: e1-e7.
    26. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 2006,114:2261-2270.
    
    27. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation, 2003,108:2212-2218.
    
    28. Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    29. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension, 2005, 45: 321-325.
    
    30. Bompais H, Chagraoui J, Canron X, et al. Human endothelial cells derived from circulating progenitors display specific function properties compared with mature vessel wall endothelial cells. Blood, 2004,103:2577-2584.
    
    31. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hypoxia and SDF-lot. J Clin Invest, 2007,117:1249-1359.
    
    32. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial progenitor cells. Circulation, 2005,112:1618-1627.
    
    33. Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation, 2005, 111: 1114-1120.
    
    34. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 2003,108:2511-2516.
    
    35. Suriano R, Chaudhuri D, Johnson RS, et al. 17Beta-estradiol mobilizes bone marrow-derived endothelial progenitor cells to tumors. Cancer Res, 2008, 68: 6038-6042.
    1.Abbott JD,Huang Y,Liu D,et al.Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury.Circulation,2004,110:3300-3305.
    2.Arbab A,Frenkel V,Pandit SD,et al.Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis.Stem Cells,2006,24:671-678.
    3.Walter DH,Haendeler J,Reinhold J,et al.Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005,97:1142-1151.
    
    4. Yamaguchi Jun-ichi, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003,107:1322-1328.
    
    5. Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res, 2006,98:1219-1227.
    
    6. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    
    7. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275: 964-967.
    
    8. Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood, 1998, 92:362-367.
    
    9. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999, 5:434-438.
    
    10. Hatzopoulos AK, Folkman J, Vasile E, et al. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development, 1998, 125: 1457-1468.
    
    11. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood, 2000, 95: 952-958.
    
    12. Unger ER, Sung JH, Manivel JC, et al. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol, 1993, 52:460-470.
    
    13. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med, 2002,346: 5-15.
    
    14. Caplice NM, Bunch TJ, Stalboerger PG, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci U S A, 2003,100: 4754-4759.
    
    15. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet, 2002, 360: 427-435.
    16. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002,106: 3009-3017.
    
    17. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95: 343-353.
    
    18. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001, 89: el-e7.
    
    19. Thum T, Hoeber S, Froese S, et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth hormone mediated increase of insulin-like growth factor-1. Circ Res, 2007,100:434-443.
    
    20. Pirro M, Schillaci G, Menecali C, et al. Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34~+ cells of hypertensive patients. J Hypertens, 2007,25: 2093-2099.
    
    21. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest, 2007,117:1249-1259.
    
    22. Michaud SE, Dussault S, Haddad P, et al. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activity. Atherosclerosis, 2006, 187: 423-432.
    
    23. Fadini GP, de Kreutzenberg S, Albiero M, et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol, 2008,28: 997-1004.
    
    24. Kunz GA, Liang G, Cuculoski F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J, 2006,152: 190-195.
    
    25. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med, 2005, 353: 999-1007.
    
    26. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med, 1999,340: 1801-1811.
    
    27. Herrington DM, Howard TD. From presumed benefit to potential harm: hormone therapy and heart disease. N Engl J Med, 2003, 349: 519-521.
    
    28. Iwakura A, Shastry S, Luedemann C, et al. Estrogen enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemic-inducible neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 2006,113:1605-1614.
    
    29. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 2006,114:2261-2270.
    
    30. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest, 1994,93: 662-670.
    
    31. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A, 2001, 98: 10344-10349.
    
    32. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet, 2004, 363: 751-756.
    
    33. Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    34. Patten R, Pourati I, Aronovitz MJ, et al. 17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res, 2004,95: 692-699.
    
    35. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med, 2002,347:1397-1402.
    
    36. Fadini GP, de Kreutzenberg S, Albiero M, et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol, 2008,28: 997-1004.
    
    37. Lemieux C, Cloutier I, Tanguay JF. Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection. Int J Cardiol, 2008 Jul 19, Epub ahead of print.
    
