允许越浪海堤的环境设计参数确定及越浪流与堤后波况计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风暴潮是影响我国沿海地区的重要灾害种类之一,由于我国经济较发达的城市基本集中于沿海地区,因此,防范风暴潮灾害成为重要的研究课题。海堤是我国沿海地区防范风暴潮的主要海岸建筑物,是沿海地区防御风暴潮体系中最直接、最有效的工程措施。风暴潮作用下海堤的环境条件设计标准确定需要考虑多种因素的综合作用,包括环境条件的不确定性、工程投资、海堤失效的风险等,其中,多种环境条件的联合设计标准引起了国内外研究者的广泛关注。在确定海堤堤顶高程时,传统的做法是按照不允许越浪标准进行设计,然而海洋环境条件的不确定性和工程投资等因素使得越浪不可完全避免,因此需要按照允许越浪标准设计海堤。在设计允许越浪海堤时,需要校核越浪流对堤顶及后坡的稳定性影响及冲刷作用,而不同的越浪流其作用方式不同,仅通过平均越浪量难以确定,因此需要对最大单波越浪量及越浪流速度场等参数进行详细研究才能给出堤顶及后坡的设计参数。
     本文对受台风暴潮影响海区允许越浪情况下斜坡式海堤的环境条件设计标准进行了研究,并应用数值模型对越浪引起的越浪流及堤后波况进行了定量研究,以期为允许越浪的海堤堤顶高程和后坡防护提供设计参数。本文的主要工作如下:
     针对工程区域实际海洋观测资料有限的现状,采用台风暴潮过程后报模型获得工程需要的同步发生的,分别以风为主、以浪为主、以水位为主的长期多维极值统计序列,并利用邻近海区的观测站资料对模型的后报结果进行了验证。后报模型主要采用RAMS、POM、SWAN三种模式,其中,考虑到SWAN在绕射计算方面可能存在不稳定,在波浪场的近岸推算中采用了一个简化的不考虑风场的考虑绕射的浅水波浪传播模型。
     由于最大熵分布有4个待定参数,可以更加细致地拟合数据和更广泛地适用于各种情况下的非线性海浪,且对数据拟合时不带先验性,因此采用最大熵分布对海洋环境要素进行边缘分布拟合。现有的多维分布模型的边缘分布多是相同的,而统计序列进行抽样时,与主要因素序列伴随发生的其他两个次要因素序列一般都不符合极值分布,采用相同边缘分布的模型与客观情况不符。本文建立的以最大熵分布为边缘分布的三维嵌套逻辑分布模型,在边缘分布拟合上更加灵活,能够更好地反映各个要素的不确定性。
     多维联合分布模型对应于某一联合重现期的解有无数组,求解时需要使用一定的约束条件。本文以越浪量为约束条件,采用四种计算方法推求允许越浪海堤的海洋环境要素重现值设计标准和堤顶高程,并比较了三种主因素序列对堤顶高程设计的影响。同时,考虑到某些海堤的危险状况是由峰值越浪体积引起的,对海堤的最大单波越浪量进行了验算,并尝试了以最大单波越浪量为约束条件确定海堤的重现值设计标准和堤顶高程。
     对于允许越浪的海堤,需要堤顶和后坡防护设计的水文参数。因此,建立了用于越浪流模拟的二维数值波浪水槽。该数值水槽采用CIP方法求解对流方程和THINC方法追踪自由面,可以处理自由面的大变形和多重自由面的问题。采用前人的实验结果对数值波浪水槽进行了验证,包括溃坝实验、规则波和孤立波在潜堤上的传播变形实验以及越浪流在堤顶的厚度和堤后次生波的变化。应用建立的数值波浪水槽对堤顶和后坡上的越浪流进行了数值研究,给出高堤顶窄堤宽和低堤顶宽堤宽两种断面尺寸的堤顶及后坡上越浪流的速度场和不同侵蚀指标的侵蚀分析,并对两种断面进行了比较分析。
     某些海堤具有掩护堤后水域的作用,需要对发生越浪时海堤堤后方水域的泊稳状况进行验算。本文将越浪在堤后的传递波看成是一种能量的传递,在基于能量守恒的波浪传播数值模型中添加越浪系数。该模型可以综合考虑绕射、反射、折射、越浪对堤后波况的影响,用以估算堤后水域的波高分布,验算海堤的掩护功效。将模型应用于青岛爱华游艇码头的平面布置方案的比选中,计算了不同环境条件设计标准下的港内波高,并采用两个参数评估港内的波况,为决策者提供参考。
Storm surge is one of the most important disasters affecting coastal areas ofChina. For the fact that the cities, whose economy is relatively developed in China,usually concentrate in the coastal region, much focus has been put on the subject ofpreventing storm surge disasters. Sea dikes, as a major part of coastal structures toprevent storm surge, is the most effective and direct engineering measures. It needs totake account into many factors to determine the environmental design parameter. Thatincludes the uncertainty of environmental conditions, engineering investment, failurerisk and so on, among which the joint design standard of a variety of environmentalconditions has attracted researchers’ attention widely. In determining the elevation ofseawalls, the traditional approach donot allow overtopping event, whereas,overtopping cannot be avoided due to the economic reason and the uncertaintiesassociated with the prediction of environmental conditions. Therefore it is necessaryto consider the allowable overtopping rate and to check the stability of the crest andinner slope affected by overtopping flow. Since the overtopping flow with the sameovertopping rate could act on crest and inner slope of seadikes in a different way, it isa necessary to study the maximum overtopping event and overtopping flow for thedesign of the crest and inner slope of seadikes.
     This paper studies the design standard of environmental conditions for slopedseadikes with a tolerable overtopping rate, and investigates the overtopping flow andthe wave conditions of the water area behind the seadikes by numerical models. Theaim of this paper is to provide references for the design of crest elevation and innerslope of seadikes. The main wok of this paper is as following:
     Considering the observational material is limited in some engineering projectarea, numerical models are used to hindcast the multi-dimensional long-term extremestatistical series dominated by wind, wave and water level, respectively. Thehindcasted results are verified by the data from observation stations adjacent theproject site. The models uses in this paper are RAMS for wind, POM, and SWAN, among which, noticing the possible stability issues in diffraction of SWAN, a steadywave model, which is robust in wave diffraction and do not include wind effect, isused in the wave field calculation in offshore.
     By introducing the location parameter, the maximum entropy distribution withfour parameters can fit the data more flexibly and describe the nonlinear waves withno apriority. The maximum entropy distribution model is used to estimate oceanenvironmental conditions, such as wind, wave and water level. Then a threedimensional nested logic distribution model is established, with maximum entropydistribution as the marginal distribution. This model can take account into the fact thatthe dominant factor and secondary factors may obey different marginal distributionsto some extent.
     For a multidimensional joint distribution model, there are numerouscombinations corresponding to some joint return period, hence a constraint conditionis needed. This paper uses overtopping rate as the constraint condition to calculate thejoint return value of environmental conditions and crest elevation with four methods.The results are analyzed to compare the effect of the three kinds of series and fourmethods on the crest elevation determination. Besides, the maximum singleovertopping volume is calculate to check the dangerous situation caused by peakwave overtopping volume, and an attempt is tried to determine the joint return valueof environmental conditions and crest elevation with maximum single overtoppingvolume as the constraint condition.
     For the hydrologic design parameter of crest and inner slope, a numerical wavetank is established to analyze overtopping flow on crest and inner slope. The modelutilizes CIP method for advection equation and THINC method for free surfacecapture, which are efficient in dealing with problems with large deformation of freesurface and multi free surfaces. Some published experiments are employed to verifythe numerical wave tank, including dam break problems, regular wave and solitarywave passing through submerged obstacles, and the overtopping flow on the crest andsecondary wave behind seadikes. This numerical wave tank is utilized to analyze theovertopping flow velocity field on the crest and inner slope. Two types of profiles areinvestigated from the aspect of velocity field and erosion analysis based on differenterosion index, and the comparisons of two profiles are given in the end.
