酚醛树脂/蒙脱土纳米复合材料改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/蒙脱土(MMT)纳米插层复合材料,是目前研究最多、最引人注目的复合材料。我国的蒙脱土矿藏资源十分丰富,独特的结构,适宜的离子交换容量,优良的力学性能及低廉的价格,使得蒙脱土成为制备新型高性能纳米插层复合材料的最重要的一类无机物。应用纳米插层复合技术,使蒙脱土以纳米尺寸对木材胶粘剂进行改良或改性是木材科学领域的新课题,具有重大的理论意义和实用价值。本论文首次提出了木材胶粘剂酚醛树脂/蒙脱土纳米插层复合的技术路线及在人造板工业中的应用。本论文的探索性研究,为木材胶粘剂酚醛树脂改性提出了新的思路,为木材胶粘剂/无机复合材料的研究开拓了新的途径。
     本文通过对木材用胶粘剂酚醛树脂进行纳米蒙脱土改性,利用一步和两步插层法制备了PF/MMT纳米复合材的预聚体,用高温加压的制板工艺,让树脂固化,释放的能量使树脂分子进一步插入到蒙脱土层间,从而形成纳米复合材料。通过对不同F/P摩尔比树脂添加不同蒙脱土类型、不同蒙脱土用量、不同助剂及不同合成方法等因素对酚醛树脂/蒙脱土改性树脂胶合性能的影响研究,并且利用X射线衍射(XRD),基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS),差示扫描量热法(DSC)和热机械分析(TMA)等手段对制备的复合材料进行了结构和性能的表征分析,可以得出以下结论:
     1、MALDI-TOF质谱图分析表明本实验中的酚醛树脂是三维的结构,PUF共缩聚树脂结构以酚醛树脂为主体,特别是聚合物的链接方式,因此PUF树脂通常具有与传统酚醛树脂相同的性能表现,不同摩尔比的酚醛树脂对插层效果没有明显的影响。
     2、蒙脱土对各酚醛树脂的改性作用主要表现在耐沸水煮后的胶合强度的增加。XRD的结果表明NaMMT有一定程度的插层,而不是剥离。而胶合板性能检测结果表明在酚醛树脂(PF)和苯酚-尿素-甲醛(PUF)共缩聚树脂中混入少量的钠基蒙脱土可以提高树脂的耐水性,正是由于蒙脱土层间距有少量的增加,部分酚醛树脂进入到蒙脱土层间,形成一定程度插层。
     3、DSC和TMA的分析表明NaMMT对PF树脂有加速固化的作用,弹性模量随着温度的作用增加,加了NaMMT的树脂的弹性模量最大值增大。为使树脂性能得到较好的改进,蒙脱土的添加量不宜太多,1%~3%是一个较合适的范围。
     4、胶合板性能检测结果表明,添加尿素有助于提高酚醛/蒙脱土改性树脂的性能。尿素的NH2+能与蒙脱土层间的阳离子进行交换,利用尿素把酚醛树脂分子带到蒙脱土的层间。与未加尿素的改性树脂相比,无论是干状的还是沸水煮后的树脂的胶合强度都有明显提高。
     5、水溶性酚醛树脂与蒙脱土有较好的相容性,可得到部分插层型的酚醛树脂/蒙脱土纳米插层复合体,胶合板性能检测结果表明,酚醛树脂/蒙脱土纳米插层复合体的干状和湿状胶合强度都有明显提如同高,复合体中的蒙脱土与酚醛树脂分子间可能通过氧原子发生了较强的连接。由于苯酚和甲醛单体较酚醛树脂分子更容易进入蒙脱土的层间,在合成树脂的过程中加入蒙脱土的一步插层法比先按传统方法合成树脂,再加入蒙脱土与之混合的两步插层法,所得的酚醛树脂/蒙脱土纳米改性树脂的性能更好。
     在本实验中的PF/MMT的纳米复合效应并不显著。但木材胶粘剂/蒙脱土纳米复合材料的性能存在很大的发展潜力和开发前景,值得进一步深入研究。
Polymer/Montmorillonite (MMT) intercalation is one of the most widely studied and most promising nanocomposites. China is rich in Ca-MMT mineral. Due to its particular intercalation chemistry and nanoscale layering with very high aspect ratio, high strength, ion-exchangeable and swellable characteristics MMT plays an important role in producing high-performance intercalation nanocomposites. The intercalated nano-compounding of phenol formaldehyde resin with MMT is a creative thinking and practice, which has important scientific significance and attractive application prospects. The intercalated compounding with inorganic MMT at the molecular level is a pioneer concept to improve or modify phenol formaldehyde (PF) resin. In this research, the technology of compounding PF resin with MMT on a nanoscale and applying the modified resin to manufacture wood composites was systematically put forward. This exploring research would provide a new idea to modify PF resin in a new approach to prepare wood composites.
