化学转换型裂缝自修复材料及其对混凝土耐久性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土耐久性是国际工程界的重要研究课题。大量研究表明:渗透性是影响水
    泥混凝土耐久性能的最关键因素,它与混凝土耐久性之间存在着极其密切的关系。
    因此,改善和增强水泥混凝土的抗渗性能,并使其具有优良的裂缝自修复能力是提
    高混凝土耐久性的重要途径,对于提高混凝土的耐久性具有重要的意义。本文在对
    裂缝自修复作用机理的分析研究基础上,制备了一种裂缝自修复材料,对该材料的
    自修复功能和作用机理进行了研究与表征,并系统地研究了该材料对混凝土耐久性
    的影响。主要研究结论如下:
     1.在查阅与分析了大量国内外文献资料的基础上,提出了化学转换自修复反应
    思想,以此为理论依据,制备出了化学转换型水泥混凝土裂缝自修复材料—CCSM。
     2.研究表明CCSM可显著提高水泥基材料(砂浆、混凝土)的抗渗性能和抗压
    强度。砂浆试件的一次抗渗压力由0.4MPa提高到1.4MPa以上,二次抗渗压力由
    O.1MPa提高到1.2MPa以上,抗压强度则由20.4lMPa提高到23.54MPa。
     3.CCSM涂层试件的二次和多次抗渗性能的研究表明,CCSM可显著提高混凝
    土的抗渗自修复能力;对去涂层试件抗渗性能进一步研究证明CCSM主要是通过活
    性化学物质扩散渗透到混凝土内部,借助化学转换作用来提高混凝土的抗渗性,并
    赋予混凝土自修复功能。
     4.XRD衍射、压汞试验、SEM显微分析和化学分析研究表明,CCSM内含的
    活性化学物质在水泥基材料中具有扩散渗透性,能在较短的时间内扩散到水泥基材
    料的内部,并通过化学转换反应促使试件内部的未水化水泥等活性胶凝物质与游离
    钙离子在孔隙和裂缝中生成不溶性的硅酸钙等结晶体,堵塞内部孔隙,封闭毛细孔
    通道,显著降低试件的孔隙率(由36.4%降低到14.8%),并使试件内部的有害孔(孔
    径为100~200nm)和多害孔(孔径大于200nm)明显减少,从而可阻止水与侵蚀性
    介质向内部的扩散。而CCSM的活性化合物在化学转换反应中并不消耗,可反复参
    与反应,从而可赋予水泥基材料持久的裂缝自修复功能。
     5.对影响CCSM自修复作用的相关因素的研究表明,水泥基材料中应有一定量
    的水泥含量(10%以上),才能使CCSM化学转换反应充分进行,从而有效提高混凝
    土的裂缝自修复作用;延长养护时间、增大环境湿度均有利于CCSM化学转换作用
    的发挥。
     6.研究发现CCSM可明显提高混凝土耐化学侵蚀和抗冻融破坏能力。CCSM处
    理试件在盐酸和氢氧化钠溶液中浸泡3个月后的抗压强度明显提高(增长率超过28
    %),在硫酸钾溶液中略为降低(小于10%),抗渗压力均由1.4MPa提高到1.5MPa
The durability of concrete is an important research subject in the international engineering industry. A lot of researches indicated that the impermeability is the key factor to affect the durability of concrete. Therefore, the important path to improve the durability of concrete is to enhance the impermeability of concrete and make it gain the excellent self-healing function of cracks, which is of great significance to improve the durability of concrete. Based on analyzing the mechanism of self-healing function for cracks, a novel kind of self-healing materials for the cracks of concrete was prepared, and researched its self-healing ability and working mechanism, the influence of self-healing material on the durability of concrete was studied systematically also. The following conclusions and innovation can be obtained:1. Large numbers of literature and datum were consulted and analyzed in this paper, the mechanism of chemical change self-healing reaction was proposed for the first time. Based on this theory, a novel kind of chemical change type self-healing materials (CCSM) for cracks of concrete with good performance was prepared.2. CCSM could improve dramatically the impermeability and compressive strength of the cement-based materials (mortar or concrete). The first impermeability of mortar could be raised from 0.4MPa to higher than 1.4MPa as well as the secondary impermeability could be raised from 0.1 MPa to 1.2MPa. Moreover, the compressive strength was increased from 20.41 MPa to 23.54MPa either.3. The researches on secondary and multiple impermeability of coated specimens with CCSM showed that CCSM could improve dramatically the self-healing ability. Further studies on the impermeability of specimens which the coating have been removed indicated that the active compound of CCSM could penetrate fast into the inner of concrete, and cause a chemical change reaction to increase the impermeability of concrete and endow the concrete with a self-healing function.4. In this paper, the microstructure of concrete is studied by means of XRD, SEM and MIP, and the permeate depth of active compound was measured by chemical analysis also. All the results showed that the active chemical material has very strong ability of pervasion, it could penetrate into the inner of concrete in shorter time. The active compound of CCSM could cause a chemical change reaction between Ca(OH)2 and unhydrated cement, which generate a great quantity non-soluble dendritic crystalline. These dendritic crystalline blocks up the pores and cracks, decreased clearly the porosity
