粗粒土真三轴试验与本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗粒土是土石坝的主要坝体材料,鉴于目前200甚至300m级高土石坝的修建,对粗粒土在三维应力状态下的强度变形特性以及各向异性特性进行研究已经非常迫切。
     真三轴试验是进行这方面研究的重要手段,国内外不少学者都曾对砂土及粘土进行过真三轴试验研究,然而由于试验仪器等原因的限制,对于包括砾石料在内的粗粒土,很少有人进行这方面的研究。
     本文利用河海大学两台真三轴仪分别对砾石料、粗粒土进行了真三轴试验,并在此基础上提出一个粗粒土三维破坏准则及双屈服面三维弹塑性模型。
     探讨了使用河海大学ZSY-1型真三轴仪对砾石料进行真三轴试验的具体操作方法,并对砾石料试样进行了不同围压下的等σ3等b加载试验,研究了中主应力对砾石料应力应变关系、主应变之间关系及强度参数φ、M的影响。
     对河海大学最新研制成功的TSW-40型真三轴仪进行调试,考察可能影响试验结果的各种因素,包括:试样端部约束的影响、试样帽与水囊盒之间摩擦的影响、复合加压块及水囊盒的影响。并且对该仪器的变形量测以及应力传感器进行率定。
     使用TSW-40型真三轴仪对粗粒土进行了一系列真三轴试验,包括:等σ3等b试验、等p等b试验、平面应变试验、单向加荷试验以及等p等q试验。研究了粗粒土在三维应力状态下的变形和强度特性。
     根据砾石料和粗粒土的真三轴试验结果,提出了一个粗粒土三维破坏准则。推导了该准则的φb~b关系,研究了该准则在π平面上的破坏轨迹形态,并对该准则进行了验证。
     提出了一个双屈服面三维弹塑性模型,包括弹性部分、屈服函数、硬化准则和塑性势函数;建议了根据常规三轴压缩试验结果确定模型参数的方法;用该模型计算了等σ3等b加载应力路径下的变形,并与粗粒土的真三轴试验结果进行比较,对模型的合理性进行了初步验证;将模型加入三维有限元计算程序,应用于土石坝工程计算,并与邓肯E-B模型进行比较,验证了模型的适用性。
Coarse-grained soils are the main materials of earth rockfill dams, and there are many high earth rockfill dams to be built whose height reach 200 even 300 metres, therefore it is urgency to study on the strength and deformation characteristics of coarse-grained soils under three dimensional stress states, as well as the anisotropic characteristics of coarse-grained soils.
     True triaxial test is an important method to study the response of soils in three dimensional stress states. A lot of true triaxial tests of sand and clay have been performed by researchers inside and outside. However, for coarse-grained soils including gravel, restricted by apparatus etc, few such investigation is done. The two true triaxial apparatuses in Hohai University are used to perform true triaxial tests respectively on fine gravel and coarse-grained soils. And then on the basis of these tests, a new three-dimensional failure criterion and a two-yield-surface elastoplastic model are presented.
     The specific operating methods of true triaxial tests on fine gravel using the ZSY-1 Type True Triaxial Apparatus in Hohai University are discussed. Subsequently a few of true triaxial tests on fine gravel have been performed, in which bothσ3 and b are invariable. On the basis of the tests, the influences of intermediate principal stress on the stress-strain relationship, relations between the three principal strains and the strength parametersφand M are studied separately.
     The TSW-40 Type True Triaxial Apparatus in Hohai University which is developed recently has been examined. Several factors which may influence the test results are investigated, mainly including the following three points: the influence of the sample end restriction; the influence of the friction between the sample cap and the water-bag box; the influence of the metal-rubber complex and the water-bag box.
     Series of true triaxial tests on coarse-grained soils have been performed, includingσ3- and b-constant tests, p- and b-constant tests, plane strain tests, single-direction loading tests and p- and q-constant tests. Deformation and strength characteristics of coarse-grained soils in three dimensional stress states have been studied.
     Based on the results of true triaxial tests on fine gravel and coarse-grained soils, a new failure criterion is presented and verified. Theφb~b relationship of the failure criterion is deduced, and the shape of the failure locus on theπ-plane is investigated. A two-yield-surface nonassociative elastoplastic model is established, including elastic part, yield functions, hardening rules and plastic potential functions. The model incorporates seven parameters which can all be determined from simple experiments such as conventional triaxial compression tests. The predicted stress-strain curves show that the model is capable of successfully representing the experimental measurements. Additionally, the model has been incorporated in a three-dimensional FEM program for the solution of an earth rockfill dam problem.
引文
[1] Massarsch, K.R. and Fellenius, B.H. Vibratory Compaction of Coarse-Grained Soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709.