    38. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res, 2007, 101:598-606.
    1.American Heart Association:Heart and Stroke Facts:2003 Statistical Supplement.Dallas:American Heart Association;2003.
    2.Philbin EF,DiSalvo TG.Influence of race and gender on care process,resource use,and hospital-based outcomes in congestive heart failure.Am J Cardiol,1998,82:76-81.
    3.Vasan RS,Larson MG,Benjamin EJ,et al.Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction:prevalence and mortality in a population-based cohort.J Am Coil Cardiol,1999,33:1948-1955.
    4.Ghali JK,Pina IL,Gottlieb SS,et al.Metoprolol CR/XL in female patients with heart failure:analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure(MERIT-HF).Circulation,2002,105:1585-1591.
    5.Simon T,Mary-Krause M,Funck-Brentano C,et al.Sex differences in the prognosis of congestive heart failure:results from the Cardiac Insufficiency Bisoprolol Study(CIBIS Ⅱ).Circulation,2001,103:375-380.
    6.Ho KK,Pinsky JL,Kannel WB,et al.The epidemiology of heart failure:the Framingham Study.J Am Coll Cardiol,1993,22:6A-13A.
    7.Levy D,Kenchaiah S,Larson MG,et al.Long-term trends in the incidence of and survival with heart failure.N Engl J Med,2002,347:1397-1402.
    8.Shlipak MG,Angeja BG,Go AS,et al.Hormone therapy and in-hospital survival after myocardial infarction in postmenopausal women.Circulation,2001,104:2300-2304.
    9.Newton KM,LaCroix AZ,McKnight B,et al.Estrogen replacement therapy and prognosis after first myocardial infarction.Am J Epidemiol,1997,145:269-277.
    10.Reis SE,Holubkov R,Young JB,et al.Estrogen is associated with improved survival in aging women with congestive heart failure:analysis of the vesnarinone studies. J Am Coll Cardiol, 2000, 36: 529-533.
    
    11. Lindenfeld J, Ghali JK, Krause-Steinrauf HJ, et al. Hormone replacement therapy is associated with improved survival in women with advanced heart failure. J Am Coll Cardiol, 2003,42:1238-1245.
    
    12. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998, 280: 605-613.
    
    13. Anderson GL, Linacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy, the Women's Health Initiative Randomized Controlled Trial. JAMA, 2004,291:1701-1712.
    
    14. Rossouw JE, Anderson GL. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative Randomized Controlled Trial. JAMA, 2002,288: 321-333.
    
    15. Grady D, Herrington D, Bittner V, et al. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study Follow-up (HERS II). JAMA, 2002,288:49-57.
    
    16. Wassmann K, Wassmann S, Nickenig G. Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res, 2005,97:1046-1054.
    
    17. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275: 964-967.
    
    18. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95: 343-353.
    
    19. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contribution to neovasculogenesis. Arterioscler Thromb Vasc Biol, 2004,24:288-293.
    
    20. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial progenitor cells. Circulation, 2005, 112: 1618-1627.
    
    21. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001, 103: 634-637.
    
    22. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7: 430-436.
    
    23. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002,106: 3009-3017.
    
    24. Yamaguchi Jun-ichi, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003,107:1322-1328.
    
    25. Sbaa E, DeWever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res, 2006,98:1219-1277.
    
    26. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005,97:1142-1151.
    
    27. Aicher A, Heeschen C, Sasaki K, et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation, 2006,114:2823-2830.
    
    28. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 2005,25:2321-2327.
    
    29. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med, 2003,348: 593-600.
    
    30. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001, 89: e1-e7.
    
    31. Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol, 2005,45:1441-1448.
    
    32. Chang EI, Loh SA, Ceradini DJ, et al. Age decrease endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor la stabilization during ischemia. Circulation, 2007,116: 2818-2829.
    
    33. Thum T, Hoeber S, Froese S, et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth hormone mediated increase of insulin-like growth factor-1. Circ Res, 2007,100:434-443.
    34. Pirro M, Schillaci G, Menecali C, et al. Reduced number of circulating endothelial progenitors and H0XA9 expression in CD34~+ cells of hypertensive patients. J Hypertens, 2007,25:2093-2099.
    
    35. Fadini GP, Sartore S, Albiero M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol, 2006,26:2140-2146.
    
    36. Gapla JM, Grogan RH, Callaghan MJ, et al. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Resconstr Surg, 2007,119: 59-70.
    
    37. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest, 2007,117:1249-1259.
    
    38. Chen JZ, Zhang FR, Tao QM, et al. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond), 2004,107:273-280.
    
    39. Michaud SE, Dussault S, Haddad P, et al. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activity. Atherosclerosis, 2006,187: 423-432.
    