    of concrete from 36.4% to 14.8%, and reducing the number of the worst pores (the aperture was greater than 200nm) and worse pores (the aperture was between lOOnm and 200nm) in great extent. That is to say, CCSM made the inside structure of the cement concrete more compacted, inhibiting the pervasion of water and aggressive mediator. Moreover, the active chemicals of CCSM can be recovered after the reaction so that it can work forever, and endow cement-based materials with a self-healing function.5. In order to display thoroughly the chemical change function of active compound, the content of cement should be more than 10% of the cement-based materials. There are many factors which affected the chemical change function of CCSM, for example, the dosage of CCSM, the concentration gradient of active compound, pervasion time, the pore structure of concrete, the content of cement and the humidity of Surrounding environment etc.6. CCSM have concrete possess ability for chemical resistant and freeze-thaw resistant. The compressive strength of specimens treated by CCSM improved more than 28% immersed in dilute hydrochloric acid or sodium hydroxide solution for 3 months, and the compressive strength of specimens decreased about 10% immersed in potassium sulfate solution yet, the impermeability of all specimens increased from 1.4MPa to higher than 1.5MPa. However, the compressive strength of uncoated specimens decreased respectively 20 %, 18% and 27%, its impermeability debased from 0.6MPa to 0.4MPa either. Moreover, its loss of compressive strength after 150 freeze-thaw cycles was 3.5% that was much better than that of uncoated specimens whose loss was about 15.6%. The mechanism may be that the active chemical materials could blocks up the pores and cracks through the chemical change reaction, reducing the number of the capillary porosity (the distribution of aperture was between lOOnm and lOOOnm) in great extent, and decrease the porosity of concrete, inhibiting the pervasion of water and aggressive mediator. Therefore, it evidently debased the freeze-thaw injury caused by the water of capillary porosity, and improved effectively the ability of concrete for chemical resistant and freeze-thaw resistant.7. CCSM could effectively inhibited Alkali—Aggregate Reaction(AAR) of concrete. When the dosage of CCSM was 3% of the cement, its expansion ratio of length is only 1/9 of the uncoated specimens for AAR. The mechanism for inhibiting AAR may owe to the chemical change reaction of active chemical materials which obstructed the diffusion of water and alkali, weakening the superficial hydroxylation of aggregate, obstructing the diffusion of Na\ K+f P Ca2+ to the surface of aggregate that benefit the creation of steady solid structure and avoid the occurring of expansion by sopping water.
    8. The results of water absorption and chloride permeability of cement mortar indicated that CCSM could debase the water absorption of concrete from 5.91wt% of the uncoated specimens to 0.23~0.56wt%, the chloride diffusion coefficient was usually decreased to 20 % of the uncoated specimens. The steel corrosion test showed that the state of steel was in the passive state when the specimens were treated by CCSM. It is clearly that CCSM could prohibit water, chloride ion and any soluble chemical solution from penetrating the concrete to cause corrosion, leaking and other problems, therefore, CCSM was beneficial to the protection of corrosion of concrete.9. In this paper, according to the diffusion theory, the equation of diffusion of CCSM in concrete was established, adopting the method of finite element analysis for the first time to simulate and predict the pervasion of active chemical material in concrete, the data of pervasion depth and velocity of active compound for different time was gained. The results of predicted model of active compound match the actual value. It is proved by the contrast with the measured value and simulated value that the method of finite element analysis could be used effectively for the pervasion prediction of active compound and confirmed the strong pervasion ability of CCSM by theory that is favorable to the application of CCSM in construction work.
