反义转化生长因子受体与反义基质金属蛋白酶抑制因子联合作用对肝纤维化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:在我国肝纤维化发生率高,是肝硬化发展的必经环节。目前研究认为肝纤维化属于可逆性病变,因此阻止和延缓肝纤维化的发生、发展则是治疗肝硬化的关键。
     研究发现在致肝纤维化的细胞因子中最重要是转化生长因子β(transforming growth factorβ,TGF-β),其致纤信号传导通路已阐明:首先活化了的TGF-β与II型TGF-β受体(TβRⅠI)结合并使之磷酸化而具有激酶活性;与TGF-β结合的TβRⅠI再结合I型TGF-β受体(TβRⅠ)形成I、II型受体复合物,并使TβRⅠ磷酸化具有激酶活性;最后,激活的TβRⅠ激活酶磷酸化其特殊的受体Smads (R-Smads) ,从而调节肝星形细胞(HSC)的转化和ECM的合成、降解。即TGF-β发挥作用必须借助其在细胞膜上的跨膜受体TβRⅠ和TβRⅠI。故从理论上,可推测选择性抑制TβRⅠ的表达,应可影响TGF-β信号传导,从而抑制TGF-β的促纤维化作用。
     在正常肝脏中,基质金属蛋白酶(matrixmetalloprotei-nases,MMPs)与基质金属蛋白酶组织抑制因子(tissue inhibitor of metallopropteinases,TIMPs)处于动态平衡的状态,维持了胶原的产生与降解之间的平衡。当有损伤因子作用于肝脏,使HSC活化,打破了MMPs与TIMPs的平衡,就会导致胶原纤维降解的减少,致使大量的胶原在肝组织中沉积。肝内主要存在的TIMPs有TIMP-1和TIMP-2,其中以TIMP-1表达更为显著;主要存在的MMPs在人类为MMP-1,在啮齿类动物为MMP-13;TIMP-1可与MMP-1/MMP-13特异性结合,抑制其活性。故推测,抑制TIMP-1的表达,可减轻TIMP-1对MMP-1/MMP-13的抑制作用,增加ECM的降解,减少ECM的沉积,延缓肝纤维化的发生、发展。
     本实验旨在前期研究的基础上,应用分子生物学检测技术RT-PCR和western–bloting(蛋白印迹)测定各实验模型组大鼠肝组织TβRⅠ,TβRⅡ和TIMP-1,MMP-13 mRNA含量及蛋白的表达,并对所得数据进行科学分析,从生物分子的角度阐述并验证本课题,反义转化生长因子受体与反义基质蛋白酶抑制因子联合作能够有效的干预肝纤维化的发生,发展。最终的目标是运用基因治疗技术寻找一种防止和延缓各种慢性肝病向肝纤硬化发展的有效方法,为今后人类肝纤维化基因治疗奠定基础。
     材料与方法:
     取-80℃低温保存的实验大鼠肝脏:正常对照组12例,模型对照组12例、空质粒组13例、反义TIMP-1真核表达质粒组13例,反义TβRⅠ治疗组13例,反义TβRⅡ治疗组13例,反义TβRⅠ+反义TIMP-1治疗组13例:反义TβRⅡ治疗组+反义TIMP-1治疗组13例。
     1.运用RT-PCR半定量检测肝组织内TβRⅠmRNA、TβRⅡmRNA、TIMP-1mRNA、MMP-13 mRNA测定。
     2.western blot蛋白印记技术检测大鼠肝组织中TβRⅠ、TβRⅡ、TIMP-1、MMP-13蛋白表达。
     3.进行系统科学数据分析,论证。
     结果:
     与模型对照组和空质粒组相比,反义TβRⅠ治疗组,反义TβRⅠ+反义TIMP-1治疗组、反义TIMP-1治疗组、反义TβRⅡ治疗组、反义TβRⅡ+反义TIMP-1各治疗组中的TβRⅠ、TβRⅡ及TIMP-1 mRNA含量及蛋白表达均有下降,各组比对均有统计学意义(P<0.05)。
     在正常对照组与各实验治疗组之间TβRⅠ、TβRⅡ及TIMP-1 mRNA含量及蛋白表达均有显著性差异(P<0.05);反义TβRⅠ+反义TIMP-1治疗组较反义TβRⅠ治疗组、反义TIMP-1治疗组比对有统计学意义(P<0.05);反义TβRⅡ+反义TIMP-1各治疗组较反义TβRⅡ治疗组,反义TIMP-1治疗组比对有统计学意义(P<0.05)
     模型对照组和空质粒对照组之间TβRⅠ、TβRⅡ及TIMP-1 mRNA含量及蛋白表达则无显著差异(P>0.05)。
     结论:
     1、反义TβRⅠ、TβRⅡ真核细胞表达质粒通过阻断TGF-β1的作用通道,减少细胞外间质(ECM)的合成,减轻肝纤维化的发展;通过实验也验证了TGF-β信号通路的存在。
     2、反义TβRⅠ、TβRⅡ真核细胞通过阻断TGF-β1的作用通道,对MMP-13产生抑制作用,对TIMP-1的促进作用,间接使细胞外间质(ECM)降解增加,抑制肝纤维化的进程。
     3、反义TIMP-1真核细胞通过拮抗TIMP-1对MMP-13的抑制作用,使细胞外间质(ECM)降解增加。
     4、两种重组质粒协同作用,可产生叠加效应,达到有效抑制延缓肝纤维化发生的目的。最终的目的是寻求一种防止和延缓各种慢性肝病向肝硬化发展的有效方法。
Background: In China the high incidence of liver fibrosis is an essential link of cirrhosis. The current studies show Liver fibrosis is a kind of reversible disease, so the key to treat cirrhosis is to prevent and delay the occurrence of liver fibrosis.