     For the seadikes with the function of protecting water areas behind it, there is ademand to estimate wave conditions disturbed by wave overtopping. In this paper, the transmitted wave by overtopping is considered as a kind of transmitted energy, as atransmission factor added in the numerical wave propagation model based on energybalance. This model can take all factors into consideration including diffraction,reflection, refraction and overtopping transmission to estimate the wave height behindthe seadikes. Calculations are carried out to study the feasibility of constructing AiHua port in Qingdao with a comparison between two port layouts in design. Waveheights inside the port for different environmental design conditions are simulated,and two kinds of parameters are calculated to evaluate the wave conditions for the twolayouts to provide references for decision makers.
引文
[1]董胜,郑天立,张华昌.海岸防灾工程.青岛:中国海洋大学出版社,2011.
    [2]《风暴潮灾害防治及海堤工程技术研讨会论文集》编委会.风暴潮灾害防治及海堤工程技术研讨会论文集.北京:中国水利水电出版社,2008.
    [3]《海堤工程设计规范》(SL435-2008)编制组.《海堤工程设计规范》(SL435-2008)实施指南.北京:中国水利水电出版社,2009.
    [4]交通部第一航务工程勘察设计院. JTJ298-1998防波堤设计与施工规范.北京:人民交通出版社,1998.
    [5] Bitner-Gregersen M and Haver S. Joint environmental model for reliability calculations Proc.ISOPE’91Conference, Edinburg, UK,1991,1:246-253.
    [6] Coles S G and Tawn J A. Statistical methods for multivariate extremes: an application tostructural design. Appl. Statist.,1994,43(1):1-48.
    [7] Zachary S, Feld G, Ward G, et al. Multivariate extrapolation in the offshore environment.Applied Ocean Research,1998,20:273-295.
    [8] Yue S. The Gumbel Logistic model for representing a multivariate storm event. Advances inWater Resources,2001,24:179-185.
    [9]刘德辅,褚晓明,王树青.沿海和河口城市防灾设防标准系统分析.灾害学,2001,16(4):1-7.
    [10]董胜,余海静,郝小丽.基于浪潮组合的台风暴潮强度等级划分.中国海洋大学学报:自然科学版,2005,35(1):152-156.
    [11]马逢时,刘德辅.复合极值分布理论及应用.应用数学学报,1979,2(4):366-375.
    [12] Muir L R and El-Shaarawi A H. On the calculation of extreme wave heights: a review. OceanEngineering,1986,13(1):93-118.
    [13]董胜,李奉利,孙瑞文.风暴增水随机分析的过阈法及其统计计算模式.青岛海洋大学学报,2000,30(3):542-548.
    [14]董胜,于亚群,徐斌.日照地区风暴潮增水重现值计算.中国海洋大学学报,2005,35(4):655~660.
    [15] Wen Y K and Banon H. Development of environmental combination design criteria for fixedplatforms in the Gulf of Mexico. OTC6540, Proc. of23rd Offshore Technology Conference,Houston, Texas,1991:365-375.
    [16] Pullen T, Allsop N W H, et al. Wave overtopping of sea defences and related structuresassessment manual. EurOtop Overtopping Manual,2007. www.overtopping-manual.com.
    [17] Saville T. Large-scale model tests of wave run up and overtopping on shore Structures.Washington, D.C.: U.S. Army, Corps of Engineers, Beach Erosion Board,1958.
    [18] Weggle J R. Wave overtopping equation. Proceedings of15thConference on CoastalEngineering. ASCE,1976:2737-2755.
    [19] Paape A. Experimental data on the overtopping of seawalls by waves. Proceedings of7thConference on Coastal Engineering. ASCE,1960:674-681.
    [20] Iwagaki Y, Shima A, Moue M. Effect of wave height and seawater level on waveovertopping and wave run-up. Coastal Engineering in Japan. JSCE,1965:141-151.
    [21] Goda Y, Kishira Y, Kamiyama Y. Laboratory investigation on the overtopping rates ofseawalls by irregular waves. Ports and Harbour Research Institute,1975,14(4):3-44.
    [22] Owen M W. Design of seawalls allowing for overtopping. UK: HR Wallingford,1980, No.Ex924.
    [23] Owen M W. Overtopping of sea defences. Proceeding of Intl. Conference on HydraulicModelling of Civil Engineering. Coventry: BHRA Structures,1982.469-480.
    [24] Owen M W and Steele. Effectiveness of re-curved wave return walls. HR Wallingford, SR261UK.1991.
    [25] Van der Meer J W, Janssen, et al. Wave run-up and wave overtopping at dikes. Wave Forceson Inclined and Vertical Structures ASCE—Task Committee Reports,1995:1–27.
    [26] Franco L, de Gerloni M, Van der Meer J W et al. Wave overtopping on vertical andcomposite breakwaters. Proceedings of the24th International Coastal EngineeringConference, vol.1. ASCE,1994:1030-1045.
    [27] Besley P. Overtopping of seawalls: design and assessment manual. Environment Agency.Bristol, R&D Technical Report, No.W178.1999:37.
    [28] Pedersen J. Experimental study of wave forces and wave overtopping on breakwater crownwalls. Series paper,1996,12.
    [29] CLASH. Crest level assessment of coastal structures by full scale monitoring, neural networkprediction and Hazard analysis on permissible wave overtopping. Fifth FrameworkProgramme of the EU, Contract n. EVK3-CT-2001-00058. www.clash-eu.org.
    [30]卢无疆.直立堤堤前抛石对越浪的影响.海洋工程,1985,(1).
    [31]余广明,章家昌,周家宝.风浪在单坡堤上的越顶流量.水利水运工程学报,1991,(3).
    [32]王红,周家宝,章家昌.单坡堤上不规则波越浪量估算.水利水运科学研究,1996,(1).
    [33]虞克,余广明.斜坡堤越浪试验研究.水利水运科学研究,1992,(3).
    [34]李晓亮,俞聿修.斜向和多向不规则波在斜坡堤上的平均越浪量研究:[博士学位论文].大连:大连理工大学,2007.
    [35]范红霞.斜坡式海堤越浪量及越浪流实验研究:[硕士学位论文]南京:河海大学,2006.
    [36] Burcharth H F and Hughes H. Fundamentals of design—part1, part6—chapter5, part1.Coastal Engineering Manual,2006.
    [37] Oumeraci H, Schüttrumpf H, Moller J, et al. Loading of the inner slope of sea dikes by waveovertopping-results from large scale model tests. LWI Report No.858,2001.
    [38] Schüttrumpf H, Moller J, Oumeraci H. Overtopping flow parameters on the inner slope of seadikes. Conference on Coastal Engineering, Cardiff,2002.
    [39] Schüttrumpf H. Overtopping flow for sea dikes-Theoretical and Experimental Investigations:
    [PHD Thesis]. Delft: Delft University of Technology,2001.
    [40] M R A. and Van Gent. Wave interaction with permeable coastal structures. Dissertation.Delft Hydraulics Press.1995.
    [41] M R A and Van Gent. Low-exceedance wave overtopping events, Estimates of waveovertopping parameters at the crest and landward side of dikes. Delft: Delft Cluster ReportDC030202/H3803,2001.
    [42] Marcel R A and Van Gent. Wave run-up on dikes with shallow forshores. Port, Coastal andOcean Eng.,2001,127(5):254-262.
    [43] Moller J, Weissmann R, Schüttrumpf H, et al. Interaction of wave overtopping and clayproperties for sea dikes. Proceeding of28thInt. Conference on Coastal Engineering, Cardiff,2002.
    [44] Chinnarasri C, et al. Flow patterns and damage of dike overtopping. International Joural ofSediment Research.2003,18(4):301-309.
    [45] Van der Meer J W, Hardeman, et al. Flow depths and velocities at crest and inner slope of adike, in theory and with the wave overtopping simulator. Proceedings of the32stInternational Conference Coastal Engineering,2010:1-15.
    [46] Hughes S A and Nadal N C. Laboratory study of combined wave overtopping and stormsurge overflow of a levee. Coastal Engineering,2009,56(3):244-259.
    [47] Hughes S A, and Nadal N C. Flow parameters of combined wave overtopping and stormsurge overflow of a trapezoidal levee. Proceedings of Coasts, Marine Structures andBreakwaters:9th International Breakwaters Conference2009. London: Institution of CivilEngineers,2010,2:562-573.
    [48] Cornett A and Mansard E P D. Wave stresses on rubble mound armour.24th Int. Conferenceon Coastal Engineering,1994:986-1000.