引文
[1] 覃维祖.混凝土结构耐久性的整体论.建筑技术,2003,34(1):19~32
    [2] Pierre-Claude Aitcin. Cement of Yesterday and Today: Concrete of Tomorrow. Cement and Concrete Research, 2000, 30: 1349~1359
    [3] Khana M I, Lynsdale C.J.. Strength, permeability, and carbonation of high-performance concrete. Cement and Concrete Research, 2002, 32: 123~131
    [4] Mbessa Michel, Pera Jean. Durability of high-strength concrete in ammonium sulfate solution. Cement and Concrete Research, 2001, 31: 1227~1231
    [5] Torres S M, Sharp J H, Swamy R N, Lynsdale C J, Huntley S A. Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack. Cement & Concrete Composites, 2003, 25:947~954
    [6] 吕林女,胡曙光.混凝土的耐久性与高性能水泥.河南建材,1999,(2):16~19
    [7] 邵筱梅,高世龙,李英男.混凝土结构耐久性的评述.房材与应用,2003,(3):38~40
    [8] Jacobsen Stefan, Sellevold Erik J, Matala Seppo. Frost durability of high strength concrete: Effect of internal cracking on ice formation. Cement and Concrete Research, 1996, 26: 919~931
    [9] 赵霄龙,卫军,巴恒静.高性能混凝土抗冻性与孔结构的关系.工业建筑,2003,33(8):5~8
    [10] Cai H and Liu X. Freeze-thaw durability of concrete: ice formation process in pores. Cement and Concrete Research, 1998, 28:1281~1287
    [11] 鞠丽艳.混凝土裂缝抑制措施的研究进展.混凝土,2002,(5):11~14
    [12] Almusallam A A, Khan F M, Dulaijan S U, etal. Effectiveness of surface coatings in improving concrete durability. Cement & Concrete Composites, 2003, 25:473~481
    [13] 李崇智,冯乃谦,李永德.现代高性能混凝土的研究与发展.建筑技术,2003,34(1):23~25
    [14] 王永红,李兴贵.改善混凝土耐久性的方法研究.建筑技术开发,2003,30(9):107~109
    [15] Jacobsen S, Marchand J, Hornain H. SEM observations of the microstructure of frost deteriorated and self-healed concrete. Cement and Concrete Research, 1995,25(8): 1781~1790
    [16] 赵冬虹.冻融对混凝土强度的影响.林业科技情报,2002,34(3):9~10
    [17] Jacobsen S, Sellvold E J. Self healing of high strength concrete after deterioration by freeze/thaw. Cement and Concrete Research, 1996, 26(1): 55~62
    [18] Owsiak Z. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate. Cement and Concrete Research, 2004, 34: 7~11
    [19] 戴剑锋,王青,刘晓红.聚合物水泥混凝土抗盐、抗冻融腐蚀机理的探讨.西安建筑科技大学学报,2002,34(2):201~204
    [20] 杜天玲,孟云芳,王治虎.提高混凝土抗冻耐久性技术的研究综述.宁夏农学院学报,2002,23(2):80~83
    [21] 王鸣真等.有机外加剂和测试方法对混凝土抗冻融性的影响.黑龙江水利科技,1996, (4):76~78
    [22] 陈磊等.混凝土抗冻融耐久性与外加剂.广东建材,2004,(3):28~30
    [23] Owsiak Z. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate. Cement and Concrete Research, 2004, 34:7~11
    [24] 莫祥银,许仲梓,唐明述.国内外混凝土碱集料反应研究综述.材料科学与工程,2002,20(1):128~132
    [25] Roland F Bleszynski, Michael D A. Thomas. Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions. Advn Cem Bas Mat, 1998, (7) : 66~78
    [26] 王增忠.混凝上碱集料反应及耐久性研究.混凝土,2001,(8):16~19
    [27] 屈志中.碱集料反应的国内外研究现状和问题.建筑技术,1997,28(1):48~51
    [28] 唐明述,邓敏.碱集料反应研究的新进展.建筑材料学报,2003,6(1):1~8
    [29] 朱华雄.化学外加剂对混凝土耐久性的影响.山西建材,2000,(1):23~26
    [30] 杨德斌,许仲梓等,硅灰裹集料对碱—硅酸反应的抑制作用.南京化工大学学报,1996,18(2):40~44
    [31] 高培伟,吴胜兴.掺和料对混凝土力学性能和碱.集料反应的影响.建筑材料学报,2003,6(4):416~420
    [32] 吕忆农,朱雅仙,卢都友.电化学脱盐对混凝土碱集料反应的影响.南京工业大学学报,2002,24(6):35~39
    [33] George J Z Xu, Daniel F Watt, Peter P Hudec. Effectiveness of mineral admixtures in reducing asr expansion. Cement and Concrete Research, 1995, 25 (6) : 1225~1236
    [34] 王玲,田培等.低碱水泥对碱—集料反应的抑制作用.中国建材科技,1998,(5):14~17