    [2] Jovicic, V. and Coop, M.R. Stiffness of Coarse-Grained Soils at Small Strains[J]. Geotechnique, 1997, 47(3): 545-561.
    [3] Horpibulsuk, S. ; Rachan, R. ; Katkan, W. and Nagarai, T.S. Strength Development in Cement Stabilized Coarse Grained Soils[C]. Geotechnical Special Publication, n 152, Ground Modification and Seismic Mitigation - Proceedings of the GeoShanghai Conference, 2006: 51-56.
    [4] Maksimovic, M. Nonlinear Failure Envelope for Coarse-Grained Soils[C]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1989, 1: 731-734.
    [5] Sivakugan and Nagaratnam. Inadequacy in the Classification of Coarse-Grained Soils[J]. Geotechnical Testing Journal, 1990, 13(2): 134-137.
    [6] Goel, M.C. Evaluation of Shear Strength of Coarse Grained Soils[J]. Indian Geotechnical Journal, 1978, 8(3): 141-151.
    [7] Ayers, P.D. Moisture and Density Effects on Soil Shear Strength Parameters for Coarse Grained Soils[J]. Transactions of the ASAE, 1987, 30(5): 1282-1287.
    [8] Indrawan, I.G.B. ; Rahardjo, H. and Leong, E.C. Effects of coarse-grained materials on properties of residual soil[J]. Engireering Geology, 2006, 82(3): 154-164.
    [9] Vinson, T.S. and Jahn, S.L. Latent Heat of Frozen Saline Coarse-Grained Soil[J]. Journal of Geotechnical Engineering, 1985, 111(5): 607-623.
    [10] Wu, Q.B. and Zhu, Y.L. Experimental studies on salt expansion for coarse grain soil under constant temperature[J]. Cold Regions Science and Technology, 2002, 34(2): 59-65.
    [11]贾革续.粗粒土工程特性的试验研究[D].大连理工大学博士论文, 2003.
    [12]阎宗岭.堆石体物理力学特性及其工程应用研究[D].重庆大学博士论文, 2003.
    [13]梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究[J].岩土力学, 2003, 24(3): 479-483.
    [14]刘萌成,黄晓明,高玉峰.堆石料强度变形特性与非线性弹性本构模型研究[J].岩土力学, 2004, 25(5): 798-802.
    [15]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报, 2004, 26(1): 21-25.
    [16]张嘎,张建民.粗颗粒土的应力应变特性及其数学描述研究[J].岩土力学, 2004, 25(10): 1587-1591.
    [17]张丙印,李全明.大型压缩试验在堆石坝应力变形分析中的应用[J].水利学报, 2004,(9): 38-43.
    [18]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型[J].岩土工程学报, 2005, 27(2): 178-184.
    [19]张嘎,吴伟,张建民.粗粒土亚塑性损伤模型[J].清华大学学报, 2006, 46(6:): 793-796.
    [20]刘萌成,高玉峰,刘汉龙,费康.粗粒料大三轴试验研究进展[J].岩土力学, 2002, 23(2): 217-221.
    [21]张丙印,吕明治,高莲士.粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正[J].水利水电技术, 2003, 34(2): 30-33.
    [22]谢婉丽,王家鼎,张林洪.土石粗粒料的强度和变形特性的试验研究[J].岩石力学与工程学报, 2005, 24(3): 430-437.
    [23]冯瑞玲,王园,谢永利.粗粒土振动压实特性试验[J].中国公路学报, 2007, 20(5): 19-23.
    [24]魏松,朱俊高.粗粒土料湿化变形三轴试验研究[J].岩土力学, 2007, 28(8): 1609-1614.
    [25]陈晓斌,张家生,赵同顺.红砂岩粗粒土弹塑性双屈服面模型试验研究[J].塑性工程学报, 2007, 14(2): 123-129.
    [26]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土工程学报, 2007, 29(8): 1151-1158.
    [27]张兵.堆石料工程性质试验研究[D].河海大学博士论文, 2008.
    [28]邹德高,孟凡伟,孔宪京,徐斌.堆石料残余变形特性研究[J].岩土工程学报, 2008, 30(6): 807-812.
    [29] Richard, J. and Marco, V. Why does the World Need a True Triaxial Tester[J]. Particle and Particle Systems, 2007, 24(2): 108-112.
    [30] Kjellman W. Report on an Apparatus for Consummate Investigation of the Mechanical Properties of Soils[J]. Proceedings of the 1st International Conference on soil Mechanics and Foundation Engineering, 1936, 2: 16-20.