     MMT-modified PF resins suitable for use in bonding wood composites were prepared through in-situ intercalated polymerization and polymer intercalated polymerization using several montmorillonites. The PF resin molecules were first intercalated into the clay layers, followed by the formation of nanocomposites when the MMT-modified PF resin was cured under pressure at high temperatures. The work dealt with the use of different types and quantities of montmorillonite nanoclays in the preparation of thermosetting PF and PUF resins under different reaction conditions, such as different F/P mole ratios. It was hoped that the use of MMT in resin synthesis would improve the performance of MMT-modified the resins in manufacturing wood panels/composites. The MMT-modified resins were studied with the analyses of wide angle X-ray diffraction analysis (XRD), Matrix assisted laser desorption/ionization time of flight (MALDI-TOF-MS), differential scanning calorimetry (DSC) and thermomechanical analysis (TMA), obtaining the following results:
     1. MALDI-TOF spectra confirmed that the phenolic resins prepared in this study had a three-dimensional structure. The PF moieties made up the main part in the PUF resin, and the linkages also were of the PF types. Therefore, the performance of PUF resin was similar to the conventional phenolic resins. PF resins with different F/P mole ratios had no evident effect on intercalation.
     2. PF resins modified with MMT exhibited better water resistance. The XRD results indicated that the layers of Na-MMT were intercalated some degree rather than exfoliated. It was confirmed by measuring the plywood performance that mixing PF and PUF resins with a small percentage of Na-montmorillonite (NaMMT) nanoclay resulted in improvement of water resistance of the resins. This result was attributed to a small increase in the nanoclay interlayer distance.
     3. Differential scanning calorimetry (DSC) and TMA indicated that Na-MMT hads an accelerating effect on curing PF and PUF resins. The modulus of elasticity (MOE) of plywood glue joints increased with increasing curing temperatures, and the glue joints with MMT-modified resins had the maximum MOE values. The appropriate amounts of MMT used in resin synthes is ranged from 1% to 3%.
     4. Adding urea as an additive during PF resin synthesis helped to improve the performance of Phenol Formaldehyde (PF) /Montmorillonite(MMT) nanocomposite. Results indicated that plywood bonded with PUF/MMT resin had higher dry and wet tensile (after boiled in water for 3 hrs) strengths than those plywood bonded with PF/MMT resin. The PF molecules might have better intercalated into the nanoclay interlayer by the aid of NH2+ of urea, which was attracted to the cation of the nanoclay interlayer.
     5. The MMT had good compatibility with water-soluble PF resin, and partially intercalated PF/MMT nanocomposites could be obtained easily. Results indicated that plywood bonded with the PF/MMT resin synthesized by one-step process displayed higher dry and wet (3h- boil) tensile strengths than plywood bonded with the resin synthesized by the two-step process. This is attributed to the fact that during one-step synthesis small phenol and formaldehyde monomers can infiltrate easily into and polymerize in MMT layers. During the two-step process, however, bulky polymeric PF molecules can not be easily intercalated into MMT layers. It is possible that PF coupled with MMT by formation of hydrogen bonds in the intercalated layers. Although a limited effect was observed in this study, the concept of using MMT to improve the performance of PF resins was quite evident. Therefore, preparation of PF/MMT nanocomposites is worthy of further studies.