     Studies find that the cells of liver fibrosis are the most important factor in transforming growth factorβ(transforming growth factorβ, TGF-β), the signal transduction pathway to the MFA has been stated: First, the combination of the activation TGF-βand type II TGF -βreceptor (TβRⅠI) has a kinase activation due to phosphorylation. Type I, II receptor complex will be formed by recombining TβRⅠI with the combination of TGF-βwith type I TGF-βreceptor (TβRⅠ), which phosphorylates TβRⅠto make it have kinase activation. Finally, the activated TβRⅠactivates the special receptor Smads (R-Smads) 0f phosphorylation. Thereby the transformation of hepatic stellate cells (HSC) and the synthetic and degradation of ECM are regulated. That is , the role of TGF-βmust be based on the transmembrane receptor on the cell membrane TβRⅠand TβRⅠI. Therefore, inhibiting the expression of TβRⅠcan be inferred to affect TGF-βsignal transduction in theory, and thus inhibit TGF-βto promote fibrosis.
     In normal liver, the MMP (matrixmetalloprotei-nases, MMPs) and MMP inhibitor Organization (tissue inhibitor of metallopropteinases, TIMPs) are in a state of dynamic equilibrium to maintain the balance between the formation of collagen and its degradation. When damaged factors act on the liver, activate HSC, break the balance beween MMPs and TIMPs, degradation of collagen fibers will be reduced, then a lot of collagen in the liver tissue will be deposited. the main TIMPs in the liver is TIMP-1 and TIMP-2, TIMP-1 expresses more significantly. MMPs in the human is mainly MMP-1, in the rodents is MMP-13. The binding of TIMP-1 and the specifics of MMP-1/MMP-13 can inhibit its activity. It can be inferred that inhibiting the expression o TIMP-1 will reduce the effect of TIMP-1 to MMP-1/MMP-13, increase the degradation of ECM, reduce ECM deposition, delay the occurrence and development of liver fibrosis
     This study aims to mensurate the rat’s tissue, TβRⅡand TIMP-1, the con tent of MMP-13 mRNA content and expression of its Protein in the experimental models on the basis of application of molecular biology detection technology RT-PCR and western-bloting (Western blot), and to analyze the collected data scientifically and verify this issue from the perspective of biological molecules. The cooperation role of anti-transforming growth factor receptor and anti-protease inhibitor-matrix can intervene the occurrence of liver fibrosis and the development of Liver fibrosis effectively. The ultimate goal is to find effective ways to prevent and delay the chronic liver to hardening of the liver defibrillators disease with gene therapy and to lay the foundation of clinical application for future human gene therapy of liver fibrosis.