    [31] Lade, P.V. and Duncan, J.M. Cubical Triaxial Tests on Cohesionless Soil[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(SM10): 793-812.
    [32]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [33]袁聚云,杨熙章,赵锡宏,董建国,徐仁龙. K0固结真三轴仪的研制及试验研究[J].大坝观测与土工测试, 1995, 19(3): 28-32.
    [34]张坤勇,殷宗泽,徐志伟.国内真三轴试验仪的发展及应用[J].岩土工程技术, 2003, (5): 289-293.
    [35]殷建华,Md. Kumruzzaman,郑俊文,周万欢.创新的土力学真三轴加载装置和真三轴试验与结果[C].第十届土力学及岩土工程学术会议论文集,重庆大学出版社,2007: 260-264.
    [36]唐仑.关于砂土的破坏条件[J].岩土工程学报, 1981, 3(2): 1-7.
    [37] AnhDan, L.Q., Koseki, J., Hayano, K. and Sato, T. True Triaxial Apparatuses with Two Rigid Boundaries[C]. Geotechnical Special Publication, n 130-142, Geo-Frontiers, 2005, 2211-2220.
    [38] Pearce J A. A New True Triaxial Apparatus. Stress-Strain Behaviour of Soils. Proceedings of the Roscoe Memorial Symposium, Cambridge University, England, 1971: 330-339.
    [39] Ko H Y, Scott R F. A New Soil Testing Apparatus[J].Geotechnique, 1967, 17(4): 40-57.
    [40] Mostafa A, I., Shambhu S, S. and Martin, F. A Small True Triaxial Apparatus with Wave Velocity Measurement[J]. Geotechnical Testing Journal, 2005, 28(2): 113-122.
    [41] Arthur J.R.F. and Menzies B.K. Inherent anisotropy in a sand[J]. Geotechnique, 1972, 22(1): 115-129.
    [42] Arthur J.R.F., Chua K.S. and Dunstan T.D. Induced anisotropy in a sand[J]. Geotechnique, 1977, 27(1): 13-30.
    [43] Lade, P.V. and Duncan, J.M. Elastoplastic Stress-Strain Theory for Cohesionless Soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(GT10): 1037-1053.
    [44] Lade, P.V. and Duncan, J.M. Stress-Path Dependent Behavior of Cohesionless Soil[J]. Journal of the Geotechnical Engineering Division, 1976, 102(GT1): 51-68.
    [45] Oda, M., Koishikawa, I. and Higuchi, T. Experimental Study of Anisotropic Shear Strength of Sand by Plane Strain Test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [46] Lade, P.V. and Musante, H.M. Three-Dimensional Behavior of Remolded Clay[J]. Journal of the Geotechnical Engineering Division, 1978, 104(GT2): 193-209.
    [47] Hicher, P.-Y. and Lade, P.V. Rotation of Principal Directions in K0-Consolidated Clay[J]. Journal of Geotechnical Engineering, 1987, 113(7): 774-788.
    [48] Lade, P.V. and Overton, D.D. Cementation Effects in Frictional Materials[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1373-1386.
    [49]李广信.土的三维本构关系的探讨与模型验证[D].清华大学博士论文,1985.
    [50]李广信.劳台应力角对土的体变和孔压的影响[J].勘察科学技术, 1991, (3): 1-4.
    [51] Nakai, T., Matsuoka, H., Okuno, N. and Tsuzuki, K. True Triaxial Tests on Normally Consolidated Clay and Analysis of the Observed Shear Behavior Using Elastoplastic Constitutive Models[J]. Soils and Foundations, 1986, 26(4): 67-78.
    [52]殷宗泽,赵航.中主应力对土体本构关系的影响[J].河海大学学报, 1990, 18(5): 54-61.
    [53] Reddy, K.R., Saxena, S.K. and Budiman, J.S. Development of a True Triaxial Testing Apparatus[J]. Geotechnical Testing Journal, 1992, 15(2): 89-105.
    [54] Matsuoka, H. and Sun, D. Extension of Spatially Mobilized Plane (SMP) to Frictional and Cohesive Materials and its Application to Cemented Sands[J]. Soils and Foundations, 1995, 35(4): 63-72.
    [55]朱俊高,卢海华,殷宗泽.土体侧向变形性状的真三轴试验研究[J].河海大学学报, 1995, 23(6): 28-33.
    [56] Lade, P.V. and Kirkgard, M.M. Effects of Stress Rotation and Changes of b-Values on Cross-Anisotropic Behavior of Natural K0-Consolidated Soft Clay[J]. Soils and Foundations, 2000, 40(6): 93-105.
    [57]徐志伟,殷宗泽.粉砂侧向变形特性的真三轴试验研究[J].岩石力学与工程学报, 2000, 19(5): 626-629.