引文
[1]时君友,改性酚醛树脂胶粘剂的研究[J].北华大学学报,2004,5(1):76-79
    [2]合成树脂及塑料速查手册[M].北京:机械工业出版社,2006:238-249
    [3]葛东彪,王书忠,胡福增,酚醛树脂增韧改性的进展[J].玻璃钢/复合材料,2003, (5):37-41
    [4]顾继友主编,胶粘剂与涂料[M].中国林业出版社,1999
    [5]伊延会,高性能酚醛树脂改性研究进展[J].化工进展,2001,20(9):13-16
    [6]黄发荣,焦杨声,酚醛树脂及其应用[M].北京:化学工业出版社,2003
    [7] Cavicchi R E, Silsbee R H. Coulomb suppression of tunneling rate from small metal particles[J], Phys. Rew. Lett., 1984, 52: 1453
    [8] Ball P, Garwin L. Science at the atomic scale[J], Nature , 1992, 355: 761-766
    [9] Calvert P.Nature1996, 383(26):30
    [10]张玉龙,纳米改性剂[M].北京:国防工业出版社,2004
    [11]黄惠忠,纳米材料分析[M].北京:化学工业出版社,2003
    [12]陈敬忠,刘剑洪,纳米材料科学导论[M].北京:高等教育出版社,2006
    [13]陈月辉,赵光贤,纳米材料的特性和制备方法及应用[J].橡胶工业,2004,51(3):182- 188
    [14] Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 1985, 56(11): 921
    [15] Niklasson G A. Optical properties of square lattices of gold nanopaticles[J]. Nanostructured Materials, 1999, 11(12): 725
    [16] Kalia R K. Multiresolution algorithms for masslvely parallel molecular dynamics simulations of nanostructured materials[J]. Comuputer Physics Communication, 2000, 128: 245
    [17]陈改荣,纳米材料的特性及进展[J].平原大学学报,2000,17(4):41-43
    [18]俞卫华,纳米科学技术及展望[J].化学教学,2001,(2):24-26
    [19] Gleiter H. Nanocrystalline materials. Prog Mater. Sci, 1989, 33: 223-315
    [20]张中太,林元华,唐子龙等,纳米材料及其技术的应用前景[J].材料工程,2000,(3):42-48
    [21]刘新云,纳米材料的应用前景及研究进展[J].安徽化工,2002,(5):27-29
    [22]李星国,纳米材料的研究及其应用[J].纺织科学研究,2004,5:33-38
    [23]余琴仙,李涛,李竞先,纳米材料的制备、表征及应用研究进展[J].中国陶瓷工业,2002,9(6):56-59
    [24]高新,李稳宏,王锋等,纳米材料的性能及其应用领域[J].石化技术与应用,2002, 20(3):199-201
    [25]杨迈,余赤贞,蔡生民,半导体纳米粒了的基本性质及光电化学特性[J].化学通报:1997,1:20-24.
    [26] Roy R, Komarneni S, Roy DM. Multi-phase ceramic composites made by sol-gel technique[J]. Mater Res Sic Symp Proc, 1984, 32: 347
    [27]郭卫红,李盾,纳米材料及其在聚合物改性中的应用[J].工程塑料应用,1998, 26(4):11-13
    [28] Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370: 354
    [29]梁宏斌,倪靖滨,王艳敏,聚合物/纳米复合材料研究进展[J].化学工程师,2001, 3:26-31
    [30]王卫华,韶晖,聚合物基纳米复合材料[J].江苏石油化工学院学报,2000,12 (1):62-64
    [31] Sur G S, Mark J E. Grafting of Polymer onto Filer Particles Used to Reinforced an Elastomer[J]. Polymer Bulletin, 1988, 20: 131-136
    [32]郝向阳,刘吉平,田军等,聚合物基纳米复合材料的研究进展[J].高分子材料科学与工程,2002, 18(4):38-41
    [33]刘向峰,张军.聚合物基纳米复合材料的展望[J].塑料科技,2002,(6):54-59
    [34]朱光明,钱德丰,聚合物基纳米复合材料的研究进展[J].化工新型材料,2001,29 (9):16-21
    [35]王凯,詹茂盛,聚合物基纳米复合材料的理论研究进展[J].北京航空航天大学学报,2004, 30(2):177-183
    [36]徐伟平,黄锐,聚合物/无机纳米料子复合材料研究进展[J].中国塑料,1997, 11(5):15-22
    [37]贺鹏,赵安赤,纳米粒子改性高密度聚乙烯的耐磨性研究[J].塑料,2001,30(1):39-43
    [38]郭刚,于杰,罗筑等,聚合物基纳米复合材料研究进展[J].贵州科学,2002,20 (2):22-28
    [39]李强,林薇薇,宋春芳,聚合物基纳米复合材料的合成、性质及应用前景[J].材料科学与工程,2002,20(1):107-110
    [40]王家俊,益小苏,高聚物/无机物插层型纳米复合材料[J].材料导报,1999,13(3):54-56
    [41] Okada A, Kawasumi M, Kurauchi T, et al. Synthesis and characterization of a nylon 6-clay hybrid[J]. Polym Prepr, 1987, 28(2): 447-448