    [49] Nadal N C and Hughes S A. Shear stress estimates for combined wave and surge overtoppingat earthen levees. Coastal and Hydraulics Engineering Technical Note ERDC/CHLCHETN-III-79, U.S.: Army Engineer Research and Development Center, Vicksburg, MS.2009.
    [50] Dean R G, Rosati J D, Walton T L, et al. Erosional equivalences of levees: Steady andintermittent wave overtopping. Ocean Engineering,2010,37:104-113.
    [51] Losada I J. Advances in modeling the effects of permeable and reflective structures on wavesand nearshore flows. In: Chris Lakhan, V.(Ed.). Advances in Coastal Modeling. ElsevierOceanography Series,2003,67.
    [52] Hibberd S and Peregrine D H. Surf and run-up on a beach: a uniform bore. J. Fluid Mech.,1979,95:323-345.
    [53] Kobayashi N and Wurjanto A. Wave transmission over submerged breakwaters. Journal ofWaterways. Port, Coastal, and Ocean Engineering,1989,115:662-680.
    [54] Kobayashi N and Wurjanto A. Wave overtopping on coastal structures. Journal of Waterways.Port, Coastal, and Ocean Engineering,1989,115:235-251.
    [55] Van Gent. The modelling of wave action on and in coastal structures. Coast Eng.,1994,22:311-39.
    [56] Titov V V and Synolakis C E. Modeling of breaking and non-breaking long-wave evolutionand run-up using VTCS-2. J Waterway. Port, Coast, Ocean Eng.,1995,122:308-16.
    [57] Watson G, Peregrine D H, Toro E. Numerical solution of the shallow water equations on abeach using the weighted average flux method. In: Hirsch, C.(Ed.). Computational FluidDynamics, Elsevier,1992,1.
    [58] Mingham C G and Causon D M. High-resolution finite-volume method for shallow waterflows. Journal of Hydraulic Engineering,1998,124(6):605-614.
    [59] Dodd N. Numerical model of wave run-up, overtopping and regeneration. J. Waterway PortCoastal Ocean Eng,1998,124:73-81.
    [60] Titov V V and Synolakis C E. Numerical modeling of tidal wave run-up. ASCE J. Waterw.Port Coast. Ocean Eng.,1998,124(4):157–171.
    [61] Liu P L-F, Cho Y S, Briggs M J, et al. Run-up of solitary waves on circular island. J. FluidMech.,1995,302:259–285.
    [62] Takahashi T, Takahashi T, Shuto N, et al. Source models for the1993Hokkaido-Nansei-Okiearthquake tsunami. Pure Appl. Geophys.,1995,144(3/4):747–768.
    [63] zkan-Haller H T, et al. A Fourier-Chebyshev collocation method for the shallow waterequations including shore-line run-up. Appl. Ocean Res.,1997,19:21–34.
    [64] Hu K, Mingham C G, et al. Numerical simulation of wave overtopping of coastal structuresusing the non-linear shallow water equations. Coastal Engineering,2000,41:433–465.
    [65] Brocchini M, Bernetti R, et al. An efficient solver for near shore flows based on the WAFmethod. Coast. Eng,2001,43:105–129.
    [66] Schüttrumpf H and Oumeraci H. Layer thicknesses and velocities of wave overtopping fowat sea dikes. Coast. Eng.,2005,52:473-495.
    [67] Stansby P K and Feng T. Surf zone wave overtopping a trapezoidal structure:1-D modellingand PIV comparison. Coastal Engineering,2004,51:483-500.
    [68] Shiach J B, Mingham, et al. The applicability of the shallow water equations for modellingviolent wave overtopping. Coast. Eng,2004,51:1-15.
    [69] Hubbard M E and Dodd N. A2D numerical model of wave run-up and overtopping. CoastalEngineering,2002,47:1-26.
    [70] Amakata M, Yuhi M, Ishida H. A numerical study of wave propagation and run-up in waterchannels.9th International Conference on Hydrodynamics October11-15,2010Shanghai,China. Journal of Hydrodynamics (supplement),2010,22(5):197-202.
    [71] Qun Z, Armfield S, Tanimoto K. Numerical simulation of breaking waves by a multi-scaleturbulence model. Coastal Engineering,2004,51:53-80.
    [72] Miyata H. Finite-difference simulation of breaking waves. Journal of Computational Physics65,1986:179-214.
    [73] Petit H A H, Van Gent M R A, Van den Boscj P. Numerical simulation and validation ofplunging breakers using a2D Navier-Stokes model. Proc.24thInt. Conf. on Coastal Eng.ASCE, Kobe: Japan,1994:511-524.
    [74] Bakhtyar R and Yeganeh-Bakhtiary A, Ghaheri A. Application of neuro-fuzzy approach inprediction of runup in swash zone. Appl. Ocean Res.,2008,30:17-27.
    [75] Lemos C M. A simple numerical technique for turbulent flows with free surfaces.International. Journal of Numerical Methods in Fluids,1992,15:127-146.
    [76] Troch P and de Rouck J. Development of two-dimensional numerical wave flume for waveinteraction with rubble mound breakwaters.26th Int. Coastal Engineering Conference,1998:1638-1649.
    [77] Troch P, Li T, De Rouke J, et al. Wave interaction with a sea dike using a VOF fnite-volume method. In: Chung J, Prevosto M, Mizutani N, et al (Eds.). Proceedingsof the13th International Offshore and Polar Engineering Conference. International Societyof Offshore and Polar Engineering,2003.325-332.
    [78] Lin P Z, Liu P L-F, et al. A numerical study of breaking waves in the surf zone. Journal ofFluid Mechanics,1998,359:239-264.
    [79] Lin P Z, Liu P L-F, et al. Turbulence transport, vorticity dynamics, and solute mixing underplunging breaking waves in surf zone. Journal of Geophysical Research,1998,103:15677-15694.
    [80] Kawasaki K. Numerical simulation of breaking and post-breaking wave deformation processaround a submerged breakwater. Coastal Engineering Journal,1999,41:201-223.
    [81] Bradford S F. Numerical simulation of surf zone dynamics. Journal of Waterway. Port,Coastal and Ocean Engineering,2000,126(1):1-13.
    [82] Christensen E D, Jensen J H, Mayer S. Sediment transport under breaking waves. Proc.27thInt. Conf. on Coastal Eng. Sydney, Australia,2000:2467-2480.
    [83] Liu P L F, Lin, et al. Numerical modeling of wave interaction with porous structures. Journalof Waterways. Port, Coastal and Ocean Engineering, ASCE,1999,125(6):322-330.
    [84] Garcia N, Lara J L, Losada I J.2-D Numerical analysis of near field flow at low-crestedpermeable breakwaters. Coastal Engineering,2004,51:991-1020.
    [85] Losada I J. Advances in modeling the effects of permeable and reflective structures on wavesand nearshore flows. Advances in Coastal Modeling, Elsevier Oceanography Series,2003,67.
    [86] Losada I J, Lara J L, Damgaard E, et al. Modelling of velocity and turbulence fields aroundand within low-crested rubble-mound break-waters. Coastal Engineering,2005,52:887-913.
    [87] Lara J L, Garcia N, Losada I J. RANS modelling applied to random wave interaction withsubmerged permeable structures. Coastal Engineering,2006a,53:395-417.
    [88] Lara J L, Losada I J, Liu P L-F. Breaking waves over a mild gravel slope: experimental andnumerical analysis. Journal of Geophysical Research,2006.
    [89] Inigo J, Losada, Javier L, et al. Gonzalez-Ondina. Numerical analysis of wave overtopping ofrubble mound breakwaters. Coastal Engineering,2008,55:47-62.
    [90] Qian L, Causon D, Ingram D, et al. A Cartesian cut cell two-fuid solver for hydraulic fowproblems. Journal of Hydraulic Engineering,2003,129(9):688-696.
    [91] Qian L, Causon D, Mingham C, et al. A free-surface capturing method for two fuid fowswith moving bodies. Proceedings of the Royal Society: A,2006,462(2065):21-42.
    [92] Ingrama D M, Gao F, Causon D M, et al. Numerical investigations of wave overtopping atcoastal structures. Coastal Engineering,2009,56:190-202.