    [58]徐志伟,赵江倩.围压增大条件下淤泥土弹性模量及侧向变形特性的真三轴试验研究[J].岩土工程技术, 2000, (4): 226-229.
    [59]孙红,袁聚云,赵锡宏.软土的真三轴试验研究[J].水利学报, 2002, (12): 74-78.
    [60]张鲁渝,孔亮,郑颖人.偏平面上屈服曲线的实验拟合[J].岩土力学, 2002, 23(4): 406-410.
    [61] Douqlas, M. and Dayakar, P. True Triaxial Testing System for Clay with Proportional-Integral-Differential (PID) Control[J]. Geotechnical Testing Journal, 2004, 27(2): 134-144.
    [62]杨雪强,朱志政,韩高升,何世秀.不同应力路径下土体的变形特性与破坏特性[J].岩土力学, 2006, 27(12): 2181-2185.
    [63]庄心善,赵鑫,何世秀,朱瑞赓.排水条件下卸荷土体变形特性的真三轴试验研究[J].岩土力学, 2007, 28(7): 1387-1390.
    [64] Lade, P.V. and Qiong Wang. Analysis of Shear Banding in True Triaxial Tests on Sand[J]. Journal of Engineering Mechanics, 2001, 127(8): 762-767.
    [65] Lade, P.V. Instability, Shear Banding, and Failure in Granular Materials[J]. International Journal of Solids and Structures, 2002, 39: 3337-3357.
    [66] Lars Bo, I. and Ulrik, P. The Danish Rigid Boundary True Triaxial Apparatus for Soil Testing[J]. Geotechnical Testing Journal, 2002, 25(3): 254-265.
    [67] Abelev, A.V. and Lade, P.V. Effects of Cross Anisotropy on Three-Dimensional Behavior of Sand. I: Stress-Strain Behavior and Shear Banding[J]. Journal of Engineering Mechanics, 2003, 129(2): 160-166.
    [68] Lade, P.V. and Abelev, A.V. Effects of Cross Anisotropy on Three-Dimensional Behavior of Sand. II: Volume Change Behavior and Failure[J]. Journal of Engineering Mechanics, 2003, 129(2): 167-174.
    [69] Abelev, A.V. and Lade, P.V. Characterization of Failure in Cross-Anisotropic Soils[J]. Journal of Engineering Mechanics, 2004, 130(5): 599-606.
    [70] Lade, P.V. Modeling failure in cross-anisotropic frictional materials[J]. International Journal of Solids and Structures, 2007, 44: 5146-5162.
    [71] Khalid A, A. and Heath S, W. A True Triaxial Apparatus for Soil Testing with Mixed Boundary Conditions[J]. Geotechnical Testing Journal, 2005, 28(6): 534-543.
    [72] Choi, C.H., Pedro, A. and Michael D, H. Development of a True Triaxial Apparatus for Sands and Gravels[J]. Geotechnical Testing Journal, 2008, 31(1): 32-44.
    [73]张启岳,司洪洋.粗颗粒土大型三轴压缩试验的强度与应力~应变特性[J].水利学报, 1982, (9): 22-31.
    [74]郭见杨,黄胜生,喻小生.论粗粒料的E~μ模型[J].岩土力学, 1983, 4(1): 17-24.
    [75]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报, 1987, (5): 59-65.
    [76]刘开明,屈智炯,肖晓军.粗粒土的工程特性及本构模型研究[J].成都科技大学学报, 1993, (73): 92-102.
    [77]郭庆国.粗粒土的工程特性及应用[M].河南:黄河水利出版社,1998.
    [78]柏树田,崔亦昊.堆石的力学性质[J].水力发电学报, 1997, (3): 21-30.
    [79]程展林,余剑平,丁红顺.水布垭面板堆石坝填料应力应变关系试验研究[J].长江科学院院报, 1999, 16(1): 29-32.
    [80]王昆耀,常亚屏,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报, 2000, 33(3): 48-53.
    [81] Matsuoka H., Liu S.H., Sun D. and Nishikata U. Development of a New In-Situ Direct Shear Test[J]. Geotechnical Testing Journal, 2001, 24(1): 92-102.
    [82]刘斯宏,肖贡元,杨建州,吴光英.宜兴抽水蓄能电站上库堆石料的新型现场直剪试验[J].岩土工程学报, 2004, 26(6): 772-776.
    [83]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土工程学报, 2007, 29(8): 1151-1158.
    [84]吴良平.粗粒土组构试验研究[D].长江科学院硕士论文, 2007.