    [35] 莫祥银,许仲梓,吴科如.不同因素对外加剂抑制碱集料反应的影响.混凝土与水泥制品,2002,(4):3~6
    [36] Pierre-Claude Aitcin. Cement of yesterday and today: concrete of tomorrow. Cement and Concrete Research, 2000, 30:1349~1359
    [37] 李琮琦.混凝土中钢筋锈蚀的研究进展.建筑技术开发,2002,29(7):7~9
    [38] 董泊.混凝土工程中钢筋锈蚀的控制分析.天津城市建设学院院报,2000,6(4):273~275
    [39] 仲伟秋,贡金鑫.钢筋电化学快速锈蚀试验控制方法.建筑技术开发,2002,29(4):28~30
    [40] 张平生.混凝土状况对钢筋锈蚀的影响及原因.西安建筑科技大学学报,1998,30(1):5~8
    [41] 张喜德,韦树英.钢筋锈蚀对混凝土抗压强度影响的试验研究.工业建筑,2003,33(3):5~7
    [42] 孙勇志.使用埋入混凝土内的微型探测器监测钢筋锈蚀.贵州工业大学学报,1998,27(6):90~93
    [43] Thanakom Pheeraphan, Christopher, Leung K Y. Freeze-thaw durability of microwave cured air-entrained concrete. Cement and Concrete Research, 1997, 27:427~435
    [44] 易成,谢和平,孙华飞,高伟.混凝土抗渗性能研究的现状与进展.混凝土,2003,(2):7~12
    [45] 鞠丽艳.混凝土裂缝抑制措施的研究进展.混凝土,2002.(5):11~14
    [46] 亢景富,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土.混凝土与水泥制品,1997,(4):4~10
    [47] Gowripalana N, Sirivivatnanon V, Lim C. Chloride diffusivity of concrete cracked in flexure. Cement and Concrete Research. 2000, 30:725~730
    [48] 王永红,李兴贵.改善混凝土耐久性的方法研究.建筑技术开发,2003,30(9):107~109
    [49] 赵丁.水泥混凝土抗渗性的试验研究.东北公路,2000,12(1):83~86
    [50] Jin-Keun Kima, Yun Lee, Seong-Tae Yi. Fracture characteristics of concrete at early ages. Cement and Concrete Research, 2004, 34:507~519
    [51] Lou J, Bhalerao K, Soboyejo A B O, Soboyejo W O. An investigation of fracture initiation and resistance-curve behavior in concrete. Cement & Concrete Composites, 2003, 25: 599~605
    [52] Heikal M., Aiad I, Shoaib M M, El-Didamony H. Physico-chemical characteristics of some polymer cement composites. Materials Chemistry and Physics, 2001, 71:76~83
    [53] 申爱琴主编.水泥与水泥混凝土.人民交通出版社,2000,5
    [54] Hans-Wolf Reinhardt, Martin Jooss. Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cement and Concrete Research. 2003, 33:981~985
    [55] 袁润章主编.胶凝材料学.武汉工业大学出版社,1993,3
    [56] Jacobsen Stefan, Marchandz Jacques, Luc Boisvertz. Effect of cracking and healing on chloride transport in opc concrete. Cement and Concrete Research. 1996, 26:868~881
    [57] Mehta P K.祝永年译.混凝土的结构、性能与材料.同济大学出版社,1991,5
    [58] Corina-Maria Aldea etal. Effect of cracking on water and chloride permeability of concrete. Journal of Materials in Civil Engineering, 1999,8:181~186
    [59] 沈威,黄文熙,阂盘荣.水泥工艺学.武汉工业大学出版社,1991,7
    [60] Taylor H F W. Cement Chemistry (2nd edition). Thmas Telford Publishing, Thomas Telford Services Ltd, 1997
    [61] 孙林柱.混凝土高效复合防水剂的试验研究.混凝土,1999,3
    [62] Kwon, Myoungsook. Durable concrete repair—importance of compatibility and low shrinkage. Construction and Building Materials, 1997, 11 (5): 263~273
    [63] 吴绍章.混凝土抗渗性及其评定方法.水利水运科学研究,1994,(3):267~277
    [64] March S, Boisvert L. Effect of crack and healing on chloride transport in OPC concrete. Cement and Concrete Research, 1996, 26(6): 869~881
    [65] 田俊峰,潘德强,赵尚传.海工高性能混凝土抗氯离子侵蚀耐久寿命预测.中国港湾建设,2002,(4):1~6
    [66] 岳云德等.抗渗硅酸盐水泥的性能试验研究.水泥,1996,(2):8~12
    [67] 张致秋,岳致华.硫铝酸盐水泥、铁铝酸盐水泥的特性与应用.水泥,1999,12(3):26~34
    [68] 吴绍章.高铁早强硅酸盐水泥及其砼的性能.水利水运科学研究,1994,(3):267~277
    [69] 白木,子荫.我国建筑防水材料发展纵览.建筑涂料与涂装,2002,(6):13~16
    [70] 沈春林.国内外建筑防水材料现状和我国发展规划及建议.新型建筑材料,2003,(4):36~41
    [71] 牛光全.国外建筑防水材料的现状和展望.中国建筑防水,2001,(1):11~16
    [72] 朱冬青.我国建筑防水材料生产和应用现状及发展.化学建材,2001,(1):4~9