    [93] Soliman A S M. Numerical investigation of irregular wave overtopping and overflow:[Ph.D.thesis]. Nottingham, UK: School of Civil Engineering, University of Nottingham,2003.
    [94] Soliman A S M. and Reeve D. Numerical study of small negative freeboard waveovertopping and overflow of sloping sea wall. Proc29th Int. Conf. on Coastal Eng., Lisbon,Portugal,2004:643-655.
    [95] Pierre S. Large eddy simulation for incompressible flows. Springer,2001.
    [96] Zhao Q and Tanimoto K. Numerical simulation of breaking waves by large eddy simulationand VOF method. Proc.26th Int. Conf. on Coastal Eng., Copenhagen, Denmark,1998:892-905.
    [97] Wijayaratna N and Okayasu A. DNS of wave transformation, breaking and run-up on slopingbeds. Proc.4th Int. Conf. on Hydrodynamics, Yokohama, Japan,2000,2:527-532.
    [98] Christensen E D and Deigaard R. Large eddy simulation of breaking waves. CoastalEngineering,2001,42:53-86.
    [99]是勋刚,湍流,天津:天津大学出版社,1994.
    [100]苏铭德.直方管内充分发展的湍流的大涡模拟—第一部分.空气动力学学报,1995,13(1):1-8.
    [101]苏铭德.直方管内充分发展的湍流的大涡模拟—第二部分.空气动力学学报,1995,13(1):9-18.
    [102]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟.力学学报,1999,31(1):100-105.
    [103]童兵,祝兵,周本宽.方柱绕流的数值模拟.力学季刊,2002,23(1):77-81.
    [104] Watanabe Y and Saeki H. Three-dimensional large eddy simulation of breaking waves,Coast. Eng. J.,1999,41:281-301
    [105] Li T Q, Troch P, De Rouck J. Wave overtopping over a sea dike. Jounal ofComputational Physics,2004,198:686-726.
    [106] Chen H C, and Lee S K. Interactive BANS/Laplace method for non-linear free surfaceflows. Journal of Engineering Mechanics,1996,122(2):153-162.
    [107] Guignard S, Grilli S, Marcer R, et al. Computation of shoaling and breaking waves innearshore areas by the coupling of BEM and VOF methods. Proceedings of the NinthInternational Offshore and Polar Engineering Conference, Brest, France,1999.
    [108] Sitanggang K I and Lynett P J. Multi-scale simulation with a hybrid Boussinesq-RANShydrodynamic model. International journal for numerical methods in fluids. Int. J. Numer.Meth. Fluids,2009.
    [109]刘儒勋,王志峰.数值模拟方法和运动界面追踪.中国科学技术大学出版社,合肥,2001:16.
    [110] Farm J, Martinelli L, Jameson A. Fast multigrid method for solving incompressiblehydrodynamic problems with free surfaces. AIAA Journal,1994,32:1175-1182.
    [111] Harlow F H and Welch J F. Numerical calculations of time dependent viscousincompressible flow of fluid with free surface. Phys. Fluid,1965,8:182-189.
    [112] Amsdon A A and Harlow F H. The SMAC method: a numerical technique forcalculating incompressible fluid flows. Los Almos Scientific Laboratory, Report LA-4370,1971.
    [113] Osher S and Sethian J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,1988,79:12-49.
    [114] Sussman M, Smereka P, Osher S. A level set approach for computing solutions toincompressible two-phase fow. Journal of Computational Physics,1994,114:146-159.
    [115] Park J, Kim M, Miyata H. Full non-linear free-surface simulations by a3D viscousnumerical wave tank. International Journal for Numerical Methods in Fluids,1999,29(6):658-703.
    [116] Unverdi S and Tryggvason G. A front-tracking method for viscous, incompressiblemultifuid fow. Journal of Computational Physics,1992,100:25-37.
    [117] Hirt C W and Nichols B D. Volume of fuid (VOF) method for the dynamics of freeboundaries. Journal of Computational Physics,1981,39:201-225.
    [118] Park J C and Kim M H. Fully nonlinear wave-current-body interactions by a3D viscousnumerical wave tank. Proceedings of the Eighth International Offshore and Polar EngineeringConference, Montreal, Canada,1998.
    [119] Kim C H, Clement A H and Tanizawa K. Recent Research and Development ofNumerical Wave Tanks-A Review. International Journal of Offshore and Polar Engineering,1999,9(4):241-256.
    [120] Kelecy F and Pletcher R. The development of a free surface capturing approach formultidimensional free surface fows in closed containers. Journal of ComputationalPhysics,1997,138:939-980.
    [121] Garcia N, Lara J, Losada I.2-D numerical analysis of near-feld fow at low-crestedpermeable breakwaters. Coastal Engineering,2004,51:991–1020.
    [122]王永学. VOF方法数模直墙式建筑物前的波浪破碎过程.自然科学进展—国家重点实验室通讯,1993,3(6):553-559.
    [123]王永学.无反射造波数值波浪水槽.水动力学研究与进展,1994,9(2):205-214.
    [124]王永学,任冰.波浪冲击过程的湍流数值模拟.水动力学研究与进展,1999, A14(4):409-417.
    [125]万德成,缪国平.数值模拟波浪翻越直立方柱.水动力学研究与进展,1998, A13(3):363-370.
    [126] Iwata K, Kawasaki K and Kim D S. Breaking limit, breaking and post-breaking wavedeformation duo to submerged structures. Coastal Engineering,1996,181:2338-2351.
    [127] Kawasaki K. Numerical simulation of breaking and post-breaking wave deformationprocess around a submerged breakwater, Coastal Engineering Journal,1999,41(3&4):201-223.
    [128] Osher S and Sethian J. Fronts propagating with curvature dependent speed: algorithmsbased on Hamilton-Jacobi formulations, J. Comp. Phys.,1988,79:12-49.
    [129] Osher S and Fedkiw R. Level Set Methods and Dynamic implicit Surfaces. New York:Springer_Verlag New York, Inc.,2003.
    [130] Sethian J A. Level Set Methods and Fast Marching Methods. United Kingdom:Cambridge University Press,1999.
    [131] Enright D, Fedkiw R, Ferziger J, et al. A hybrid particle level set method for improvedinterface capturing. J. Comp. Phys.,2002,183(1):83-116.
    [132] Enright D, Nguyen D, Gibou F, et al. Using the papticle level set method and a secondorder accurate pressure boundary condition for free surface flows, Proceedings of FEDSM'0320032th ASME JSME Joint Fluids Engineering Conference July6-11,2003, Honolulu,Hawaii USA.
    [133] Gerrits J. Dynamics of fluid-filled spacecraft:[Ph. D. thesis]. The Netherland:University of Groningen,2001.
    [134] Olsson E and Kreiss G. A conservative level set method for two phase flow. J. Comput.Phys.,2005,210:225-246.
    [135] Elin O, Gunilla K, Sara Z. A conservative level set method for two phase flow II.Journal of Computational Physics,2007,225(1):785-807.
    [136] Jianming Y and Frederick S. Sharp interface immersed-boundary/level-set method forwave–body interactions. Journal of Computational Physics,2009,228(17):6590-6616.
    [137] Zhaoyuan W, Jianming Y, Bonguk K, et al. A coupled level set and volume-of-fluidmethod for sharp interface simulation of plunging breaking waves. International Journal ofMultiphase Flow,2009,35(3):227-246.
    [138] Takewaki H, Nishiguchi A, Yabe T. The cubic-interpolated pseudo-particle (CIP)method for solving hyperbolic-type equations. J. Comput. Phys.,1985,61:261.
    [139] Takewaki H and Yabe T. Cubic-interpolated pseudo-particle (CIP) method applicationto nonlinear or multi-dimensional problems. J. Comput. Phys.,1987,70:355.
    [140] Yabe T and Aoki T. A universal solver for hyperbolic-equations by cubic-polynomialinterpolation. I. One-dimensional solver. Comput. Phys. Commun.,1991,66:219.
    [141] Yabe T, Ishikawa T, Wang P Y, et al. A universal solver for hyperbolic-equations bycubic-polynomial interpolation. II. Two-and three-dimensional solvers. Comput. Phys.Commun.,1991,66:233.
    [142] Yabe T and Takeie E. A new higher-order Godunov method for general hyperbolicequations. J. Phys. Soc. Japan,1988,57:2598.