    [85]姜景山,程展林,姜小兰.粗粒土二维模型试验研究[J].长江科学院院报, 2008, 25(2): 38-41.
    [86]刘萌成,高玉峰,刘汉龙.应力路径条件下堆石料剪切特性大型三轴试验研究[J].岩石力学与工程学报, 2008, 27(1): 176-186.
    [87]刘萌成,高玉峰,刘汉龙.堆石料剪胀特性大型三轴试验研究[J].岩土工程学报, 2008, 30(2): 205-211.
    [88] G.T. Houlsby. A general failure criterion for frictional and cohesive materials[J]. Soils and Foundations, 1986, 26(2): 97-101.
    [89]李振泽,唐晓武.土破坏新准则的推导与验证[J].岩土力学, 2007, 28(6): 1247-1249.
    [90]沈珠江.关于破坏准则和屈服函数的总结[J].岩土工程学报, 1995, 17(1): 1-8.
    [91]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [92]方开泽.土的破坏准则――考虑中主应力的影响[J].华东水利学院学报,1986,14(2): 70-81.
    [93]孔德志,朱俊高.无粘性土的一种破坏准则[J].岩土力学, 2005, 26(1): 101-104.
    [94]杨雪强.对一些角隅模型的认识[J].岩土力学, 2004, 25(8): 1211-1214.
    [95]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [96]史述昭,杨光华.岩体常用屈服函数的改进[J].岩土工程学报, 1987, 9(4): 60-69.
    [97]姜洪伟,张保良,袁聚云,赵锡宏.上海软土的屈服函数[J].同济大学学报, 1996, 24(4): 422-426.
    [98]姚仰平,路德春,周安楠,邹博.广义非线性强度理论及其变换应力空间[J].中国科学E辑, 2004, 34(11): 1283-1299.
    [99] Ohta, H. and Hata, S. A Theoretical Study of the Stress-Strain Relations for Clays[J]. Soilsand Foundations, 1971, 11(3): 65-90.
    [100] Khosla, V.K. and Wu, T.H. Stress-Strain Behavior of Sand[J]. Journal of the Geotechnical Engineering Division, 1976, 102(GT4): 303-321.
    [101] Sandler, I., Dimaggio, F.L. and Baladi, G.Y. Generalized Cap Model for Geological Materials[J]. Journal of the Geotechnical Engineering Division, 1976, 102(GT7): 683-699.
    [102] Pender, M.J. A Model for the Behaviour of Overconsolidated Soil[J]. Geotechnique, 1978, 28(1): 1-25.
    [103] Baladi, G.Y. and Rohani, B. Elastic-Plastic Model for Saturated Sand[J]. Journal of the Geotechnical Engineering Division, 1979, 105(GT4): 465-480.
    [104] Ohmaki, S. A Mechanical Model for the Stress-Strain Behaviour of Normally Consolidated Cohesive Soil[J]. Soils and Foundations, 1979, 19(3): 29-44.
    [105]沈珠江.摩尔-库伦材料的屈服理论[J].水利水运科学研究, 1980, (1): 1-9.
    [106]向大润.土体弹塑性理论加载准则和计算模型探讨[J].岩土工程学报, 1983, 5(4): 78-91.
    [107] Desai, C.S. and Faruque, M.O. Constitutive Model for (Geological) Materials[J]. Journal of Engineering Mechanics, 1984, 110(9): 1391-1408.
    [108] Oka, F., Leroueil, S. and Tavenas, F. A Constitutive Model for Natural Soft Clay with Strain Softening[J]. Soils and Foundations, 1989, 29(3): 54-66.
    [109] Huang, T.K. and Chen, W.F. Simple Procedure for Determining Cap-Plasticity-Model Parameters[J]. Journal of Geotechnical Engineering, 1990, 116(3): 492-513.
    [110] Srinivasa Murthy, B.R., Vatsala, A. and Nagaraj, T.S. Revised Cam-Clay Model[J]. Journal of Geotechnical Engineering, 1991, 117(6): 851-871.
    [111]沈珠江.几种屈服函数的比较[J].岩土力学, 1993, 14(1): 41-50.
    [112] Lin, H.I., Yue, D.Y., Kaliakin, V.N. and Themelis, N.J. Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils[J]. Journal of Engineering Mechanics, 2002, 128(7): 748-758.
    [113]王靖涛,杨毅,张曦映.考虑应力路径的砂土的神经网络本构关系模型[J].岩石力学与工程学报, 2002, 21(10): 1487-1489.
    [114]曾静,王靖涛.土的本构关系的数值建模方法[J].岩石力学与工程学报, 2002, 21(增2): 2336-2340.