    [73] 王芳.X P M水泥基防水复合型外加剂在混凝土结构工程中的应用.铁道标准设计,2003,(5),:54~55
    [74] Kenneth C Hover. Concrete Mixture Proportioning with water—reducing Admixtures to Enhance Durability: A Quantitative Model. Cement and Concrete Composite, 1998, 20:113~119
    [75] Irassar E F, Di Maio A, Batic O R. Sulfate attack on concrete with mineral admixtures. Cement and Concrete Research, 1996, 26(1): 113~123
    [76] 何乃谦.外加剂水泥防水砂浆的特点及其工程应用.广东土木与建筑,2001,(7):81~83
    [77] 邓祥义,肖文胜,徐建芳,柯加泳.多功能防水粘结材料的生产与应用.新型建筑材料,2001,(12):22~23
    [78] 王芳,鲍静妮.水泥基防水复合材料——X P M外加剂.山西科技,2001,(5):60~61
    [79] Lua Ziyi, Zhou Xihui. The waterproofing characteristics of polymer sodium carboxymethyl-cellulose. Cement and Concrete Research, 2000, 30:227~231
    [80] Larry R.Barron, Mentor, Ohio. Concrete and masonry waterproofing composition, merica patent:US4894405
    [81] Massimiliano Forcato, William A. Nugentb and Giulia Licini. A 'waterproof' catalyst for the oxidation of secondary amines to nitrones with alkyl hydroperoxides. Tetrahedron Letters, 2003, 44 : 49~52
    [82] 吴中伟编著.膨胀混凝土及其发展前景.1985年北京国际水泥混凝土化学会议论文集
    [83] John Bensted. A Discussion of the Paper "STUDIES ABOUT A SULFATE RESISTANT CEMENT: INFLUENCE OF ADMIXTURES" by M.T. Blanco, S. Garcia, S. Giminez, F. Puertas amd T. Vizqnez" . Cement and Concrete Research, 1995, 25:1129~1130
    [84] George W. Scherer. Crystallization in pores. Cement and Concrete Research, 1999, 29: 1347~1358
    [85] 吴中伟,张鸿直.膨胀混凝土.中国铁道出版社,1992
    [86] 薛君研,吴中伟.膨胀和自应力水泥及其应用.中国建筑工业出版社,1985
    [87] 吕平,刘淑梅.水性建筑防水涂料的性能、应用及发展.低温建筑技术,1999,2:3~4
    [88] 肖志,苏燕.高分子环保型AEE弹性防水涂料的研究试制.云南建材,2000,4:49~51
    [89] Denise E Fiori. Two-component water reducible polyurethane coatings. Progress in Organic Coatings, 1997,(32):65~71
    [90] 戴永清,李亚军.健康型聚氨酯建筑防水涂料的研制.化学建材,2002,(5):39~42
    [91] Lua Ziyi, Zhou Xihui. The waterproofing characteristics of polymer sodium carboxymethyl-cellulose. Cement and Concrete Research, 2000, 30:227~231
    [92] 赵守佳.浅谈国内聚氨酯防水涂料的现状和趋势.聚氨酯工业,2000,15(3):9~12
    [93] Jeknavorian A A, Barry E F. Determination of durability-enhancing admixtures in concrete by thermal desorption and pyrolysis gas chromatography-mass spectrometry. Cement and Concrete Research, 1999, 29:899~907
    [94] 瞿金清,陈焕钦.环保型聚氨酯涂料的研究进展.现代化工,2003,23(11):22~26
    [95] Laurence Podgorski, Bruno Chevet, Ludivine Onic, AndreH Merlin. Modication of wood wettability by plasma and corona treatments. International Journal of Adhesion & Adhesives, 2000, 20: 103~111
    [96] Yoshihiko Ohama. Polymer-based materials for repair and improved durability: Japanese experience. Construction and Building Materials, 1996, 10(1): 77~82
    [97] 王训一.无机铝盐防水剂在地下室刚性防水施工中的应用.建筑技术开发,1998,25(6):36~37
    [98] 林成.混凝土刚性自防水技术在屋顶游泳池施工中的应用.混凝土与水泥制品,2003,(5):19~21
    [99] 赵德卯,李佑均.无机强力系统防水堵漏材料柔性防水施工.化工施工技术,1997,(6):10~12
    [100] 丁玉林.“确保时”高效防水堵漏材料在原盐地洞的应用.纯碱工业,1994,2:47~48
    [101] 王维纲.高效无机防水防潮剂在工程中的应用.防渗技术,1997,3(2):45~46
    [102] Parrott L J. Water absorption of cover concrete. Material Structure, 1992,25:284~292
    [103] Basheer L. Assessment of the durability characteristics of surface treated concrete. The Queen's University of Belfast, 1994:196