    [42]曹立新,袁迅道,万海,溶胶-凝胶法制备有机-无机纳米复合材料[J].应用化学,1998,153:1-5
    [43] Landry, et al. Polymer, 1992, 33: 1496
    [44] Darid Levy, Adv, Mater, 1995, 7: 120
    [45] Christine J T, Bradly K C, Jeffrey A W, et al. Polymer, 1992, 33: 1496
    [46] Morkved T, Lu M, Urbas A, et al. Local control of microdain orientation in diblock copolymer thin films with electric fields[J]. Science, 1996, 273(5277): 931-935
    [47]齐利民,马季铭,超分子模板法合成层状中孔结构氧化铝[J].高等学校化学学报,1999,20(4):507-513
    [48] Liu Y J, Rosidian A, Lenahan K. et al. Smart Mater Struct, 1999, 8: 100-105
    [49]张皓,郝恩才,杨柏等,ZnSe:Cu纳米晶/聚电解质多层膜制备和结构研究[J].高等学校化学学报,2000, 11:1766-1770
    [50] Fendler J H, Membrane Mimetic. Approach to Advanced Materials Springer Verlag Berlin Heidelberg[M]. 1994, Chapter 2
    [51]杨合情,张良莹,姚熹,膜模拟化学在纳米材料中的应用研究[J].材料研究学报,1999, 13(6):561-568
    [52] Cha J A, Stucky G D, Morse D E, et a1. Nature, 2000, (403) : 289-291
    [53] Sellinzer A, Weiss P M, Njzuyen A, et a1. Nature, 1998, (394): 256-260
    [54]刘景春,韩建成,跨世纪高新科技纳米材料一员-纳米SiO2[J].涂料工业,1998, 1:34-35
    [55]朱军,李毕忠,聚合物/无机纳米复合材料研究进展[J].化工新型材料,2002, 28(10):3-8
    [56] LeBaron P C, Wang Z. Pinnavaia. T J. Polymer-layered silicate nanocomposites[J]. Applied Clay Science, 1999, 15: 11-19
    [57] Vaia R A, Price G, Ruch P N, et al. Polymer-layered silicate nanocomposites as high performance ablative materials[J]. Applied Clay Science, 1999, 15: 67-92
    [58] Ogata N, Jimenez G, Kawaih, et al. Structure and thermal/mechnical properties of poly(lactide)-clay blend[J]. Polym. Sci., Part B: 1997, 35: 389--396
    [59] Mark J E. Ceramic-reinforced polymers and polymer-modified ceramics[J]. Polym. Eng. Sci, 1996, 36: 2905-2920
    [60] Xu Weibing, Ge mingliang, He Pingsheng. Nonisothermal crystallization kinetics of polyoxymethylene/montorillonite nanocomposite[J]. J of applied polymer science, 2001, 28(9): 2281-2289
    [61] Yano K,Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films[J]. Polym.Sci.,Part A: 1997, 35: 2289-2498
    [62] Vaia R A, Jandt K D, Kramer E J, et a1. Microstructural evolution of melt intercaled polymer-lrganically modified layered silicates nanocomposites[J]. Chem. Mater., 1996, 8: 2628-2635
    [63] Xu W B, Ge M L, He P S Nonisotherma crystallization kinetics of polypropylene/montmorillonite nanocomposites[J]. J of polymer science: part B, 2002, 40(5): 408- 414
    [64] Lan T, Pinnavaia T J. Clay-reinforced epoxy nanocomposites[J]. Chem.Mater., 1994, 6(12): 2216-2219
    [65] Messersmith P B, Giannelis E P. Synthesis and characterization of silicate epoxy nanocomposites[J]. Chem.Mater., 1994, 6: 1719-1725
    [66] Giannelis E P. Polymer layered sillicate nanocomposites[J]. Adv.Mater., 1996, 8(1): 29-35
    [67] Usuki A, Kato M, Okada A, et al. Synthesis of polypropylene-clay hybrid[J]. J Appl Polym Sci, 1997, 63: 137-139