     Material and methods:
     Take experimental rat’s liver preserved below the low-temperature of -80℃: 12 cases of the normal control group, 12 cases of the model control group, 13 cases of P group, 13 cases of TIMP-1 antisense expression vector eukaryotic group, 13 cases of anti-sense therapy group TβRⅠ, 13 cases of anti-sense TβRⅡgroup, 13 cases of anti-sense TβRⅠand anti-sense TIMP-1 treatment group, 13 cases of antisense TβRⅡtreatment group and anti-TIMP-1-treated group.
     1. Use semi-quantitative RT-PCR detection to test TβRⅠmRNA, TβRⅡmRNA, TIMP-1mRNA, MMP-13 mRNA in liver tissue.
     2. Detect the expression of TβRⅠ, TβRⅡ, TIMP-1, MMP-13 protein in rat liver with the technology of western blot.
     3. Analyze the statistics and verify the proof systematically and scientifically.
     Results:
     Compared with the control group and air plasmid group, TβRⅠ, TβRⅡand the content and protein expression of TIMP-1 mRNA are dropped in the treatment group of anti-sense TβRⅠ, treatment group of anti-sense TβRⅠand anti-sense TIMP-1, the anti-TIMP-1-treated group, treatment group of anti-sense TβRⅡ, treatment group of anti-sense TβRⅡand anti-sense TIMP-1. The comparison of every group has statistical significance (P <0.05).
     TβRⅠ, TβRⅡand the content and protein expression of TIMP-1 mRNA have significant differences (P <0.05) between the control group and the experimental treatment group, anti-sense TβRⅠ+ anti-TIMP-1-treated group has more statistical significance than the anti-sense therapy group of TβRⅠ, Anti-TIMP-1-treated group (P <0.05); anti-sense TβRⅡ+ anti-TIMP-1-treated group has more statistical Significance than the anti-sense TβRⅡtreatment group and the anti-TIMP-1-treated group (P <0.05).
     TβRⅠ, TβRⅡand content and protein expression of TIMP-1 mRNA haven’t significant difference between model control group and the air plasmid control group (P> 0.05).
     Conclusion:
     1. Extracell matrix (ECM) is reduced, the development of liver fibrosis is lowered by anti-sense TβRⅠ, TβRⅡeukaryotic cells blocking the acting access of TGF-β1. Experiments also show the existence of TGF-βsignaling pathway.
     2.The MMP-13 inhibits the TIMP-1, outside of cells (ECM) degradation increases, inhibit the process of liver fiber by anti-sense TβRⅠ, TβRⅡeukaryotic cells blocking TGF-β1 acting channel,
     3.Extracell matrix (ECM) increases by the inhibition of TIMP-1 to MMP-13 through antagonism of anti-sense TIMP-1 eukaryotic cells.
     4. Two recombinant synergies can generate stack effect to achieve the goal to delay the effective suppression of liver fibrosis. The ultimate goal is to seek a way to delay and prevent all kinds of chronic liver disease to become cirrhosis.
引文
[1] Friedman SL,Millward SGH,Arthur MJP.Liver fibrosis and cirrhosis.Wrights liver and biliary disease,3rd ed.London:Bailliere Tindall,1998,822-881.
    [2] Friedman SL.The cellular basis of hepatic fibrosis:mechanisms and treatment strategies.N Engl J Med,1993,323:1828-1835.
    [3] Olaso E,Friedman SL.Molecular regulation of hepatic fibrogenesis.J Hepatol, 1998,29: 836-847.