    [115]姚辉,王靖涛.多重应力路径下粘土本构关系的神经网络模型[J].岩石力学与工程学报, 2003, 22(9): 1454-1457.
    [116]曾静,冯夏庭,王靖涛,盛谦.不同应力路径下砂土的神经网络弹塑性本构模型研究[J].岩土力学, 2004, 25(6): 896-900.
    [117] Kolymbas D. and Karlsruhe An outline of hypoplasticity[J]. Archive of Applied Mechanics, 1991, (61): 143-151.
    [118] Bauer E. and Wu W. A hypoplastic constitutive model for cohesive powders[J]. PowderTechnology, 1995, (85): 1-9.
    [119] Gudehus G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36(1): 1-12.
    [120] Bauer E. Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36(1): 13-26.
    [121] Wolffersdorff P.A. A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive-Frictional Materials, 1996, 1: 251-271.
    [122] Niemunis A. and Herle I. Hypoplastic model for cohesionless soils with elastic strain range [J]. Mechanics of Cohesive-Frictional Materials, 1997, 2: 279-299.
    [123] Kolymbas D. Introduction to Hypoplasticity Advances in Geotechnical Engineering and Tunnelling[M]. Rotterdam: A.A.Balkema, 2000.
    [124] Maier T. Nonlocal modeling of softening in hypoplasticity[J]. Computers and Geotechnics, 2003, (30): 599-610.
    [125] Batista D., Royis P. and Doanh T. Time-integration of a hypoplastic constitutive equation in finite element modeling[J]. Mathematical and Computer Modelling, 2003, (37): 615-621.
    [126]王洪波.基于亚塑性理论的无粘性土压缩曲线和静止土压力系数的研究[D].大连理工大学硕士论文, 2005.
    [127]岑威钧.堆石料亚塑性本构模型及面板堆石坝数值分析[D].河海大学博士论文, 2005.
    [128]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究, 1993, (4): 247-255.
    [129]沈珠江.结构性粘土的堆砌体模型[J].岩土力学, 2000, 21(1): 1-4.
    [130] Desai, C.S. General Basis for Yield, Failure and Potential Functions in Plasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4(4): 361-375.
    [131]黄文熙.硬化规律对土的弹塑性应力-应变模型影响的研究[J].岩土工程学报, 1980, 1: 1-11.
    [132]黄文熙.土的硬化规律和屈服函数[J].岩土工程学报, 1981, 3(3): 19-26.
    [133]李广信.土的清华弹塑性模型及其发展[J].岩土工程学报, 2006, 28(1): 1-10.
    [134]陈瑜瑶,王敬林,郑颖人.由试验数据拟合重庆红粘土的屈服条件[J].岩土力学, 2001, 22(4): 443-450.
    [135] Anandarajah, A. and Dafalias, Y.F. Bounding Surface Plasticity.III: Application to Anisotropic Cohesive Soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318.
    [136] Wood, D.M. and Graham, J. Anisotropic Elasticity and Yielding of a Natural Plastic Clay[J]. International Journal of Plasticity, 1990, 6(4): 377-388.
    [137] Liang, R.Y. and Shaw, H.L. Anisotropic Hardening Plasticity Model for Sands[J]. Journal of Geotechnical Engineering, 1991, 117(6): 913-933.
    [138] Yasufuku, N. and Ochiai, H. Anisotropic Hardening Model for Sandy Soils Over a WideStress Region[J]. Memoirs of the Faculty of Engineering, Kyushu University, 1991, 51(2): 81-118.
    [139] Kumbhojkar, A.S. and Banerjee, P.K. Anisotropic Hardening Rule for Saturated Clays[J]. International Journal of Plasticity, 1993, 9(7): 861-888.
    [140] Lade, P.V. and Kim, M.K. Single Hardening Constitutive Model for Soil, Rock and Concrete[J]. International Journal of Solids and Structures, 1995, 32(14): 1963-1978.
    [141] Lade, P.V. and Inel, S. Rotational Kinematic Hardening Model for Sand. Part I Concept of Rotating Yield and Plastic Potential Surfaces[J]. Computers and Geotechnics, 1997, 21(3): 183-216.
    [142] Inel, S. and Lade, P.V. Rotational Kinematic Hardening Model for Sand. Part II Characteristic Work Hardening Law and Predictions[J]. Computers and Geotechnics, 1997, 21(3): 217-234.
    [143] Matsuoka H., Yao Y.P. and Sun D. The Cam-Clay Models Revised by the SMP Criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
    [144] Yao Y.P. and Sun D. Application of Lade’s Criterion to Cam-Clay Model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119.
    [145] Houlsby G.T. A study of plasticity theories and their applicability to soils. Ph.D. thesis, University of Cambridge, 1981.