    [68] Burnside SD, Giannelis EP. Synthesis and properties of new poly (dimethylsiloxane) nanocomposites[J]. Chem Mater, 1995, 7(9): 1597-1600
    [69] Guillermo J, Nobuo O, Hidekazu K, et al. Structure and thermal/mechanical properties of poly(ε-caprolactone)-clay blend[J]. J Appl Polym Sci, 1997, 64: 2211-2220
    [70] Mesersmith PB, Giannelis EP. Polymer-layered silicate nanocomposites: in situ intercalative polymerization ofε-caperolactone in layered silicates[J]. Chem Mater, 1993, 5(8): 1064-1066
    [71] Wang MS, Pinnavaia TJ. Clay-polymer nanocomposites formed fuom acidic derivatives of montmorillonite and an epoxy resin[J]. Chem Mater, 1994, 6(4): 468-474
    [72] Kormann X, Berglund LA, Sterte J, et al. Nanocomposltes based on montemorillonite and unsaturated polyester[J]. Polymer Engineering and Science, 1998, 38(8): 1351-1358
    [73] Vaia R A, Vasudevan S, Krawiec W, et al. New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates[J]. Adv Mater, 1995, 7(2): 154-156
    [74] Lan T, Kaviratna PD, Pinnavaia TJ. Synthesis、characterization and C12 permeability of polyimide-clay composites[J]. Polymer Preprints, 1994, 35(1): 823-824
    [75] Mehrotra V, Giannelis EP. Nanometer scale multilayers of electroactive polymer: intercalation of polypyrrole in mica-type silicates[J]. Solid State lonics, 1992, 51: 115-122
    [76] Reichert P, Kressler J, Thomann R. Nanocomposite based on a synthetic layer silicate and polyamide-12[J]. Acta Polym, 1998, 49(2-3): 116-123
    [77] Olson BG, Peng ZL, Srithawatpong R, et al. Free volume in layered organosilicate- polystyrene nanocomposites[J]. Material Science Forum, 1997, 250: 336-338
    [78] Choi HJ, Kim JW, Kim SG, et al. Synthesis and electrorheological characterization of polyaniline-Na+-montmorillonite clay suspensions[J]. Polymer Preprints, 1999, 40(2): 813-814
    [79] Uemoto M, Furuya T. Polyurethane-coated cloth for label printing sheet with washability[P]. JP2000 17579,日本专利,2000
    [80]乔放,李强,漆宗能,等,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-143
    [81]朱笑初,景肃,孟娟,等, PBT/粘土纳米复合材料的制备和性能表征[J].塑料工业,2000,28 (20):45-47
    [82]漆宗能,柯杨船,丁幼康,一种聚对苯二甲酸丁二酯/层状硅酸盐纳米复合材料及其制备方法[P].CN 1 I 87506,中国专利,1998
    [83]王一中,武保华,聚氧乙烯/蒙脱土嵌入化合物的制备与结构表征[J].高等学校化学学报,1999,29(7):1143-1147
    [84]顾群,吴大诚,易国祯,等,聚醚酯/蒙脱土复合材料的结晶动力学和结晶形态[J].高等学校化学学报,1999,20(2):324-326
    [85]蒋殿录,翁永良,聚苯胺/膨润土纳米复合材料的合成与表征[J].物理化学学报,1999,15(1):69-72
    [86]封禄田,田一光,石爽,等,蒙脱土/聚丙烯酰胺复合材料的制备和性能研究[J].沈阳化工学院学报,1999,13(1):1-5
    [87]石爽,田一光,聚丙烯腈/蒙脱土纳米复合材料的制备[J].沈阳化工学院学报,1999,13(3):164-167
    [88]王月欣,甲基丙烯酸甲酯-N-环己基马来酰亚胺-苯乙烯共聚物及其蒙脱土纳米复合材料的制备、结构和性能[D],河北工业大学,2004
    [89]孙维林,王铁军,刘庆旺,粘土的理化性能[M].北京:地质出版社,1992
    [90]吕文华,木材/蒙脱土纳米插层复合材料的制备[D],北京林业大学,2004
    [91] Giannelis E P, Krishnamoorti R, Manias E. Polymer-silica nanocomposites: model systems for confined polymers and polymer brushes[J]. Adv Polym Sci, 1999, 118: 108-147
