利用MALDI-TOF MS技术检测乳腺癌患者血清蛋白指纹图谱并建立乳腺癌诊断模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用基质辅助激光解吸离子化飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF MS)技术检测血清样本蛋白多肽表达图谱,分析clinprot实验方法的重复性及血清不同的冻融次数对实验结果的影响,以便建立MALDI-TOF MS检测方法用于后续试验;同时比较分析弱阳离子交换磁珠(MB-WCX)、铜离子螯合磁珠(MB-IMAC Cu)、疏水C8磁珠(MB-HIC C8)进行血清蛋白多肽分离富集后图谱采集的差异,选取分离蛋白质能力强的MB-WCX对乳腺癌及健康对照组的血清样本进行检测,通过高通量分析软件进行数据处理,筛选出乳腺癌和健康对照组之间的差异蛋白多肽质荷比峰,并建立乳腺癌诊断模型,进行模型验证确定诊断模型具有高度灵敏度和特异度,为临床寻找乳腺癌血清肿瘤标志物提供理论依据。
     方法:1采用MB-WCX分别对冻融1、3、5次后的血清样本分离提纯,经MALDI-TOF MS检测后比较其蛋白质图谱,以此判断冻融次数对实验结果的影响。
     2采用MB-WCX进行血清样本蛋白分离提纯,经MALDI-TOF MS检测后,选择不同分子量范围的9个蛋白重复测定,比较组间和组内变异系数以考察重复性。
     3比较MB-WCX、MB-IMAC Cu、MB-HIC C8的平均出峰量、平均峰面积和平均峰强度等参数,从而选取分离蛋白质能力较好的一种磁珠用于大量血清样本的提纯。
     4选择分离蛋白质能力较好的MB-WCX对乳腺癌及健康对照组的血清样本进行检测,然后用MALDI-TOF MS检测不同组患者蛋白质谱图并加以对比分析。研究过程中仪器操作、数据分析和图像采集分别用flexControlMS3.0、ClinProToolsTM2.1和flexAnalysis 3.0软件。对所发现的差异蛋白计算识别率、预测能力和验证准确率,或差异蛋白组合后诊断的效果,以指导临床应用。
     结果:1研究发现,样品的冻融次数在3次以内不影响质谱峰的采集,没有显著性差异(P>0.05),冻融次数越多,对小分子量蛋白或多肽的影响越大。
     2重复性研究表明,标准品变异系数范围在10.67%~29.59%,混合样品变异系数范围在9.88%~30.07%,重复性很好。
     3相同样本利用MB-WCX处理后的平均出峰量和平均峰面积均明显优于MB-IMAC-Cu、MB-HIC C8(P<0.05)。
     4应用MB-WCX与MALDI-TOF MS检测到15个明显差异表达的蛋白质峰,分子量分别为4964.52Da、7765.28Da、3261.95Da、1621.2Da、3192.55Da、7008.09Da、2288.99Da、1741.74Da、3225.04Da、4363.01Da、6910.35Da、7631.46Da、3935.34Da、8140.66Da、4054.5Da。
     5分子量分别为4964.52Da和7765.28Da的2个蛋白质峰的差异最显著,在乳腺癌患者中的表达上调,有可能成为潜在的乳腺癌早期诊断标志物。
     6利用差异蛋白质峰建立乳腺癌诊断模型后应用QC(快速分类算法)、GA(遗传算法)和SNN(神经网络算法)对模型进行验证,得到该模型区分乳腺癌患者和健康者的灵敏度和特异度均高于80%。
     结论:1 MALDI-TOF MS作为一种高灵敏度的研究平台,严格操作规程减少冻融次数能够减少变异,提高检测结果的重复性和可信性。
     2 MB-WCX的蛋白分离效果优于MB-IMAC-Cu和MB-HIC C8;
     3利用MALDI-TOF MS技术可以建立高度敏感性和特异性的乳腺癌诊断模型。
Objective: Magnetic bead purification for the analysis of proteins in body blood serum facilitates the identification of potential new biomarkers with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The aim of our study was to establish a standard proteome fractionation technique for proteomic pattern analysis. To screen a suitable magnetic bead from three kinds of magnetic beads IMAC-Cu, MB-WCX, MB-HIC C8, and use MB-WCX to search biomarkers and evaluate their diagnostic value by comparing different patients′serum protein. To provide a new method of finding biomarkers for breast cancer, while establish the diagnostic model of breast cancer and provide a simple way for the early diagnosis.