    40. American Heart Association. Heart disease and stroke statistic-2006 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2006,113: e85-e151.
    
    41. Ballard VL, Edelberg JM. Harnessing hormonal signaling for cardioprotection. Sci Aging Knowledge Environ, 2005, 2005: re6.
    
    42. Fadini GP, de Kreutzenberg S, Albiero M, et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol, 2008,28: 997-1004.
    
    43. Lemieux C, Cloutier I, Tanguay JF. Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection. Int J Cardiol, 2008 Jul 19, Epub ahead of print.
    
    44. Kunz GA, Liang G, Cuculoski F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J, 2006,152: 190-195.
    
    45. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med, 2005, 353: 999-1007.
    
    46. Folkman J, Klagsbrun M. Angiogenic factors. Science, 1987, 235: 442-447.
    47. Ferrara N, Chen H, David-Smith T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med, 1998,4:336-340.
    
    48. Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Science U S A, 1995,92:11190-11194.
    
    49. Dawn B, Bolli R. Increasing evidence that estrogen is an important modulator of bone marrow-derived cardiac repair after acute infarction. Circulation, 2006, 114: 2203-2205.
    
    50. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 2006,114:2261-2270.
    
    51. Foresta C, Zuccarello D, Biaqioli A, et al. Oestrogen stimulates endothelial progenitor cells via estrogen receptor-alpha. Clin Endocrinol, 2007, 67:520-525.
    
    52. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res, 2007, 101:598-606.
    
    53. Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation, 2003,108:3115-3121.
    
    54. Strehlow K, Werner N, Berweiler J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation, 2003,107:3059-3065.
    
    55. Iwakura A, Shastry S, Luedemann C, et al. Estrogen enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemic-inducible neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 2006,113:1605-1614.
    
    56. Foresta C, De Toni L, Di Mambro A, et al. Role of estrogen receptors in menstrual cycle-related neoangiogenesis and their influence on endothelial progenitor cell physiology. Fertil Steril, 2008, Nov 4, Epub ahead of print.
    
    57. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension, 2005, 45: 321-325.
    
    58. Bulut D, Albrecht N, Imohl M, et al. Hormonal status modulates circulating endothelial progenitor cells. Clin Res Cardiol, 2007, 96: 258-263.
    59. Lapidot T, Petit I. Current understanding of stem cell mobilization: the role of chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cells. Exp Hematol, 2002,30: 973-981.
    
    60. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med, 2003, 9: 1370-1376.
    
    61. Patten R, Pourati I, Aronovitz MJ, et al. 17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res, 2004, 95: 692-699.
    
    62. Zhao X, Huang L, Tin Y, et al. Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvasc Res, 2008,75:45-52.
    
    63. Suriano R, Chaudhuri D, Johnson RS, et al. 17Beta-estradiol mobilizes bone marrow-derived endothelial progenitor cells to tumors. Cancer Res, 2008, 68: 6038-6042.
    
    64. Vajkoczy P, Blum S, Lamparter M, et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med, 2003,197:1755-1765.
    
    65. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 2005,23: 879-894.
    
    66. Askari AT, Unzek S, Popovic ZB, et al. Effects of stromal-cell-derived factor 1 on stem cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003, 362: 697-703.
    
    67. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 2001,103: 2776-2779.
    
    68. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res, 2000, 86: 1198-1202.
    
    69. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation, 2003,108: 2212-2218.
    
    70. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in absence of injury. Circulation, 2004,110: 3300-3305.
    
    71. Ray R, Herring CM, Markel TA, et al. Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. Am J Physiol Regul Integr Comp Physiol, 2008, 294: R1498-R1503. Erwin GS, Crisostomo PR, Wang Y, et al. Estradiol -treated mesenchymal stem cells improve myocardial recovery after ischemia. J Surg Res, 2008, Mar 13, Epub ahead of print.
    
    72. Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation, 2005,111:1114-1120.
    
    73. Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens, 2005, 23: 1699-1706.
    
    74. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376:62-66.
    
    75. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flk-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 1995, 376:66-70.
    
    76. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 1996,380:439-442.
    
    77. Ioakim S, Sullivan AB. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Circulation, 1997,95:1505-1514.
    
    78. Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res, 2005, 28: 263-271.
    
    79. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet, 2002,360:427-435.
    