    [92] Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure[J]. Polymer 2001 a, 42(7): 1303~1310
    [93]李同年,周持兴,聚酰胺/粘土纳米复合材料[J].功能高分子学报,2000,l3(1):112-118
    [94]王东坡,张家学,李石存,天然非金属矿物在高分子复合材料中的利用价值和意义[J].吉林建材,2002,1:19-22
    [95]华幼卿,章正熙,黄玉强,聚烯烃纳米复合材料研究进展I:聚烯烃/粘土纳米复合材料[J].高分子材料科学与工程,2002,18(2):1-5
    [96] Fu X A, Qutubuddin S. Synthesis of polystyrene-clay nanocomposites[J]. Materials Letters, 2002, 42:12-15
    [97] Fu X, Qutubuddin S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene[J]. Polymer, 2001,42(4): 807-813
    [98] Chen G M, Ma Y M, Qi Z N. Preparation and morphological study of an exfoliated polystyrene/montmorillonite nanocomposite[J]. Scripta mater. 2001,44(2): 125-128
    [99]武保华,王一中,余鼎声,有机蒙脱土的制备与表征[J].石油化工,1999, 28(3):1-6
    [100]舒中俊,漆宗能,王佛松,聚合物阻燃新途径-聚合物/粘土纳米复合材料的特殊阻燃性[J].高分子通报,2000,(4):65-70
    [101]Rathanawan M, Wittaya L, Anuvat S et al. Preparation, structure, properties and thermal behaviorof rigid-rod polyimide/montmorillonite nanocomposites[J]. Composites Science and Technology, 2001, 61(12): 1253-1264
    [102]Usuki A., Kawasumi M., Kojima Y, et al. Swelling behavior of montmorillonite cation exchanged forω-amino acids byε-caprolactam[J]. Mater Res, 1993, 8(5): 1174-1178
    [103]周忠福,环氧树脂/蒙脱土纳米复合材料研究[D],辽宁工程技术大学,2002
    [104]傅万里,刘竞超,环氧树脂/粘土纳米复合材料研究现状工程塑料应用[J].2000, 30(1):49
    [105]Lan T, Kaviratna PD, Pinnavaia T. Mechanism of clay exfoliation in epoxy-clay nanocomposites [J]. Chem Mater, 1995, 7(11): 2144-2150
    [106]Lyatskaya Y, Balazs A C. Modeling the phase behavior of polymer-clay composites. Macromolecules, 1998, 31(19):6676-6680
    [107]任杰,刘艳,唐小真,聚合物基有机无机纳米复合材料的制备和性能[J].建筑材料学报,2004,7(1):58-65
    [108]Zhu Zikang, Yang Yong, Yin Jie, et a1. Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials[J]. Appl Polym Sci, 1999, 73(11): 2063-2068
    [109]Ke Yangchuan, Long Chengzhe, Qi Zongneng, et al. Crystallization, properties and crystal and nanoscale morphology of PET clay nanocomposites[J]. Appl Polym Sci, 1999, 71(7): 1139-1146
    [110]Tada-Aki Yamagishi. Polymer Bulletin. 1994, 32: 501
    [111]陈孟恒,酚醛树脂的增韧化[J].国外塑料,1997,15(4):39-43
    [112]陆怡平,杜杨,车剑飞,等,酚醛树脂增韧改性及其在摩擦材料中的应用[J].非金属矿,1998,21(3):54-57
    [113]范儆,梁国正.酚醛树脂的共聚改性[J].材料导报,1998,12(5):58-59
    [114]钱军民,吕飞,张兴,等,酚醛树脂的精细化和功能化改性[J].中国塑料,2002, 16(3):9-14
    [115]银贵晨,一种综合性能优良的酚醛树脂注射料的研制[J].中国塑料,2001, 15(6):50-52
    [116]何秀珍,张秋红,宋志英,三元共混改性酚醛树脂胶粘剂的研究[J].河北工业大学学报,1998,27(3):47-52
    [117]蒋德堂,刘凡,张斌,等, HF-I新型改性酚醛树脂研制及性能评价[J].河南科学,2002,20(2):140-143
    [118]殷荣忠,酚醛树脂及其应用[M].北京:化学工业出版社,1990
    [119]高良,芳烷基醚-苯酚树脂的改性研究[J].玻璃钢/复合材料,1994(1):13-17,27
    [120]赵小玲,齐暑华,杨辉,等,酚醛树脂的高性能化改性研究新进展[J].塑料科技,2003(6):50-54
    [121]诸德祺,国内酚醛树脂及塑料工业现状和发展方向[J].热固性树脂,2004, 19(1):42-44
    [122]朱永茂,国外酚醛树脂及其塑料发展动向[J].热固性树脂,2003,18(6):28-36