    [143] Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphaseanalysis. Journal of Computational Physics,2001,169:556-593.
    [144] Hu C H, Kashiwagi M A. CIP-based method for numerical simulation of violentfree-surface flows. J. Mar. Sci. Tecnol.,2004,9(4):143-157.
    [145] Hu C H, Faltinsen, et al. Development and validation of CIP based cartesian gridmehtod for nonlinear wave-body interactions.7th Numerical Towing Tank Symposium,Hamburg, Germany.2004.
    [146] Hu C H, Faltinsen, et al.3-D Numerical simulation of freely moving floating body byCIP method. Proc. ISOPE, Seoul, Korea.2005.
    [147] Hu C H, Kashiwagi, et al. Numerical simulation of violent sloshing by CIP method.Proc.19th International Workshop on Water Waves and Floating Bodies, Cortona, Italy,2004:67-70.
    [148] Zhu X Y, Faltinsen, et al. Water entry and exit of a circular cylinder. Proceedings of24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE),Halkidiki, Greece.(Accepted by Journal of OMAE)2005.
    [149] Faltinsen O M, Rognebakke, et al. Resonant three-dimensional nonlinear sloshing in asquare base basin, II: Effect of higher modes. J. Fluid Mech.,2005,523:199-218.
    [150] Monaghan J J. Why particle methods work, SIAM Journal on Scientific and StatisticalComputing,1982,3:422-433.
    [151] Monaghan J J. Particle methods for hydrodynamics. Computer Physics Report,1985,3:71-124.
    [152] Monaghan J J. Simulating free surface flows with SPH. Journal of ComputationalPhysics,1994,110:399-406.
    [153] Harlow F L. The particle-in-cell computing method for numerical solution of problemsin fluid dynamics. Proceedings of Symposia in Applied Mathematics,1963.
    [154] Harlow F H. The particle-in-cell computing method for fluid dynamics. In Methods inComputational Physics, Fundamental Methods in Hydrodynamics, vol.3, Academic Press,New York,1964.
    [155] Bonet J and lok T S L. Variational and momentum preservation aspects of SmoothParticle Hydrodynamics formulations. Computer Methods Applying, Mech. Engrg.,1999,180:97-115.
    [156] Monaghan J J and Kos A. Solitary waves on a Cretan beach. Journal of Waterway, Port,Coastal, and Ocean Engineering,1999,125(3):145-154.
    [157] Monaghan J J and Kos A. Scott Russell's wave generator. Physical of Fluids,2000,12(3):622-630.
    [158] Shao S D and Lo E Y M. Incompressible SPH method for simulating Newtonian andnon-Newtonian flows with a free surface. Advances in Water Resources,2003,26:787-800.
    [159] Lo E Y M and Shao S D. Simulation of near-shore solitary wave mechanics by anincompressible SPH method. Applied Ocean Research,2002,24:275-286.
    [160] Khayyer A, Gotoh H, Shao S D. Corrected Incompressible SPH method for accuratewater-surface tracking in breaking waves. Coastal Engineering,2007.
    [161] Colagrossi A and landrini M. Numerical simulation of interfracial flows by smoothedparticle hydrodynamics. Journal of Computational Physics,2003,191:448-475.
    [162] Violeau D, Piccon S, Chabard J P. Two attempts of turbulence modeling in SmoothedParticle Hydrodynamics. Advance in Fluid Modelling and Turbulence Measurements, WorldScientific,2002:339-346.
    [163] Gesteira M G, Crequeiro D, Crespo C A, et al. Green water overtopping analyzed with aSPH model. Ocean Engineering,2005,32:223-238.
    [164] Rodriguez-paz M and Bonet J. A corrected smooth particle hydrodynamics formulationof the Shallow-water equations. Computers and Structure,2005,83:1396-1410.
    [165] Dalrymple R A and Rogers B D. Numerical modeling of water wave with SPHmethod.Coastal Engineering,2006,53(2-3):141-147
    [166] Rogers B D, Leduc J, Marongiu J C, et al. Comparison and evaluation of multi-phaseand surface tension models. In Proc.4th SPHERIC Int. Workshop, Nantes,2009:30-37.
    [167] Crespo A J C, Marongiu J C, Parkinson E, et al. High performance of SPH codes: Bestapproaches for efficient parallelization on GPU computing. In Proc.4th SPHERIC Int.Workshop, Nantes,2009:69-76.
    [168] Herault A, Vicari A, Del Negro C, et al. Modeling water waves in the surf zone withGPU-SPHysics. In Proc.4th SPHERIC Int. Workshop, Nantes,2009:77-84.
    [169] Dalrymple R A, Herault A, Levee. Breaching with GPU-SPHysics code. In Proc.4thSPHERIC Int. Workshop, Nantes,2009:352-355.
    [170] Takewaki H, Nishiguchi A, Yabe T. The cubic-interpolated puseudo-particle (CIP)method for hyperboric-type equations. Journal of Computational Physics,1985,61:261-268.
    [171] Yabe T and Wang P Y. Unifed numerical procedure for compressible andincompressible fuid. Journal of the Physical Society of Japan,1991,60:2105-2108.
    [172] Yabe T, Feng X and Utsumi T. The constrained interpolation profile method formultiphase analysis. Journal of Computational Physics,2001,169:556-593.
    [1] Cox R, Bauer B L, Smith T. A mesoscale model inter-comparison. Bulletin of the AmericanMeterological Society,1998,79:265-283.
    [2] Mesinger F and Arakawa A. Numerical methods used in atmospheric models, volume1.Global Atmospheric Research Program World Meteorological Organization, Geneva(Switzerland),1976.
    [3] Tripoli G J and Cotton W R. The Colorado State University three-dimensionalcloud/mesoscale model. Part I: General theoretical framework and sensitivity experiments. J.de Rech. Atmos.,1982,16:185-220.
    [4] Klemp J B and Durran D R. An upper boundary condition permitting internal gravity waveradiation in numerical meso scale models. Mon. Wea. Rev.,1983,111:430-444.
    [5] http://aos.princeton.edu/WWWPUBLIC/htdocs.pom/
    [6] Smagorinsky J. General Circulation experiments with the primitive equations I. The basicexperiment. Monthly Weather Review,1963,91(3):99-164.
    [7] Mellor G L and Yamada T. A hierarchy of turbulence closure models for planetary boundarylayers. J. Atmos. Sci.,1974,31:1791-1806.
    [8] Mellor G L and Yamada T. Development of a turbulence closure model for geophysical fluidproblems. Rev. Geophys. Space Phys.,1982,20:851-875.
    [9] Galperin B, Kantha L H, Hassid S, et al. A quasi-equilibrium turbulent energy model forgeophysical flows. J. Atmos. Sci.,1988,45:55-62
    [10] Large W G and Pond S. Open ocean momentum flux measurements in moderate to strongwinds. J. Phys. Oceanogr.,1981,11:324–336.
    [11]冯士筰,孙文心.物理海洋数值计算.河南科学技术出版社,1992.
    [12] SWAN user manual. http://www.fluidmechanics.tudelft.nl/swan/index.htm.
    [13] Hasselmann K. On the spectral dissipation of ocean waves due to whitecapping. Bound.Layer Meteor.,1974,6(1-2):107-127.
    [14] Hasselmann S and Hasselmann K. Computations and parameterizations of the nonlinearenergy transfer in a gravity-wave spectrum, part1: A new method for efficient computationsof the exact nonlinear transfer integral. J. Phys. Oceangr.,1985,15:1369-1377.
    [15] Hasselmann S, Hasselmann K, Allender J H, Barnett T P. Computations andparameterizations of the nonlinear energy transfer in a gravity wave spectrum, part2:Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys.Oceanogr.,1985,15:1378-1391.
    [16] Tolman H L. Effects of numerics on the physics in a third-generation wind-wave model. J.Phys. Oceanogr.,1992,22:1095-1111.
    [17] Eldeberky Y. Nonlinear transformation of wave spectra in the nearshore zone:[Ph.D. Thesis].
    [18] SBThyoemo iNpj.Net O,h erlands: Department of Civil Engineering, Delft University of Technology,1996.cHeaonlt hWuiajvseen M Le Has,u Dreomoernn tN a,n edt Aaln.a Dlyisfirsa, cWtioAnV iEn Sa’ s9p7e, cAtrSaCl wE,a v1e99m7o: d2e3l4.-P2r5o5c..3rd Int.