    [4] Arthur MJ.Degradation of matrix proteins in liver fibrosis.Pathol Res Pract, 1994, 190(9-10):825-833.
    [5] Yoshiji H, Kuriyama S, Yoshiii J, et al, Tissue inhibitor of metalloproteinase-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatol, 2002,36 (4pt 1):850-860.
    [6] Iredale J P,Benyon RC,Picking J,et al l Mechanism of spontaneous resolution of rat liver fibrosis: hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors) J Clin Invest,1998,102(3):538 -549
    [7] Issa R,Williams E,Trim N,et al .Apoptosis of hepatic biliary fibrosis and regulation by solublegrowth factor[J] stellate cells :involvement in resolution of Gut,2001 ,48 (4) :548-557.
    [8] Dufour JF, Delellis R, Kaplan MM. Regression of hepatic fibrosis in hepatictis C with long term interferon treatment. Dig Dis Sci,1998, (12) 43:2375-2576.
    [9] Kovalovich k, Deangelis RA, Furth EE. Increase toxin induce liver injury and fibrosis in interleukin-6-deficient mice .Hepatology, 2000, 31(1):149-159.
    [10] Arthur MJ P, Fibrosis and altered matrix degration. Digestion, 1998,59(4): 376-380
    [11] 王宇,高毅,黄宇琦等,实验性肝纤维化间质胶原酶酶表达的研究[J],中华消化杂志,2003,20(1): 67-69
    [12] 杨长青,王吉耀,郭津生等,基质金属蛋白酶 1 表达质粒对实验性肝纤维化的影响,中华消化杂志,2004, 20(5):297-299
    [13] Monfort I, Perez-Tamayo R, Alvizouri AM. Collagense of hepatocytes and sinusoidal liver cell in reversibility of experimental cirrhosis of liver.rchows Arch B Cell Pathol,1990,59 (5):281-289
    [14] Herbst H,Wege T,Milani S 1 Tissue inhibitor of metalloproteinases -1 and -2 RNA expression in rat and human liver fibosisl Am J Pathol,1997,I50:1647-1659
    [15] Iredale J P,Benyon RC,Arthur MJ P,etal. Tissue inhibitor of metalloproteinases-1 messenger RNA expression is enhanced relative to interstitial collagenase messengerRNA expression in experimented liver injury and fibrosis. Hepatology,1996,24 (2):176-184
    [16] Li JJ,Rosman A S,Leo M A. Tissue inhibitor of metalloproteinase is increased in the serum of precirrhotic and cirrhotic alcoholic patients can serve as a marker of fibrosis [J ].Hepatology,1994 ,19 (6) :1418-1423.
    [17] 谢彦华,刘养荣,基质金属蛋白酶抑制剂与肝纤维化,临床荟萃,2002,17 ( 8 ) 493-495.
    [18] Ohuchi E, Imai K, Fujii Y, et al. Membrane type I matrix metalloproteinase digests interstitial collagen and other extracellular matrix macromolecule.[J].J Bio Chem 1997,272 (4) :2446-2451
    [19] Williamson R A,Marston F A,Angal S. Disulphide bond assignment in human tissue inhibitor of metalloproteinases(TIMP) [J] .Biochem J,1990 ,268(2):267-274.