    [123]胡纯,酚醛树脂/矿物纳米复合材料的制备表征及其在摩擦材料中的应用[D].武汉理工大学,2005
    [124]苏志强,刘云芳,魏强,等,碳纳米管改性酚醛树脂的研究[J].碳素技术,2002, 1:3-11
    [125]Xu W. B., Ge M. L., He P. S.. Nonisothermal crystallization kinetics of polyoxymethylene /montmorillonite nanocomposite[J]. Journal of Applied Polymer Science, 2001,82(9): 2281-2289
    [126]徐卫兵,鲍素萍,沈时骏,等,酚醛树脂/蒙脱土纳米复合材料的制备及固化反应动力学研究[J].高分子学报,2002,18(4):457-461
    [127]M. L. Nobel, S. J. Picken, E. Mendes. Waterborne nanocomposite resins for automotive coating applications[J]. Progress in Organic Coatings, 2007, 8(2-3): 96-104
    [128]Choi M. H., Chung I. J., Lee J. D., Morphology and curing behavior of phenolic resin-layered silicate nanocomposites prepared by melt intercalation[J]. Chemistry of Materials, 2000, 12(10): 2977-2983
    [129]郭江山,曹秋梅,王淑华,等,插层聚合线性酚醛树脂/有机改性蒙脱土纳米复合材料的研究[J].北京化工大学学报,2001,28(2):34-36
    [130]詹茂盛,肖威,李智,酚醛树脂基蒙脱土纳米复合材料的力学性能与增强增韧机理[J].航空材料学报,2003,23(1):34-43
    [131]王洪声,酚醛树脂-粘土纳米复合体系的研究[D].中国科学院,2004
    [132]吴增刚,周持兴,悬浮缩聚法制备酚醛树脂/蒙脱土纳米复合材料[J].功能高分子学报,2001,14(4):449-452
    [133]Yu Jian-ying, WEI Lian-qi, CAO Xian-kun, Preparation and properties of phenolic resin/montmorillonite intercalation nanocomposite[J]. Journal of Wuhan University of Technology, 2003, 18(4): 64-67
    [134]田建团,张炜,郭亚林,等.剥离型酚醛树脂/蒙脱土纳米复合材料研究[J].热固性树脂,2007,22(3):17-20
    [135] Lee, J.D., Giannelis, E.P. Proc ACS, Div Polym Mater Sci Eng 1997, 77: 605
    [136]Chio, M.H., Chung, I.J. J Appl Polym Sci 2003, 90: 2316
    [137]Wang, H.S, Zhao, T., Zhi, L., Yan, Y.H., Yu. Y.Z., Macromol Rapid Commun 2002, 23: 44
    [138] Kim Moon G, Watt C and Davis C. Effects of urea addition to Phenol-formaldehyde resin binders for oriented strand board[J]. Journal wood chemistry and technology, 1996, 16(1): 21-34
    [139]Tomita B and Hse Chung Yun. Phenol-urea-formaldehyde(PUF) co-condensed wood adhesives[J]. International Journal of adhesion & adhesives, 1998,18: 69-79
    [140] Pizzi A , Stephanou A , Antunes I and De Beer G. Alkaline PF resins linear extension by urea condensation with hydroxybenzyalchohol groups [J]. Appl. Polym. Sci. , 1993, 50: 2201-2207
    [141]Zhao Chunhui, Pizza A and Garnier S, Fast advancement and hardening acceleration of low-condensation alkaline PF resins by esters and copolymerized urea[J]. Journal of applied polymer sciences, 1999, 74: 359-378
    [142]杜官本,李君,杨忠.苯酚-尿素-甲醛共缩聚树脂研制Ⅰ.合成与分析[J].林业科学,2000,36(5):73-77.
    [143]He Guangbo and Yan Ning. 13C NMR study on structure, composition and curing behavior of phenol-formaldehyde resole resins. Polymer, 2004, 45: 6813-6822
    [144]Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure. Polymer 2001 b, 42(22): 4493- 4499
    [145]Jiang, W., Chen, S.H., Chen Y. J Appl Polym Sci 2006, 102: 5336
    [146] He, G.; Riedl, B. J Polym Sci Part B: Polym Phys 2003, 41:1929

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700