    [104] 方明晖,杨鹜远.无机水性水泥密封防水剂功能和耐久性.新型建筑材料,2000,4:18~21
    [105] McDonald. Waterproofing from the inside out. Concrete, 1995,29 (1): 14~15
    [106] 谢永江,王石生,TM1500防水剂的性能及其在混凝土梁上的应用.铁道建筑,1995,5:21~23
    [107] Gislason R S. Low permeability facade coatings reduce moisture in concrete. Surface Coatings International, 2000,2:59~64
    [108] Garboczi E H. Permeability diffusivity and micro-structural parameters. A critical review. Cement and Concrete Research, 1990,20:591~601
    [109] Figg H W Methods of measuring the air and water permeability of concrete, Magazine of Concrete Research, 1984,25:213~219
    [110] Wieland Ramm, Michaela Biscoping. Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete. Nuclear Engineering and Design. 1998, 179:191~200
    [111] Swamv R N. Assessment and rehabilitation of AAR—affected structures. Cement and Concrete Composite, 1997, 19:427~440
    [112] Edvardsen C. Water permeability and autogenous healing of cracks in concrete. ACI Materials Journals, 1999, 96(4): 448~454
    [113] Jacobsen S, Sellevol E J. Self healing of high strength concrete after deterioration by freeze/thaw. Cement and Concrete Research, 1996, 26(1): 55~62
    [114] Jacobsen Stefan, Marchandz Jacques, Luc Boisvertz. SEM observations of the microstructure of frost deteriorated and self-healed concretes. Cement and Concrete Research. 1995, 25(8): 1781~1790
    [115] White S R, Sotlos N R, Moore P H, etal. Autonomic healing of polymer composites. Nature, 2001, 409:794~797
    [116] Victor C Li, Yun Mook Lim, Yin-Wen Chan. Feasibility study of a passive smart self-healing cementitious composite. Composites Part B, 1998, 29B:819~827
    [117] Kessler M R, Sotto S R, N R White. Self-healing structural composite materials. Composites: Part A, 2003, 34:743~753
    [118] 陈兵,张东.新型水泥基复合材料的研究与应用.新型建筑材料,2000,(4):28~30
    [119] 王兆利,高倩,赵铁军.智能建筑材料.山东建材,2002,(1):56~57
    [120] 李化建,盖国胜,黄佳木,陈贤树.智能混凝土.建材技术与应用,2002,(1):8~10
    [121] 张雄,习志臻,王胜先,姚武.仿生自愈合混凝土的研究进展.混凝土,2001,(3):10~13
    [122] XY—01渗晶防水材料.中国建材科技,2002,(3):70
    [123] 蒋正武.国外混凝土裂缝的自修复技术.建筑技术,2003,34(4):261~262
    [124] Sari M, Prat E, Labastire J F. High strength self-compacting concrete Original solutions associating organic and inorganic admixtures. Cement and Concrete Research, 1999, 29: 813~818
    [125] Chang P K, Peng Y N, Hwang C L. A design consideration for durability of high-performance concrete. Cement and Concrete Composite, 2001, 23:375~380
    [126] 梁文泉,王信刚,何真,李相国.智能混凝上的研究.混凝土与水泥制品,2003,(6):33~35
    [127] Sun Mingqinga, Li Zhuoqiua, Liu Qingpinga, Tang Zhigangb, Shen Darongb. A study on thermal self-diagnostic and self-adaptive smart concrete structures. Cement and Concrete Research. 2000, 30: 1251~1253
    [128] 姚武,吴科如.智能混凝土的研究现状及其发展趋势.新型建筑材料,2000,(10):22~24
    [129] Victor C Li, Yun Mook Lim, Yin-Wen Chan. Feasibility study of a passive smart self-healing cementitious composite. Composites Part B, 1998, 29B:819~827
    [130] Kessler M R, Sotto N R, White S R. Self-healing structural composite materials. Composites: Part A, 2003, 34:743~753
    [131] Jacobsen Stefan, Sellvold Erik J. Self healing of high strength concrete after deterioration by freeze/thaw. Cement and Concrete Research, 1996, 26(1): 55~62