     Methods: 1 The influence of freeze-thaw cycles and the ratio of sample to matrix were evaluated by comparison of their mass spectrum.
     2 Serum sample′s protein spectrum was detected by MALDI-TOF MS after serum samples were purified by MB-WCX magnetic bead. In order to evaluate the reproducibility of MALDI-TOF MS at different spots, nine proteins in different mass ranges were selected and their CV% was calculated.
     3 Before large scale patients′serum testing, three kinds of magnetic bead (IMAC-Cu, MB-WCX, MB-HIC C8)were compared about their peak number, peak area and peak intensity of mass spectrum.
     4 The MB-WCX was selected and used to detect breast cancer patients′and healthy controls′blood serum. After separation and purification by magnetic bead MB-WCX, their mass spectrums were detected by MALDI-TOF MS. During the process, flexControlMS3.0, ClinProToolsTM2.1 and flexAnalysis3.0 software were used in instrumentation control, data analysis and mass spectrum collection.
     Results: 1 More freeze-thaw cycles had more influence on mass spectrum, especially in small range proteins, so the samples should be operated within 3 cycles in order to get good results.
     2 Reproducibility of MALDI-TOF test in this study was quite satisfactory; its CV% was within 9.88%-30.07%.
     3 After comparison, MB-WCX was better than IMAC-Cu and MB-HIC C8 magnetic bead.
     4 There were 15 main protein peaks were detected whose molecular mass were 4964.52Da, 7765.28Da, 3261.95Da, 1621.2Da, 3192.55Da, 7008.09Da, 2288.99Da, 1741.74Da, 3225.04Da, 4363.01Da, 6910.35Da, 7631.46Da, 3935.34Da, 8140.66Da, 4054.5Da.
     5 Two protein peaks were of significant difference whose molecular mass were 4964.52Da and 7765.28Da. These two proteins were up-regulated in breast cancer patients, and could be seen as potential breast cancer biomarkers.
     6 Breast cancer serum diagnostic model were built up and correct rate validation were both more than 80% according to QC, GA and SNN methods.
     Conclusion: 1 As MALDI-TOF MS is a high-tech method in proteomics analysis, quality control of operating sequence and reduce freeze-thaw cycles in whole procedure is very important.
     2 MB-WCX was better than IMAC-Cu and MB-HIC C8 magnetic bead in protein purification.
     3 There was significant difference between the group of breast cancer patients and healthy controls.
引文
1 Christine H. Chung, Shawn Levy, Pierre Chaurand. Genomics and proteomics:Emerging tech-nologies in clinical cancer research. Critical Reviews in Oncology/Hematology, 2007, 61(1): 1-15
    2 Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al.The case for early detection [J]. Nat Rev Cancer 2003, 3(5):243-252
    3 Aldred S, Grant MM, Griffiths HR. The use of proteomics for the assessment of clinical samples in research [J]. Clin Biochem,2004, 8(37):943-952
    4 Wasinger VC. Progress with gene-product mapping of the Mollicutes: My coplasma genitailium[J]. Electrophoresis,1995,16(7):1090