    [19] Enet F, Nahon A, ven Vledder G, et al. Evaluation of diffraction behind a semi-infinitebreakwater in the SWAN wave model.9th International Workshop on Wave Hindcasting andForecasting, Victoria Canada,2006.
    [20] Mase H. Multi-directional random wave transformation model based on energy balanceequation. Coast. Eng.,2001,43(4):317-337.
    [21] Kirby J T and Dalrymple R A. An approximate model for nonlinear dispersion inmonochromatic wave propagation models. Coast. Eng.,1986,9:545-561.
    [22]中华人民共和国交通部. JTJ213-98.中华人民共和国水利行业标准—海港水文规范.北京:人民交通出版社.
    [23] Mase H, Oki K, Hedges T S, et al. Extended energy-balanced-equation wave model formultidirectional random wave transformation. Ocean Eng.,2005,32:961-985.
    [1]刘德辅,施建刚,王铮.海洋环境条件联合设计标准.海洋学报.1994,16(2):116-123.
    [2]中华人民共和国水利行业标准—海堤工程设计规范(SL435-2008).中华人民共和国水利部.
    [3] Anatole K. Fifty years of entropy in dynamics:1958-2007. Journal of Modern Dynamics.2007,1(4):545-596.
    [4] Shannon C E. A mathematical theory of communication. Bell System Tech. J.,1948,27:379-423,623-656.
    [5] Jaynes E T. Information theory and statistical mechanics. Physical Review,1957,106(4):620-630.
    [6] Good I J. Maximum entropy for hypothesis formulation, especially for multidimensionalcontingency tables. The Annals of Mathematical Statistics,1963,34:911-934.
    [7] Berrill J B and Davis R O. Maximum entropy and the magnitude distribution. Bulletin of theSeismological Society of America,1980,70(5):1823-1831.
    [8]吴克俭,孙孚.最大熵原理与海浪波高统计分析.海洋学报,1996,18(3):21-26.
    [9]周良明,郭佩芳.最大熵原理应用于海浪波高分布的研究.海洋科学进展,2005,23(3):414-421.
    [10] Xu D L, Zhang J, Zheng G Z. Maximum entropy estimation of n-year extreme wave height.China Ocean Engineering,2004,18(2):307-314
    [11]高磊.基于最大熵原理的非瑞利海浪波高的统计分布.台湾海峡,2007,26(3):314-319
    [12] Yu D Y, Li J, Liu H X. Application of maximum entropy distribution to the statisticalproperties of wave groups. China Ocean Engineering,2007,3:461-470.
    [13] Dong S, Liu W, Zhang L Z. Long-term statistical analysis of typhoon wave heights withPoisson-maximum entropy distribution. OMAE2009, Hawaii,2009.
    [14] Zhou L M, Guo P F, Wang Q, et a1. Application of maximum entropy principle to studyingthe distribution of wave heights in a random wave field. China Ocean Engineering,2004,18(1):69-78.
    [15]石原健二.论气象极值的重现期.陆家机译.海洋译丛.北京:海洋出版社,1984.
    [16]刘桂海等.我国近海波浪要素的长期分布.港口工程,1989(6):11-15.
    [17] Ferreira J A, Guedes Soares C. An application of the peaks over threshold method to predictextremes of significant wave height. Jounal of Offshore Mechanics and Arctic Engineering,1998,120:165-176.
    [18] McFadden D. Modelling the choice of residential location. In Spatial Interaction Theory andPlanning Models. North-Holland, Amsterdam,1978:75-96.
    [19] Tawn J A. Modelling multivariate extreme value distributions. Biometrika,1990,77:245-253.
    [20] Coles S G and Tawn J A. Modelling extreme multivariate events. J. Roy. Statist. Soc. B,1991,53:377-392.
    [21] Coles S G and Tawn J A. Statistical methods for extreme values. A course Presented at the1998RSS conference. Strathdyde, September,1998.
    [22] Shi D J. Moment estimation of multivariate extreme value distribution. Appl. Math.-JCU,1995,10B:61-68.
    [23] Shi D J. Multivariate extreme value distribution and its Fisher information matrix. AetaMathematical Application.1995,11(4):421-428.
    [24] Shi D J. Fisher information for a multivariate extreme value distribution. Biometrika,1995,82(3):644-649.
    [25]史道济,阮明恕,王毓娥.多元极值分布随机向量的抽样方法.应用概率统计.1997.2,13(l):75-80.
    [26] Shi D J. Moment estimation for multivariate value distribution in a nested Logistic model.Ann. Inst. Statist. Math,1999,51(2):253-264.
    [1]日本港湾协会编,南京水利科所研究院等译.港口建筑物设计标准(第一分册).北京:人民交通出版社,1979.
    [2] Simm J. D. Beach Management Manual. CIRIA Report153,1996.
    [3] Franco, L., de Gerloni, M., van der Meer,J W. Wave overtopping at vertical and compositebreakwaters. Proc. Coastal Engineering Conference, Kobe, Japan,1994.
    [4] Herber, D.M. The overtopping of seawalls, a comparison between prototype and physicalmodel data. HR-Wallingford Report TR22,1996.
    [5] Smith G M Seijffert J W Van der Meer J W. Erosion and overtopping of a grass dike largescale model test. Proc. of24th ICCE. Kobe, Reston,1994,2639-2652.
    [6] Besley, P. Overtopping of seawalls: design and assessment manual Environment Agency.Bristol, R&D Technical Report No.W178,1999,37.
    [7] Allsop, W. Report on hazard analysis. CLASH WP6Report, HR Wallingford, UnitedKingdom,2005.
    [8] Allsop N W H, Franco L, Bellotti G, et al. Hazards to people and property from waveovertopping at coastal structures. Proc. Conf. Coastlines, Structures and Breakwaters,Thomas Telford, London,.2005:153-165.
    [9] Allsop N W H, Bruce T, Pearson J, et al. Wave overtopping at vertical and steep seawalls.Proc. ICE Maritime Engineering Journal, Thomas Telford, London,2005:103-114.
    [10] Allsop N W H, Ulrick C, Alderson J S. Wave effects on a building in the sea: the TurnerContemporary gallery. Proc. ICE Conf. on Coastlines, Structures and Breakwaters, London,2005:535-545.
    [11] Allsop N W H, Alderson J S, Chapman A C. Defending buildings and people against waveovertopping. Proc. Conf. Coastal Structures,2007, Venice.
    [12] Allsop N W H, Bruce T, Pullen T A, et al. Direct hazards from wave overtopping-theforgotten aspect of coastal flood risk assessment?.43rd Defra Flood and CoastalManagement Conference, Manchester University,2008.
    [13]《海堤工程设计规范》(SL435-2008)编制组.《海堤工程设计规范》(SL435-2008).北京:中国水利水电出版社,2008.
    [14] Environment Agency. R&D Technical Report No.W178. Overtopping of seawalls: designand assessment manual. UK: HR Wallingford Ltd,1999.
    [15] M.W. Owen. Design of seawalls allowing for wave overtopping. HR Wallingford Report, No.EX924,1980.
    [16] Technical Advisory Committee on Flood Defence. Technical Report: Wave Run-up andWave Overtopping at Dikes.(herein referred to as the “TAW Manual”), Delft, TheNetherland: Technical Advisory Committee on Flood Defence,2002.
    [17] EA-Environmental Agency. EurOtop. Wave overtopping of sea defences and relatedstructures: assessment manual. Herausgeber: Kuratorium für Forschung imKüsteningenieurwesen,2007.
    [18] CECW-EW. EM1110-2-1100. Coastal engineering manual-part Ⅳ-5. USA: U.S. ArmyCorps of Engineers',2008.
    [19] Goda Y. Random seas and design in maritime structures. Tokyo: University of Tokyo Press,1985.
    [20] Goda Y. Derivation of unifed wave overtopping formulas for seawalls with smooth,impermeable surfaces based on selected CLASH datasets. Coastal Engineering,2009,56:385–399.
    [21]周益人,范红霞,杨正己.斜坡式海堤越浪量试验研究.风暴潮灾害防治及海堤工程技术研讨会论文集.北京:中国水利水电出版社,2008.