    [132] Almusallam A A, Khan F M, Dulaijan S U, etal. Effectiveness of surface coatings in improving concrete durability. Cement & Concrete Composites, 2003, 25:473~481
    [133] 牛光全.美国地下防水材料综述.中国建筑防水,2002,(6):27~31
    [134] 余剑英,王桂明.YJH渗透结晶型防水材料的研究.中国建筑防水,2004,(9):11~13
    [135] 龙晓梅编译.养护条件对混凝土耐久性的影响.建筑技术,2000,21(7):433~435
    [136] 刘朝晖,李宇峙,邓廷权.不同养护条件对水泥混凝土强度影响的试验研究.广西交通科技.1999,24(1):42~45
    [137] 万惠文.含RA、FA的绿色混凝土结构与性能研究.[武汉理工大学博士论文].武汉:武汉理工大学材料学院,2004
    [138] 王冲等.高性能混凝土的耐化学侵蚀性能研究.重庆建筑大学学报,1999,21(1):28~31
    [139] 赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系.武汉理工大学学报,2002,24(12):14~17
    [140] Metha. Studies on Chemical Resistance of Low Water/Cement Ratio Concretes. Cement and Concrete Research, 1985, 15(6): 969~978
    [141] Roy D M, P. Arjunan, Silsbee M R. Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement & Concrete Composites, 2001, 31: 1809~1813
    [142] Janotka, Ivan. Influence of zeolitic cement and sand on resistance of mortar subjected to hydrochloric acid solution attack. Ceramics-Silikaty, 1999, 43(2): 61~66
    [143] 张德思,成秀珍.矿渣混凝土的长期强度和抗冻融耐久性研究.西北建筑工程学院学报,1999,(3):6~9
    [144] Irassar, Fabian, Batic. Effects of low calcium fly ash on sulfate resistance of OPC cement. Cement and Concrete Research, 1989, 31 : 194~202
    [11] Cai H, Liu X. Freeze-thaw durability of concrete: ice formation process in pores. Cement and Concrete Research, 1998, 28(9): 1281~1287
    [145] YU Jianying, WANG Guiming. Effect of a catalytic crystalline material on steel reinforcement corrosion of concrete, The 4th International Conference on Surface Engineering[C]. Shenzhen, China, 2004, 178~181
    [146] Wang Guiming, Yu Jianying. Self-healing action of permeable crystalline coating on pores and cracks in cement-based materials. Journal of Wuhan University of Technology (Mater. Sci. Ed), 2005, 20(1): 13~16
    [147] 吴中伟,廉慧珍.高性能混凝土.中国铁道出版社,1999.220~223
    [148] 李田,刘西拉.钢筋锈蚀和混凝土冻融破坏的可靠性分析及防范措施.建筑结构学报,1995,16(2):43~51
    [149] Owsiak Z. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate. Cement and Concrete Research, 2004, 34: 7~11
    [150] 莫祥银,许仲梓,吴科如.不同因素对外加剂抑制碱集料反应的影响.混凝土与水泥制品,2002,(4):3~6
    [151] Monteiro P J M, Wang K, Sposito G, Santos MC dos. Influence of mineral admixtures on the alkali-aggregate reaction. Cement and Concrete Research, 1997, 27 (12) : 1899~1909
    [152] Pagliaa C, Wombacherb F, Bohnia H. The influence of alkali-free and alkaline shotcrete accelerators within cement systems Influence of the temperature on the sulfate attack mechanisms and damage. Cement and Concrete Research, 2003, 33:387~395
    [153] Rodrigues Flavio A, Monteiro Paulo J M, Garrison Sposito. The alkali-silica reaction The surface charge density of silica and its effect on expansive pressure. Cement and Concrete Research, 1999, 29:527~530
    [154] 沈洋,许仲梓,唐明述.硅质集料碱活性快速砂浆棒试验方法.南京化工大学学报,1999,21(2):5~10
    [155] 张誉,蒋利学,张伟平等.混凝土结构耐久性概论.上海科学技术出版社,2003.91~94
    [156] A.K. Suryavanshi, J.D. Scantlebury. Corrosion of Reinforcement Steel Embedded in High Water-cement Ratio Concrete Contaminated with Chloride. Cement and Concrete Composites, 1998; 20:263~281