    [146] Collins I.F and Houlsby G.T. Application of thermomechanical principles to the modelling of geotechnical materials[J]. Proceedings of the Royal Society of London A 1997, 453: 1975–2001.
    [147] Collins I.F. The concept of stored plastic work or frozen elastic energy in soil mechanics[J]. Geotechnique 2005, 55(5): 373-382.
    [148] Collins I.F. Elastic/plastic models for soils and sands[J]. International Journal of Mechanical Sciences, 2005, 47: 493-508.
    [149] Einav I., Houlsby G.T. and Nguyen G.D. Coupled damage and plasticity models derived from energy and dissipation potentials[J]. International Journal of Solids and Structures, 2007, 44: 2487-2508.
    [150] Houlsby G.T. and Puzrin A.M. A thermomechanical framework for constitutive models for rate-independent dissipative materials[J]. International Journal of Plasticity, 2000, 16: 1017-1047.
    [151] Puzrin A.M. and Houlsby G.T. A thermomechanical framework for rate-independent dissipative materials with internal functions[J]. International Journal of Plasticity, 2001, 17: 1147-1165.
    [152] Collins I.F. and Hilder T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 1313-1347.
    [153] Collins I.F. and Kelly P.A. A thermomechanical analysis of a family of soil models[J]. Geotechnique, 2002, 52(7): 507-518.
    [154] Collins I.F. and Hilder, T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002,26:1313-1347.
    [155] Puzrin A.M. and Houlsby G.T. Fundamentals of kinematic hardening hyperplasticity[J]. International Journal of Solids and Structures, 2001, 38: 3771-3794.
    [156] Collins I.F. A systematic procedure for constructing critical state models in three dimensions[J]. International Journal of Solids and Structures, 2003, 40: 4379-4397.
    [157] Einav I., Puzrin A.M. and Houlsby G.T. Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27: 837-858.
    [158] Einav I., Puzrin A.M. and Houlsby G.T. Continuous hyperplastic models for overconsolidated clays[J]. Mathematical and Computer Modelling, 2003, 37: 515-523.
    [159] Likitlersuang S. A Hyperplasticity Model for Clay Behaviour: An Application to Bangkok Clay. Ph.D. thesis, University of Oxford, 2003.
    [160] Einav I. and Puzrin A.M. Continuous hyperplastic critical state (CHCS) model derivation[J]. International Journal of Solids and Structures, 2004, 41: 199-226.
    [161] Likitlersuang S. and Houlsby G.T. Development of hyperplasticity models for soil mechanics [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 229-254.
    [162]孙德安,姚仰平,殷宗泽.基于SMP准则的双屈服面弹塑性模型的三维化[J].岩土工程学报, 1999, 21(5): 631-634.
    [163]袁聚云,赵锡宏,董建国.上海粘性土各向异性弹塑性模型的研究[J].同济大学学报, 1999, 27(4): 402-406.
    [164] Voyiadjis, G.Z. and Song, C.R. Finite Strain, Anisotropic Modified Cam Clay Model with Plastic Spin. I: Theory[J]. Journal of Engineering Mechanics, 2000, 126(10): 1012-1019.
    [165] Voyiadjis, G.Z. and Song, C.R. Finite Strain, Anisotropic Modified Cam Clay Model with Plastic Spin. II: Application to Piezocone Test[J]. Journal of Engineering Mechanics, 2000, 126(10): 1020-1026.
    [166]孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型[J].岩土力学, 2000, 21(3): 222-226.
    [167] Sidoroff, F. and Doqui, A. Some Issues about Anisotropic Elastic-Plastic Models at Finite Strain[J]. International Journal of Solids and Structures, 2001, 38(52): 9569-9578.
    [168]孔亮,张鲁渝,郑颖人.两种土体弹塑性模型三维化方法的比较研究[J].岩土工程学报, 2002, 24(4): 519-521.
    [169]赵锡宏,姜洪伟,袁聚云,张启辉.上海软土各向异性弹塑性模型[J].岩土力学, 2003,24(3): 322-330.
    [170]魏星,黄茂松.软土初始应力各向异性弹塑性模型[J].岩土力学, 2004, 25(supp.2): 43-46.
    [171] Li, X.S. and Dafalias, Y.F. A Constitutive Framework for Anisotropic Sand Including Non-Proportional Loading[J]. Geotechnique, 2004, 54(1): 41-55.
    [172]张坤勇.考虑应力各向异性土体本构模型及其应用研究[D].河海大学博士论文, 2004.
    [173]张坤勇,梅国雄,赵延勇.关于土体各向异性弹塑性模型的讨论[J].河海大学学报(自然科学版), 2006, 34(4): 451-455.