    [22]浙江水利厅.浙江省海塘工程技术规定.杭州:浙江水利厅,1999.
    [23] U. S. Army Coastal Engineering Research Center. Shore Protection Manual: Ⅰ-Ⅱ.Washington, D.C: U.S. Government Printing Office,1984.
    [24] Media J R. Wind effects on runup and breakwater crest design. Coastal Engineering,1998,1068-1081.
    [25] Mase H, Sakamoto M, Sakai T. Neural network for stability analysis of rubble-moundbreakwaters. J. Waterw., Port, Coast. Ocean Eng.,1995:294-299.
    [26] Van Gent M R A, Van den Boogaard H F P. Neural network modelling of forces on verticalstructures. Proc. ICCE.1998,2:2096-2109.
    [27] Medina J R. Neural network modelling of runup and overtopping. Proc. Coastal Structures,Santander,1999,1:421-429.
    [28] Medina J R, González-Escrivá J A, Garrido J, et al. Overtopping analysis using neuralnetworks. World Scientific, Proc. ICCE,2002:2165-2177.
    [29] Medina J R, Garrido J, Gómez-Martín E, et al.. Armour damage analysis using neuralnetworks. Proc. Coastal Structures, Portland,2003:236-248.
    [30] Panizzo A, Briganti R, van der Meer J W, Franco L. Analysis of wave transmission behindlow-crested structures using neural networks. Proc. Coastal Structures, Portland,2003:555-566.
    [31] Zanuttigh B and Martinelli L. Transmission of wave energy at permeable low crestedstructures. Coastal Engineering,2008,55:1135-1147.
    [32] Allsop W, Pearson L T B, Franco, Eco B J B. Safety under wave overtopping: Howovertopping processes and hazards are viewed by the public. Proc29th Int Conf on CoastalEng., Lisbon,2004:4263-4275.
    [33] Owen M W. Overtopping of sea defences. International Conference on the HydraulicModelling of Civil Engineering Structures, Coventry,1982.
    [34]周伟,刘德辅.范天会概率分析方法在防波堤高程计算中的应用.中国海洋大学学报,2006,36(S up.Ⅱ):183~188.
    [35]卢永金,何友声,刘桦.海堤波浪爬高计算分析与越浪设计准则探讨.水利水电技术,2007,4:30-34.
    [36]李晓亮.斜向和多向不规则波在斜坡堤上越浪量的研究:[博士学位论文].大连:大连理工大学.2008.
    [37]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2002.
    [1] Takashi Y, Feng X, Takayuki U. The constrained interpolation profle method for multiphaseanalysis. Journal of Computational Physics,2001,169:556–593.
    [2] Hu C.-H and Kashiwagi M. A CIP-based method for numerical simulation of violentfree-surface flows. J. Mar. Sci. Tecnol.2004,9(4):143-157.
    [3] Hu C.-H, Faltinsen O M, Kasawagi M.3-D Numerical simulation of freely moving floatingbody by CIP method. ISOPE, Seoul, Korea,2005:19-24.
    [4] Kawasaki J. Numerical model of2-D multiphase flow with solid-liquid-gas interaction.International Journal of Offshore and Polar Engineering,2005,15(3):198-203.
    [5] Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolictangent function. International Journal for Numerical Methods in Fluids,2005,48:1023–1040.
    [6] Ursell F, Dean R G, Yu Y S. Forced small-amplitude water waves: A comparison of theoryand experiment. Journal of Fluid Mechanics,1960,7:3-52.
    [7] Dean R and Dalrymple R A. Water Wave Mechanics for Engineers and Scientists. WorldScientific, Singapore,1992.
    [8] Sugihara M and Isshiki H. Sommerfeld’s radiation condition associated with water wave andits application for numerical calculation. J. Kansai Soc. Nav. Arch. Japan,1980,156:67-74.
    [9] Orianski I. A simple boundary condition for unbounded hyperbolic flows. J. of Compt. Phys.,1976,21:251-269.
    [10] Hinatsu M. Numerical simulation of unsteady viscous nonlinear waves using moving gridsystem fitted on a free surface, J. Kansai Soc. Naval Arch. Japan,1992,217:1-11.
    [11] Romate J E. Absorbing boundary conditions for free surface waves. Computational Physics,1992,99:135-145.
    [12] Sarpkaya T and Isaacson M. Mechanics of wave forces on offshore structure. Van NostrandReinhold,1981,234-280.
    [13] Lin P. Numerical modeling of breaking waves. Cornell University. U.S.A.1998.
    [14] Hu C H and Kashiwagi M. A CIP-based method for numerical simulations of violent freesurface fows. Journal of Marine Science and Technology,2004,9:143–157.
    [1] Yang F L, Zhang X F, Tan G M. One-and two-dimentional coupled hydrodynamics model fordam break flow. Journal of Hydrodynamics, Ser. B,2007,19(6):769-775.
    [2] Hu S Y and Tan W Y. Numerical modelling of boresdue to dam-break. Journal ofHydrodynamics, Ser. B,1991,3(2):5-12.
    [3] Zhou Z Q, Kat J O D, Buchner B. A nonlinear3-D approach to simulate green waterdynamics on deck [J]. The7th International Conference Numerical Ship Hydrodynamics,Nantes, France,1999.
    [4] Abdolmaleki K, Thiagranjan K P, Morris-Thomas M T. Simulation of The Dam BreakProblem and Impact Flows Using a Navier-Stokes Solver. The15th Australasian FluidMechanics Conference, Sydney, Australia,2004.
    [5] Colagrossi A and Landrini M. Numerical simulation of interfacial fows by smoothed particlehydrodynamics. Journal of Computational Physics,2003,191:448–475.
    [6] Park I R, Kim K S, Kim J, et al. A volume-of-fuid method for incompressible free surfacefows. International Journal for Numerical Methods in Fluids,2009;61:1331–1362.
    [7] Stoker J J. Water waves. Interscience Publishers Inc. New York,1957.
    [8] Hu C H, Kashiwagi M. A CIP-based method for numerical simulations of violent free surfacefows. Journal of Marine Science and Technology,2004,9:143–157.
    [9]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001:16.
    [10] Hirt C W, Nichols B D. Volume of fuid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics,1981,39:201-225.
    [11]吴宋仁.海岸动力学.人民交通出版社,北京,1999:12-13.
    [12] Kazuo Nadaoka, Serdar Beji and Yasuyuki Nakagawa. A Fully-Dispersive Nonlinear WaveModel and its Numerical Solutions. Proceedings of the24th International Conference onCoastal Engineering (ASCE), Kobe, Japan1994:427–441.
    [13] Russell J S. Report of the committee on waves.7th Meeting of the British Association for theAdvancement of Science,1938:417.
    [14] Russell J S. Report on waves.14th Meeting of the British Association for the Advancementof Science.1844:311-390.
    [15] Boussinesq J. Théorie des ondes et de ramous qui se propagent le long d’un canalrectangulaire horizontal, en communiquant au liquid contenu dans ce annal des vitessessensiblement parallelles de la surface au fond. J. Math. Pures et Appliquees (Lionvilles,France),1872,17:55-108.
    [16] Rayleigh L. On waves. Phil. Mag.1876,5(1):257-279.
    [17] McCowan J. On the solitary wave. Phil. Mag.1891,5(32):45-58.
    [18] Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangularcanal and on a new type of long stationary waves. Phil. Mag.1985,5(39):422-443.
    [19] Hammack J L and Segur H. The Korteweg-de Vries equation and water waves. Part2.Comparison with experiments, J. Fluid Mech.,1974,65:289-314.
    [20] Goring D G. Tsunamis–The propagation of long waves onto a shelf:[PhD thesis]. Pasadena,California: California Institute of Technology,1978.
    [21] Daily J W. and Stephan S C. The solitary wave: its celerity, internal velocity and amplitudeattenuation in a horizontal smooth channel. Proc.3rd Conf. Coastal Eng.,1952:13-30.
    [22] Clamond D. and Germain J P. Interaction between a Stokes wave packet and a solitary wave.Eur. J. Mech. B/Fluids,1999,18(1):67-91.
    [23] Temperville A. Contribution à l’étude des ondes degravité en eau peu profonde, Thèse d’Etat,Université Joseph Fourier–Grenoble I,1985.