    [20] Okazaki I,Watanabe T,Hozawa S,et al. Reversibility of hepatic fibrosis:from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med,2001,50 (2): 58 -65
    [21] 赵志海,辛绍杰,赵景民等,实验性肝纤维化形成和逆转过程中基质金属蛋白酶13 蛋白及其 mRNA 表达,军医进修学院学报,2002 23 ( 3 ) 214-216
    [22] Knittel T,Mehde M,Koblod D et al.Expression patterns of matrix metelloproteinases and their inhibitors in parenchyma) and nonparenchymal cells of rat livers:regulation by TNF alfa and TGF beta.J hepatol .1999,30 (1):48-60
    [23] Watanabe T,Niioka M,Hozawa S,et al I Gene expression of interstitial collagenase in both progressive and recovery phase of rat liver fibrosis induced by carbon tetrachloride) J Hepatol,2000,33 (2):224- 235
    [24] Kossakowa AE , Edwards DR , Lee SS. Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis. Am J Pathol,1998,153:1895-1902
    [25] Iredale J P,Goddard S,Murphy G,et al. Tissue inhibitor of metalloproteinases-1 and interstitial collagenase expression in autoimmune chronic active hepatitis and activated human hepatic lipocytes. Clin Sci (colch),1995,89 (1): 75 -81
    [26] Benyon RC, Iredale JP, Goddard S et al. Expression of tissue inhibitor of metallop-roteinases-1 and 2 is increase in fibrotic human Iiver. Gastroenterology, 1996,110 (3):821-831
    [27] Pinzani M, Marra F, Carloni V Signal transduction in hepatic stellate cells. Liver, 1998,18( I ):2-13
    [28] Friedman SL, Roll FJ, Boyles J, et al. Maitenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J BioChem,1989,264(18):10756-1076
    [29] Yoshiji H, Kuriyanta S, Niyamoto Y et al. Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a transgenic mouse model. Hepatology, 2000,32(6):1248-1254
    [30] 聂青和,周永兴,谢玉梅等,硫代反义寡核昔酸对肝纤维化大鼠 TIMP-1 基因及蛋白表达的抑制作用,中华传染病杂志,2001,19 (4): 208-211
    [31] Dunn MA, Cheever AW, Paglia LM et al. Reversal of advanced liver fibrosis in rabbits with Schistosomiasis japonica [J]. AmJ Trop Med Hyg, 1994, 50(4) : 499-505
    [32] 陈东风,冷恩仁,刘为纹,实验性肝纤维化胶原变化的研究,胃肠病学和肝病学杂志,1997, 6 (4):321-323
    [33] 李东,李兵顺,刘金星,大鼠肝纤维化逆转机制研究,肝脏,2002, 7 (3): 183-184
    [34] 杨长青,胡国龄,谭德明,等.基质金属蛋白酶-1、反义金属蛋白酶组织抑制因子-1 表达质粒对大鼠肝纤维化的影响[J].中华传染病杂志,2000,18 (1):29-32.
    [35] Watanabe T,Niioka M,Hozawa S,et al .Geng expression of interstitial collagenase I both progressive and recovery phase of rat liver fibrosis induced by carbonterachloride.J hepatol, 2000,33(2):224-35
    [36] 赵志海,辛绍杰,赵景民,等.实验性肝纤维化形成和逆转过程中基质金属蛋白酶 13 蛋白及其 mRNA 表达[J].军医进修学院学报,2002,23(3):214-216.
    [37] KNITTEL T,MEHDE M,KOBLOD D,et al.Expression patterns of matrix metelloproteinases and their inhibitors in parenchymal and nonparenchymal cells of rat livers:regulation by TNF alfa and TGF beta[J].J Hepatol,1999,30(1):48-60.
    [38] 徐正府,姚登福,邱历伟,吴玮,吴信华,陆翠华,慢性肝炎、肝硬变及原发性肝癌患者血清MMP- 13 及TNF- α 的表达 江苏医药 2006,32 :25-26
    [39] Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. Hepatol, 1998, 29(5):836-847.
    [40] Peter A, Scott L, Marshall M. Is Liver Fibrosis Reversible? Eng J Med, 2001, 344(4):452-454.
    [41] Yoshiji H , Kuriyama S ,Yoshii J,et al. Tissue inhibitor of metalloproteinase-1 atenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology, 2002, 36 (4):850-860.
    [42] Dufour JF, Delellis R ,Kaplan MM. Regression of hepatic fibrosis in hepatitis C with long term interfere on treatment. Dig Dis Sci,1998,43 (12): 2573-2576.
    [43] 姚希贤,徐克成,肝纤维化的基础与临床,上海科技教育出版社,2003.