    [157] W. Morris, M. Vazquez. A Migrating Corrosion Inhibitor Evaluated in Concrete Containing Various Contents of Admixed Chlorides. Cement and Concrete Research, 2002, 32:259~267
    [158] V. Sarawathy, S. Muralidharan etc. Evaluation of a Composite Corrosion-inhibiting Admixture and Its Performance in Concrete under Macrocell Corrosion Conditions. Cement and Concrete Research, 2001, 31:789~794
    [159] 朱四荣,李卓球.混凝土结构中钢筋锈蚀参数的识别.湘潭矿业学院院报,2001,16(1):46~49
    [160] Ru Mu, Changwen Miao, Xin Luo, Wei Sun. Interaction between loading, freeze-thaw cycles, and chloride salt attack of concrete with and without steel fiber reinforcement. Cement and Concrete Research, 2002, 32: 1061~1066
    [161] 张平生.混凝土状况对钢筋锈蚀的影响及原因.西安建筑科技大学学报,1998,30(1):5~8
    [162] Gonzalez J A, Ramlrez E, Bautista A, Feliu S, etal. The Behavior of pre-rusted Steel in Concrete. Cement and Concrete Research, 1996, 26 (3) : 501~511
    [163] 张艳丽.混凝土构件中钢筋锈蚀的产生及防治.工程质量,2003,(11):43~45
    [164] 李建勇,杨红玲.国外混凝土钢筋锈蚀破坏的修复和保护技术.建筑技术,2002,33(7):491~493
    [165] H. Tatematsu, T. Sasaki. Repair materials system for chloride-induced corrosion of reinforcing bars. Cement & Concrete Composites. 2003, 25: 123~129
    [166] Lomax. Electrochemical corrosion control on busy rail bridge. Concrete, 2001,35 (10):50~51
    [167] Frank R. Foulkes, Patrick McGrath. A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete. Cement and Concrete Research, 1999, 29 : 873~883
    [168] Alexander M Vaysburd, Peter H Emmons. Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts. Cement & Concrete Composites, 2004, 26: 255~263
    [169] Charles K. Nmai. Multi-functional organic corrosion inhibitor. Cement & Concrete Composites,2004,26 : 199~207
    [170] Kenneth C Hover. Concrete mixture proportioning with water-reducing admixtures to enhance durability: a quantitative model, cement and concrete composites, 1998, 20:113~119
    [171] 余剑英,王桂明.YJH渗透结晶材料的研究.中国建筑防水,2004,(9):11~13
    [172] Almusallam A A, Khan F M, Dulaijan S U, etal. Effectiveness of surface coatings in improving concrete durability. Cement & Concrete Composites, 2003, 25:473~481
    [173] 李伟文,张根亮.荷载作用下混凝土氯离子渗透性研究.中国建材科技,2000,(9):19~25
    [174] 田俊峰,潘德强,赵尚传.海工高性能混凝土抗氯离子侵蚀耐久寿命预测.中国港湾建设,2002,(2):1~6
    [175] 李翠林,路新瀛,张海霞.确定氯离子在水泥基材料中扩散系数的快速试验方法.工业建筑,1998,28(6):41~43
    [176] 胡红梅.矿物功能材料对混凝土氯离子渗透性影响的研究.[武汉理工大学硕士论文].武汉:武汉理工大学材料学院,2002
    [178] 薛绍祖.国外水泥基渗透结晶型防水材料的研究与发展.中国建筑防水,2001,(6):9~12
    [179] 刘斯凤.氯离子扩散测试方法演变和理论研究背景.混凝土,2002,(10):21~24
    [180] Frank Schmidt-Dhl, Ferdinand S Rostasy. A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineral-building materials Part Ⅰ. Simulation model. Cement and Concrete Research, 1999,29: 1039~1045
    [181] Frank Schmidt-Dhl, Ferdinand S Rostasy. A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineral-building materials Part Ⅱ. Simulation model. Cement and Concrete Research, 1999,29: 1047~1053
    [182] Lu Xinying. Application of the nernst-einstein equation to concrete. Cement and Concrete Research, 1997,27:293~302
    [183] 陈广超,张洪波.钢筋混凝土中离子滲透扩散的研究.连云港化工高等专科学校学报,2001,14(3):26~28
    [184] Burkan Isgor, Ghani Razaqpura. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cement & Concrete Composites, 2004, 26: 57~73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700