    5 Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol, 1999,17(3): 121-127
    6 Fields S. Proteomics in genomeland. Science, 2001,291(5507): 1221-1224.
    7 O’Farrell. PH High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem,1975,250:4007
    8 Arthur M Moseley. Current trends in differential expression proteomics:isotopically coded tags. Trends in biotechnology, 2001, 19(suppl): 10-16
    9 lahm HW,langen H.Mass Spectrometry:a tool for the indentification of proteins separated by gels.[J]Electrophoresis,2000,21(2):2105-2114
    10 karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons.[J] Anal Chem,1988,60(4):2299-2301
    11 Fenn JB,Mann M,Meng CK, et al.Electrospray ionization for mass spectrometry of large biomolecules.[J]Sience,1989,246(6):64-71
    12赵冰,沈学静。飞行时间质谱分析技术的发展[J]。现代科学仪器2006,4(3):30-33
    13王胜林,王强斌,古宏晨,等.磁性微球的生物医学应用研究进展磁性微球简介[J].化学世界, 2001, 7(4): 384-387
    14布和巴特尔。磁珠技术在生命科学领域的应用及其制备[J]。化学工程师,2004, 6(7):57-58
    15 Nicolas Chignard,Laura Beretta.Proteomics for hepatocellular carcinoma marker discovery [J]. Gastroenterology, 2004, 127(5):120-125
    16 Amy V. Rapkiewicz, Virginia Espina, Emanuel, et al. Biomarkers of ovarian tumours [J]. European Journal of cancer, 2004, 40(17):2604-2612
    17 Timothy D. Veenstra, DaRue A. Prieto, Thomas P. Conrads. Proteomic patterns for early cancer detection[J]. Drug Discovery Today, 2004,9(20):889-897
    1 Petricoion EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. The Lancet,2002,359 (9306):572- 577
    2 Soltys SG,Le QT,Shi G,et al. The Use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancer[J].Clinical Cancer Research,2004,10(14):4806-4812
    3 Honda K, Hayashida Y, Umaki T, et al. Possible detection of pancreatic cancer by plasma protein profiling[J]. Cancer Res, 2005,65(22):10613- 10622
    4 Ward DG,Suggett N,Cheng Y,et al. Identification of serum biomarkers for colon cancer by proteomic analysis[J].Br J Cancer.2006,94(12): 1898-1905.
    5 Mian S, Ugurel S, Parkinson E, et al. Serum proteomic fingerprinting discriminates between clinical stages and predicts disease progression in melanoma patients[J].J Clin Oncol,2005,23(22):5088-5093
    6 Lopez MF,Mikulskis A,Kuzdzal S,et al.High-resolution serum proteomic profiling of Alzheimer diesase samples reveals diease-specific, carrier- protein-bound mass signature[J].Clin Chem,2005,51(10):1946- 1954
    7 Emannel F.Petricion,David K.Clinical proteomics:applications for prostatecancer biomarkers discovery and detection[J].Urol Oncol,2004, 22(4): 322-328
    8 J.P.A. Baak, F.R.C. Path, M.A.J.A. Hermsen, Genomics and proteomics in cancer.European Journal of Cancer, 2003, 39(21):1199-1215
    9 Christine H.Chung, Shawn Levy, Pierre Chaurand. Genomics and proteomics: Emerging tech- nologies in clinical cancer research. Critical Reviews in Oncology/Hematology, 2007, 61(1): 1-15
    10 Sergey A Shaposhnikov, Sergey B Akopov, Igor P Chernov, et al. A map of nuclear matrix attachment regions within the breast cancer loss of heterozygosity region on human chromosome 16q22.1.Genomics, 2007, 89 (3): 354-361
    11 Celis JE, Kruhoffer M, Gromova I,et al. Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett,2000,480(1):2-16
    1 Celis JE, Kruhoffer M, Gromova I,et al. Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett,2000,480(1):2-16
    2 Chambers G, Lawrie L, Cash P, Murray GI, et al. Proteomics:a new approach to the study of disease. J Pathol,2000,192(3):280-288
    3 Srinivas PR, Srivastava S, Hanash S,et al.Proteomics in early detection of cancer.Clin Chem,2001,47(10):1901-1911
    4 Gromov, Julio E. Celis, Irina Gromova,et al.Solution for the analysis of tissue samples by different proteomic Pavel A single lysis technologies, 2008,2(4):368-379