    [24] Whitham G B. Linear and non linear waves. Pure and Applied Mathematics Series, Ed.Wiley-Interscience,1974.
    [25] Serre F. Contribution à l’étude des écoulements permanents et variables dans les canaux, LaHouille Blanche,1953,8:374-388.
    [26] Su C H and Gardner C S. KdV equation and generalisations. Part III. Derivation ofKorteweg-de Vries equation and Burgers equation. J. of Math. Phys.,1969,10(3):536-539.
    [27] Grimshaw R. The solitary wave in water of variable depth. Part2. J. Fluid Mech.1971,46(3):611-622.
    [28] Katell G. Accuracy of solitary wave generation by a piston wavemaker. Journal of HydraulicResearch,2002,40(3):321-331.
    [29] Grilli S T, Losada M A, Martin F. Characteristics of solitary wave breaking induced bybreakwaters. J. Waterw. Port Coast. Ocean Eng.1994,120(1):74–92.
    [30] Soliman A. Numerical study of irregular wave overtopping and overflow:[Msc thesis].Nottingham, UK: University of Nottingham School of Eng.,2003.
    [31] Ingrama D M, Gao F B, Causon D M, et al. Numerical investigations of wave overtopping atcoastal structures. Coastal Engineering.2009,56:190–202.
    [32]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2002.
    [1] Owen M W. Design of seawalls allowing for wave overtopping Report EX,924HRWallingford (1980)
    [2] Chaiyuth Chinnarasri, et al. Flow patterns and damage of dike overtopping. InternationalJournal of Sediment Research,2003,18(4):301-309.
    [3] Van Gent M R A. Low-exceedance wave overtopping events. WL Delft project id.DC030202/H3803,2002.
    [4] Van der Meer J W, Snijders W, Regeling E. The wave overtopping simulator. Proc.30thInternational Conference on Coastal Engineering, San Diego, USA,2006:4654-4666.
    [5] Schüttrumpf H F R, Oumeraci H, M ller J, et al. Loading of the inner slope of seadikes bywave overtopping. Leichtweiss Institut für Wasserbau&Technical University Braunschweig,2001.
    [6] Schüttrumpf H F R and Van Gent M R A. Wave overtopping at seadikes. Proc.3rd CoastalStructures Conference, Portland, USA,2003.
    [7] Schüttrumpf H and Oumeraci H. Layer thicknesses and velocities of wave overtopping flowat seadikes. Coastal Engineering,2005,52(6):473-495.
    [8] van der Meer J W, Hardeman B, Steendam G-J, et al. Flow depths and velocities at crest andinner slope of a dike, in theory and with the overtopping simulator. Coastal Engineering,2010:1-15.
    [9] Valk A. Wave overtopping-Impact of water jets on grassed inner slope transitions:[MSc-Thesis]. Delft: Faculty of Civil Engineering&Geosciences, Section of coastalengineering, TU, Delft.2009.
    [10] Hewlett H W M, Boorman L A, Bramley M.E. Design of Reinforced Grass Waterways.CIRIA Report116, London: Construction and Industry Research and InformationAssociation,1987.
    [11] Hoffmans G, Akkerman G J, Verheij H J, et al. The erodibility of grassed inner dike slopesagainst wave overtopping. In: Proceedings of the31st International Conference of CoastalEngineering, Hamburg. Germany,2008.2944–2956.
    [12] Dean RG, Rosati J D, Walton T L, et al. Erosional equivalences of levees: Steady andintermittent wave overtopping. Ocean Engineering,2010,37:104–113.
    [13] Van der Meer J W. Erosion strength of inner slopes of dikes against wave overtopping:Preliminary conclusions after two years of testing with the Wave Overtopping Simulator.Summary Report.2008.
    [14] Van der Meer J W, R Schrijver B, Hardeman A, et al. Guidance on erosion resistance ofinner slopes of dikes from three years of testing with the Wave Overtopping Simulator. Proc.ICE, Breakwaters, Marine Structures and Coastlines; Edinburgh, UK.2009.
    [15]代英男.斜坡堤越浪流厚度及堤后次生波的试验研究:[硕士学位论文].大连:大连理工大学,2011.
    [1] Goda Y. Random seas and design in maritime structures. Tokyo: University of Tokyo Press,1985.
    [2]合田良实.港工建筑物的防浪设计(,侯穆堂).北京:海洋出版社,1984.102-108.
    [3] Goda Y. Re-analysis of laboratory data on wave transmission over breakwaters. Rept. Portand Harbour Res. Inst.,1969,8(3):3-18.
    [4] Goda Y, Suzuki Y, Kishira Y. Some experiences in laboratory experiments with irregularwaves. Proc.21st Japanese Conf. Coastal Engrg.,1974,237-242.
    [5] Konda H and Sato I. A study on required elevation of breakwaver crown. HokkaidoDevelopment Bureau, Civil Engrg. Institute, Monthly Report117,1964,1-15.
    [6] Hattori S. Coastal development and wave control. Lecture Series on Hydraulic Engrg.,75-B2.Japan: Hydraulics Committee, Japan Soc. Civil Engrg.,1964. B2-1-B2-24.
    [7] Tominaga M and Sakamoto T. Field measurements of wave attenuation by offshorebreakwaters. Proc.18th Japanese Conf. Coastal Engrg.,1971,149-154.
    [8] Katayama T, Irie I, Kawakami T. Effects of Niigata coast offshore breakwaters on beachprotection and wave attenuation. Proc.20th Japanese Conf. Coastal Engrg.,1973,519-524.
    [9] Thornton E B and Calhoun R J. Spectral resolution of breakwater reflected waves. Proc.ASCE98(WW4),1972,443-460.
    [10]董胜,冯春明,张华昌.日照帆船港港域波高的数值计算.中国海洋大学学报,2006,36(5):995-998.
    [11] William N Seeling.可透性防波堤透射系数的估算.美国:美国海岸工程研究中心.
    [12]钟瑚穗,徐昶,达达.桩基透空堤的透浪系数.中国港湾建设,2003,126(5):21-24.
    [13]琚烈红,杨正己.设有挡浪板透空堤波浪透射系数实验研究.水运工程,2008,4:19-22.
    [14] Kojima. Study on submerged horizontal plate:[PhD. thesis]. Fukuoka: Kyushu University,1990.
    [15]严以新,郑金海,曾小川.多层挡板桩基透空式防波堤消浪特性试验研究.海洋工程,1998,16(1):67-74.
    [16]王巨轮,朱承.透空式防波堤在大窑湾工程中的应用.水运工程,2000,317(6):13-17.
    [17]王科.潜式水平板型防波堤消波效果研究[D].大连:大连理工大学,2001.
    [18]王国玉,王永学,李广伟.多层水平板透空式防波堤消浪性能试验研究.大连理工大学学报,2005,45(6):865-870.
    [19] Hayashi T et al. Hydraulic research on close spaced pile breakwaters. Proc. of the10thCoastal Eng. Conf.,1996,2.
    [20] Kriebel D L, Bollmann C A. Wave transmission past vertical wave barriers. Proc. of the25thCoastal Eng. Conf.,1996,2.
    [21] JT J298-98,防波堤设计与施工规范,1998.
    [22]麻志雄等.透空式防波堤消浪性能试验研究.南京:南京水利科学研究院.
    [23]金泽刚,长山英树,藤原龙一.透过性构造物的多方向不规则波浪场的计算方法.海洋会议论文集,2003,19:165-170.
    [24] van der Meer J W, Regeling E, de Waal J P. Wave transmission: spectral changes and itseffects on run-up and overtopping. The27thInternational Conference on Coastal Engineering,2156-2168.
    [25] van der Meer J W, Daemen I F R. Stability and wavetransmission at low crested rubblemound structures. Journal of Waterway, Port Coastal and Ocean Engineering,1994,1,1–19.
    [26] d’Angremond K, van der Meer J W, de Jong R J. Wave transmission at low crested structures.Proc.25th Int. Conf. on Coastal Engineering, ASCE,1996,3305–3318.van der Meer J W,Briganti R, Zanuttigh B. Wave transmission and reflection at low-crested structures: Designformulae, oblique wave attack and spectral change. Coastal Engineering2005,52:915–929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700