    [44] 陈金国,细胞外基质组份研究进展,国外医学·生理·病理科学与临床分册,1999,19 (4):249-251.
    [45] Piotrowska E, Piotrowski J , Grzeszczak W .Transforming growth factors and their rolein chronic liver diseases. Wiad Lek, 1993,46 (9-10):378-381.
    [46] 张敏,张玲霞,龙建银,慢性病毒性肝炎肝组织转化生长因子 β 及其 mRNA 分布的研究,中华肝脏病杂志,2004,7:193-195.
    [47] Qi Zhe, Atsuchi N, oshima A,et al .Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA, 1999 , 96 : 2345.
    [48] Gramantieri L, Casali A Trere D , et al. Imbalance of IL-1 beta and IL-1 receptor antagonist mRNA in liver tissue from hepatitis C virus (HCV)related chronic hepatitis. Clin ExP Immunol,1999,115 (3): 515-520.
    [49] Plebani M, Panozzo MP , Basso D,et al. Cytokines and the progression of liver damage in exerimenial bile ductligation, Clin Exp Pharmacol Physiol, 1999,26 (4):358-363.
    [50] Jinno K, Tanimizu M , Hyodo I, et al . Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J Gastroenterol , 1997, 32(1):119-121.
    [51] Grappone C , Pinzani M , Parola M, et al . Expression of platelet derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats . J Hepatol, 1999, 31(1):100-109.
    [52] 吴裕沂,细胞因子与肝脏,中华消化杂志,2006,19:166-170.
    [53] Wllis SA , zimmerman CM , Li Li,et al.Formation and activation by phosphorylation of activin receptor complexes . Mol Ettdocrinol, 1996, 10:367-379.
    [54] Attisano L,Wrana JL.Signal transduction by the TGF-beta superfamily. Science, 2002, 296: 1646-1647.
    [55] Alcolado R Arthur MJ , Iredale JP. Pathogenesis of liver fibrosis . Clin Sci,1997, 92(2): 103-112.
    [56] Boker KH, Pehle B, Steinmetz C et al. Tissue inhibitors of metallopro teinases in liver and serum / plasma in chronic active hepatitis C and HCV-induced cirrhosis . Hepatogastroen terology, 2000,47(33):812-819.
    [57] Nagase H ,Woessner J. Matrix Metalloproteinases. Biol Chem, 1999, 27(4): 21491 -21494.
    [58] Freije JM, Diez-ltza I, Balbin M, et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem, 1994, 269:16766-16773.
    [59] Montfort I, Perez-Tamayo Alvizouri AM, et al. Collagenase of hepatocytes and sinusoidal liver cells in the reversibility of experimental cirrhosis of the liver. Vrchows Arch B Pathol Incl Mol Pathol, 2003,59(5):281-289.
    [60] Branch AD. A hitchhiker guide to antisense and nonantisense biochemical pathwaysHepatolog , 2004,24(6):1517-1529.
    [61] 梁志清,何振平,反义基因对大鼠纤维化肝脏 TGFβ 受体表达的调节,中国实验诊断学,1998:4(2):66-69.
    [62] 马跃文,侯显明,康健,转化生长因子 βl 及其 I、Ⅱ型受体在肺维化组织中的表达变化和意义,中华结核和呼吸杂志,2000,11(23):701-702.
    [63] Bedossa P,Peltier E,Terris B,et al.Transforming growth factor beta 1and TGF-β1 receptors in normal, cirrhotic,and neoplastic human liver. Hepatology, 1995,21: (3): 760-766.
    [64] 汪玲,胡国龄,谭德明,TGFβ1 型受体部分基因表达质粒对实验性大鼠肝纤维化的影响中华传染病杂志,2002,20(3):168-172.
    [65] Boeker KH , HaberkornCI I,Michels D,etal. Diagnostic potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic hepatitis C, Clin Chim Acta, 2002, 316 (1-2) :71-81.