    5 Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics:new perspectives, new biomedical opportunities.Lancet, 2000,356 (9243): 1749-1756
    6 Hanash S. Disease proteomics.Nature,2003,422 (6928):226-232
    7 Lawrie LC, Fothergill JE, Murray GI, et al. Spot the differences: proteomics in cancer research.Lancet Oncology,2001,2(5):270-277
    8冯钜涛,刘银坤,Almofti M R,等。双向电泳—质谱技术筛选肝癌血清标记物[J]。生物化学与生物物理进展,2005,32(7):673-677
    9 Vikas Dhingra, Mukta Gupta, Tracy Andacht, et al. New frontiers in proteomics research:A perspective.International Journal of Pharmaceutics, 2005,299 (1-2): 1-18
    10 Kachman MT, Wang H, Schwartz DR, A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers.Anal.Chem, 2002,74 (8): 1779-1791
    11 Mohan D, Pasa Tolic L, Masselon CD, et al. Integration of electrokinetic- based multidimensional separation/concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. Anal. Chem, 2003,75 (17): 4432-4440
    12 Wolters DA,Washburn MP,Yates JR 3rd, et al. An automated multidimensional protein identification technology for shotgun proteomics. Anal.Chem, 2001,73 (23):5683-5690
    13 McLafferty FW, Fridriksson EK, Horn DM, et al. Techview: biochemistry. Biomolecule mass spectrometry. Science, 1999,284 (5418):1289-1290
    14 Shiwa M, Nishimura Y,Wakatabe R, et al. Rapid discoveryand identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem. Biophys. Res. Commun,2003,309 (1):18-25
    15 Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma- intestinepancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology, Cancer Res, 2002,62 (6):1868-1875
    16 Charite Campus Mitte.Proteomics in cancer cell research:an analysis of therapy resistance. Pathology Research and Practice ,2004,200(2):105-117
    17 Sreekumar A, Nyati MK, Varambally S. Profiling of cancer cells using protein microarrays:discovery of novel radiation-regulated proteins. Cancer Res, 2001,61 (20):7585-7593
    18 Callesen AK, Vach W, Jorgensen PE, et al. Combined ex–perimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: a case-control study[J]. J Proteome Res, 2008, 7(4):1419-1426
    19 Li J, Zhang Z, Rosenzweig, et al. Proteomics and bioinfor-matics approaches for identification of serum biomarkers to detect breast cancer[J].Clin Chem,2002,48(8):1296-1304
    20 Lionel L. Banez, Premkala Prasanna, Leon Sun. Diagnostic potential of serum proteomic patterns in prostate cancer. The journal of urology,2003,170(2):442-446
    21 Rehman I, Azzouzi AR, Catto JW F, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer:a pilot study urology,2004,64(6): 1238-1243
    22 Wu SP, Lin YW, Lai HC, et al. SELDI-TOF MS profiling of plasma proteins in ovarian cancer.Taiwanese J of Obstetrics and Gynecology, 2006,45(1):26-32
    23 Kong FB , Nicole C White, Xiao XY, et al. Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecologic Oncology,2006,100(2): 247-253
    24 Zhang H, Kong BH, Qu X, et al. Biomarker discovery for ovarian cancer using SELDI-TOF-MS. Gynecologic Oncology, 2006,102(1): 61-66
    25李晋,王云海,刘兵,et al。胃癌血清蛋白质谱的差异性研究。中国现代医药杂志,2009,11(6):37-39
    26 Su Y, Shen J, Qian H, et al. Diagnosisofgastric cancerusing decision tree classification of mass spectral data[J]. Cancer Sci, 2007, 98(1): 37-43
    27 Huang X,Wei YQ, Li LJ, et al. Serum proteomics study of the squamous cell carcinoma antigen 1 in tongue cancer. Oral Oncology, 2006, 42(1): 26-31
    28 John A. Sandoval, Derek J. Hoelz, Heather A. Woodruff. Novel peptides secreted from human neuroblastoma:useful clinical tools? Journal of Pediatric Surgery,2006, 41(1):245-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700