    [174]张坤勇,陈芸,梅国雄.土体各向异性弹塑性模型的改进[J].水利水电科技进展, 2006, 26(6): 51-57.
    [175] Lashkari, A. and Latifi, M. A Simple Plasticity Model for Prediction of Non-Coaxial Flow of Sand[J]. Mechanics Research Communications, 2007, 34(2): 191-200.
    [176]吕玺琳,黄茂松,钱建固.基于非共轴本构模型的砂土真三轴试验分叉分析[J].岩土工程学报, 2008, 30(5): 646-651.
    [177] Taiebat, M. and Dafalias, Y.F. SANISAND: Simple Anisotropic Sand Plasticity Model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 915-948.
    [178]熊玉春,陈久照.考虑各向异性影响的循环弹塑性模型[J].岩土工程学报, 2008, 30(8): 1165-1170.
    [179]南京水利科学研究院.土工试验规程SL237-1999[S].北京:中国水利水电出版社,1999.
    [180]侯永峰,刘建坤.格尔木地区砾石砂的动力学特性及路堤施工措施研究[J].北方交通大学学报, 2002, 26(4): 16-19.
    [181]陈宁生,崔鹏,王晓颖,第宝锋.地震作用下泥石流源区砾石土体强度的衰减实验[J].岩石力学与工程学报, 2004, 23(16): 2743-2747.
    [182]张茹,何昌荣,费文平,李积彦.饱和黏性土和砂砾石料振动孔压的试验研究[J].岩土力学, 2006, 27(10): 1805-1810.
    [183]魏厚振,汪捻,胡明鉴,赵海英,徐学勇.蒋家沟砾石土不同粗粒含量直剪强度特征[J].岩土力学, 2008, 29(1): 48-51.
    [184]许成顺,栾茂田,何杨,郭莹,李木国.中主应力对饱和松砂不排水单调剪切特性的影响[J].岩土力学, 2006, 27(5): 689-693.
    [185]殷宗泽等.土工原理[M].北京:中国水利水电出版社,2007.
    [186]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报, 1980, 2(2): 11-19.
    [187]沈珠江.土的三重屈服面应力应变模式[J].固体力学学报, 1984, (2): 163-174.
    [188]殷宗泽.一个土体的双屈服面应力-应变模型[J].岩土工程学报, 1988, 10(4): 64-71.
    [189] Vermeer, P.A. A Double Hardening Model for Sand[J]. Geotechnique, 1978, 28(4): 413-433.
    [190] Banerjee, S. and Sribalaskandarajah, K. Simple Double-Hardening Model for Geomaterials[J]. Journal of Geotechnical Engineering, 1992, 118(6): 889-901.
    [191] Manzari, M.T. and Dafalias, Y.F. A Critical State Two-Surface Plasticity Model for Sands[J]. Geotechnique, 1997, 47(2): 255-272.
    [192] Klisinski, M. On Constitutive Equations for Arbitrary Stress-Strain Control in Multi-Surface Plasticity[J]. International Journal of Solids and Structures, 1998, 35(20): 2655-2678.
    [193] Pietruszczak, S. and Pande, G.N. Description of Soil Anisotropy Based on Multi-Laminate Framework[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25: 197-206.
    [194] Cudny, M. and Vermeer, P.A. On the Modelling of Anisotropy and Destructuration of Soft Clays within the Multi-Laminate Framework[J]. Computers and Geotechnics, 2004, 31: 1-22.
    [195] Khoei, A.R. and Jamali, N. On the Implementation of a Multi-Surface Kinematic Hardening Plasticity and its Applications[J]. International Journal of Plasticity, 2005, 21: 1741-1770.
    [196]殷宗泽,Duncan, J.M.剪胀土与非剪胀土的应力应变关系[J].岩土工程学报, 1984, 6(4): 24-40.
    [197]魏汝龙.正常压密粘土的塑性势[J].水利学报, 1964(6): 9-20.
    [198]魏汝龙.正常压密粘土的本构定律[J].岩土工程学报, 1981, 3(3): 10-18.
    [199]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究, 1986, (4): 1-14.
    [200]翁厚洋.粗粒料缩尺效应试验研究[D].河海大学硕士学位论文, 2008.
    [201]董槐三,尹承瑶.天生桥一级水电站面板堆石坝筑坝材料性质研究[J].红水河, 1996, 15(4): 7-12.
    [202]河海大学岩土工程研究所,中国水电顾问集团成都勘测设计研究院,国电大渡河流域水电开发有限公司.双江口心墙堆石坝静力三维有限元应力变形分析[R]. 2008年1月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700