    [66] 邹海峰,刘洋,徐华锋,TIMP-1 在肝纤维化形成过程中的作用,哈尔滨医科大学学报,2005,39.(1):25-28.
    [67] 赵志海,基质金属蛋白酶在实验性肝纤维化形成和逆转过程中表达的动态研究 [硕士学位论文],解放军军医进修学院,2002.
    [68] 竺国芳,张宇,厉有名,基质金属蛋白酶-13 在大鼠酒精性肝纤维化表达的研究,中华肝脏病杂志,2003,11(11):660-662.
    [69] 高春芳,陆伦根,肝纤维化疾病的基础和临床,上海科学技术出版社,2004.
    [70] Brunner T, Mogil RJ, LaFace D, et al. Cell autonomous Fas(CD95)/Fas ligand interaction mediateds activation induced apoptosis in T-cell hybridomas. Nature, 1998, 373 (6513):441-444
    [71] Czaja MJ,Weiner FR,Flanders KC,et al In vitro and in vivo association of transforming growth factor-β1 with hepatic fibrosis. J Cell Biol,1989(6),108:2477.
    [72] 程明亮,杨长青,肝纤维化的基础研究及临床,人民卫生出版社,2003.
    [73] CastillaA, PrietoJ, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therap. N Engl J Med, 1999(4), 324:933 -940.
    【1】 王宝恩,张定风等 现代肝脏病学 513.
    【2】 Peter J. Lewindon, Tamara N. Pereira, Anita C. Hoskins, et al. The Role of Hepatic Stellate Cells and Transforming Growth Factor-β1 in Cystic Fibrosis Liver Disease. Am J Pathology, 2002, 160:
    【3】 Wataru Wada, Hiroyuki Kuwano, Yoshihisa Hasegawa et al. The Dependence of Transforming Growth Factor-?-Induced Collagen Production on Autocrine Factor Activin A in Hepatic Stellate Cells. Endocrinology, 2004, 145:2753-59
    【4】 张立煌.刘翠雪.姚航平.等.转化生长因子—β1 及其受体的表达与大鼠肝纤维化关系的研究[J].浙江大学学报(医学版),2000,46(7):1857-1865
    【5】 Elisabetta del Re, Jodie L.Babitt, Alnoor Pirani, et al. In the Absence of Type III Receptor, the Transforming Growth Factor (TGF)-? Type II-B Receptor Requires the Type I Receptor to Bind TGF-?2. J Biol Chem, 2004,279: 22765 -22772
    【6】 K.L.Stenvers, M.L.Tursky, K.W. Harder, et al. Heart and Liver Defects and Reduced Transforming Growth Factor ?2 Sensitivity in Transforming Growth Factor ? Type III Receptor-Deficient Embryos. Mol.Cell Biol, 2003, 23: 4371-85
    【7】 JB Kopp, VM Factor, M Mozes, P Nagy, N Sanderson, EP Bottinger, PE Klotman, and SS Thorgeirsson Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease.Lab Invest, Jun 1996; 74(6): 991-1003.
    【8】 J Fujimoto and Y Kaneda Reversing liver cirrhosis: impact of gene therapy for liver cirrhosis. Gene Ther, Mar 1999; 6(3): 305-6.
    【9】 蒋炜,王吉耀.反义转化生长因子 βⅠ型受体表达质粒对实验性肝纤维化的影响.中华医学杂志,2002, 82:1160-1164.
    【10】 蒋炜,王吉耀.反义转化生长因子 βⅡ型受体表达质粒对实验性肝纤维化的影响.中华肝脏病杂志,2004,12:137-140.
    【11】 Jacob George, Shao-Shean Wang, Ann-Marie Sevcsik, Michele Sanicola, Richard L. Cate, Victor E. Koteliansky, and D. Montgomery Bissell Transforming Growth Factor-βInitiates Wound Repair in Rat Liver through Induction of the EIIIA-Fibronectin Splice Isoform Am. J. Pathol., Jan 2000; 156: 115-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700