    80. Bompais H, Chagraoui J, Canron X, et al. Human endothelial cells derived from circulating progenitors display specific function properties compared with mature vessel wall endothelial cells. Blood, 2004,103:2577-2584.
    
    81. Iso Y, Spees JL, Serrano C, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Bioph Res Co, 2007, 354: 700-706.
    
    82. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124: 175-189.
    
    83. Ruiz de Almodovar C, Luttun A, Carmeliet P, et al. An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell, 2006,124:18-21.
    
    84. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 2003,108:2511-2516.
    
    85. Wiesneth M, Schreiner T, Friedrich W, et al. Mobilization and collection of allogeneic peripheral blood progenitor cells for transplantation. Bone Marrow Transplant, 1998,21(suppl 3): S21-S24.
    
    86. Honold J, Lehmann R, Heeschen C, et al. Effects of Granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    87. Proudler AJ, Ahmed AI, Crook D, et al. Hormone replacement therapy and serum angiotensin-converting-enzyme activity in postmenopausal women. Lancet, 1995, 346: 89-90.
    1.Kawamoto A,Gwon HC,Iwaguro H,et al.Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia.Circulation,2001,103:634-637.
    2.Kocher AA,Schuster MD,Szabolcs MJ,et al.Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,reduces remodeling and improves cardiac function.Nat Med,2001,7:430-436.
    3.Assmus B,Sch(a|¨)chinger V,Teupe C,et al.Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction(TOPCARE-AMI).Circulation,2002,106:3009-3017.
    4.Yamaguchi Jun-ichi,Kusano KF,Masuo O,et al.Stromal cell-derived factor-1effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization.Circulation,2003,107:1322-1328.
    5.Sbaa E,Dewever J,Martinive P,et al.Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis.Circ Res,2006,98:1219-1227.
    6.Walter DH,Haendeler J,Reinhold J,et al.Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res, 2005,97:1142-1151.
    
    7. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    
    8. Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006,20(11): 1915-1924.
    
    9. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004,110: 3300-3305.
    
    10. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med, 2004,10: 858-864.
    
    11. Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol, 2005, 25:2321-2327.
    
    12. Jin C, Fu WX, Xie LP, et al. SDF-1α production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol, 2003, 223: 26-34.
    
    13. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood, 2005, 106: 3020-3027.
    
    14. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension, 2005, 45: 321-325.
    
    15. Schioppa T, Uranchimeg B, Saccani A, Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med, 2003,198:1391-1402.
    
    16. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem, 2003,278: 21631-21638.
    
    17. Powell TM, Paul JD, Hill JM, et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol, 2005,25: 296-301.
    
    18. Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol, 2007, 27: 275-282.
    
    19. Lapidot T, Dar A, Kollet O, et al. How do stem cells find their way home? Blood, 2005,106:1901-1910.
    
    20. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood, 2004,103: 1580-1585.
    
    21. Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol, 2006, 26: 2238-2243.
    
    22. Yin Y, Huang L, Zhao X, et al. AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol, 2007, 50: 61-67.
    
    23. Bompais H, Chagraoui J, Canron X, et al. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood, 2004,103:2577-2584.
    
    24. Ruiz de Almodovar C, Luttun A, Carmeliet P. An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell, 2006,124:18-21.
    
    25. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hypoxia and SDF-1α. J Clin Invest, 2007, 117(5): 1249-1359.
    
    26. Moore MA, Hattori K, Heissiq B, et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum of SDF-1, VEGF, and angiopoietin-1. Ann N YAcad Sci, 2001, 938: 36-47.
    
    27. Hwanq JH, Kim SW, Park SE, et al. Overexpression of stromal cell-derived factor-1 enhances endothelium-supported transmigration, maintenance, and proliferation of hematopoietic progenitor cells. Stem Cells Dev, 2006, 15: 260-268.
    
    28. Aicher A, Heeschen C, Sasaki K, et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation, 2006, 114: 2823-2830.
    
    29. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4~+ hemangiocytes. Nat Med, 2006, 12: 557-567.
    
    30. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet, 2004, 363:751-756.
    
    31. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006,107:1761-1767.
    
    32. Shiba Y, Takahashi M, Yoshioka T, et al. M-CSF accelerates neointimal formation in the early phase after vascular injury in mice: the critical role of the SDF-1-CXCR4 system. Arterioscler Thromb Vasc Biol, 2007,27:283-289.
    
    33. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95:343-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700