奥氏体不锈钢应变强化低温容器的安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器安全性与经济性并重的设计理念已成为当前压力容器设计的发展趋势,奥氏体不锈钢是一种较为理想的低温压力容器材料,韧塑性好但屈服强度低,使得按常规设计不能充分发挥其承载能力,造成材料和资源浪费。将应变强化轻型化技术应用于奥氏体不锈钢低温容器,通过消耗材料的部分塑性,显著提高屈服强度,可达到节省材料、节能减排的目的。
     本文围绕国产奥氏体不锈钢应变强化低温容器的安全性,分析应变强化对材料力学性能、容器整体安全裕度的影响,并采用有限元分析手段对复杂结构容器的应变强化过程进行数值模拟。主要的研究内容和结论如下:
     (1)通过预应变拉伸试验得出了国产奥氏体不锈钢材料(牌号06Cr19Ni10)合适的应变强化范围,并分析了应变强化量、加载方式、保压过程对材料性能的影响。结果表明:应变强化量的增加对抗拉强度影响不大,4%~10%预应变强化范围内材料的塑性损失量约等于预应变量;保压过程基本不影响材料性能的改变。
     (2)运用有限元法模拟分析了应变强化对容器塑性失稳压力的影响。结果表明加载路径不同对容器的极限承载能力无影响,应变强化后压力容器的设计按强化前的尺寸进行设计是合理的;同时考虑预应变后容器几何形状改变和材料应力应变曲线改变的情况下,圆筒容器的塑性失稳压力无明显下降,球壳容器的下降趋势较为明显。
     (3)定量分析了预应变后容器的安全裕度。结果表明预应变后球壳容器安全裕度的下降程度比圆筒容器大。经4%~10%预应变后,圆筒容器的最小安全裕度由按常规设计的4.76降至2.21,与国内外标准中的最低安全裕度要求相当;球壳容器的最小安全裕度由按常规设计的4.43降为1.83。应变强化技术更适合圆筒容器。
     (4)利用建立的非线性有限元模型对复杂结构低温容器的应变强化过程进行数值模拟,得出了容器典型部位的应力应变随载荷的变化规律。对容器的安全裕度分析表明,按应变强化设计后容器仍具有较高的强度裕度和塑性储备。为避免应变强化后不必要的塑性变形,在有限元分析的基础上探讨了以筒体主体环向应变为关键控制参数的设计方法。
The design concept that safety and economy are equal important for pressure vessels has become the development trend of pressure vessels design method. Austenitic stainless steel is an ideal material for cryogenic vessel, with excellent toughness and plasticity but low yield strength, so the conventional design method can’t make full use of its carrying capacity and results to material and resource waste. Applying strain hardening technology to austenitic stainless cryogenic vessels, which can increase the yield strength greatly by consuming the plasticity of material, could save material and energy and reduce emission.
     This thesis focuses on the safety of strain hardening cryogenic vessels with austenitic stainless steel, mainly analyzes the impact between strain hardening and performance of material, integral safety margin of vessels. And the strain hardening process of pressure vessels with complicated structure is numerical simulated by using finite element(FE)method.
     The main efforts and results of this study are as follows:
     (1)This study gets appropriate strain hardening range of domestic austenitic stainless steel by pre-strain tensile test and analyzes the impact of different strain hardening quantity and loading method and pressure-keeping process on material’s performance. The result is that, strain hardening increasing has little impact on tesile strength, plasticity loss is almost equal to pre-strain when strain quantity is between 0.04 to 0.1, and pressure-keeping process almost doesn’t change the material properties.
     (2)This study analyzed the impact of strain hardening on the plastic instability pressure by using FE numerical simulation method. The ultimate bearing capacity of pressure vessels has nothing to do with the loading path, so the method which the design of strain hardening vessels’demission based on the initial ones is reasonable. Considering the change of both geometry of vessels and stress-strain curve after being hardened, the decrease of plastic instability pressure for cylinder vessels is not significantly, but for the spherical vessels is more obvious.
     (3)This study quaintly analyzed the safety margin of vessels after strain hardening. The result is the decline trend of safety margin for spherical vessels is greater than cylinder. After strain hardening range between 0.04 and 0.1, the minimum safety margin of cylinder vessels decreases from 4.76 by conventional design to 2.21, which also could meet the demand of international pressure vessels standards, and the minimum safety margin of spherical vessels decreases from 4.43 to 1.83. So the strain hardening technology is more suited to cylinder than spherical vessels.
     (5)This study numerical simulates the strain hardening process of cryogenic vessels with complicated structure by using the non-linear finite element model and gets the variation pattern for stress and strain of typical position on vessel with the change of internal pressure. The result of safety margin to this vessel by strain hardening design is that it still has good strength and plasticity reserves. Based on the FE analysis, the hoop strain of the main part of the cylinder body could used as a key controlling factor for avoiding unnecessary plastic deformation after strain hardened.
引文
[1]徐烈,朱卫东,汤晓英.低温绝热与贮运技术[M].北京:机械工业出版社,1999
    [2]邓阳春,陈钢,杨笑峰等.奥氏体不锈钢压力容器的应变强化技术[J].化工机械,2008,35(1):54~59
    [3]郑津洋,郭阿宾,缪存坚等.奥氏体不锈钢深冷容器室温应变强化技术[J].压力容器,2010,27(8):28~32
    [4]郑津洋,缪存坚,寿比南.轻型化——压力容器的发展方向[J].压力容器,2009,26(9):42~48
    [5]邓阳春,陈钢,杨笑峰等.确定压力容器安全系数原则[J].中国安全科学学报,2008,18(6):84~88
    [6] 2007 ASME Boiler & Pressure Vessel Code,Ⅷ- Division 1,rule for Construction of Pressure Vessels[S]. ASME Boiler and Pressure vessels Committee. 2007
    [7] 2007 ASME Boiler & Pressure Vessel Code,Ⅷ- Division 2,Alternative Rules, rule for Construction of Pressure Vessels[S]. ASME Boiler and Pressure vessels Committee. 2007
    [8] EN13445 Unfired Pressure Vessels. European committee for standardization. 2002
    [9]固定式压力容器安全技术监察规程[S].中华人民共和国国家质量监督检验检疫总局.2009
    [10] 97/23/EC,Pressure Equipment Directive[S]. The European Coordination committee. 1997
    [11] GB150-1998钢制压力容器.国家质量技术监督局.1998
    [12] GB4732-1995钢制压力容器——分析设计标准.国家质量技术监督局.1995
    [13]苏文献,刘应话,马宁等.压力容器分析设计——直接法[M].北京:化学工业出版社,2010
    [14]江楠,压力容器理论及应用[M].广州:华南理工大学教材中心,2004
    [15]李其朋,陈国华,张瑞华.基于MATLAB的矩形截面压力容器优化设计[J].压力容器,2008,25(4):28~32
    [16]丁昌,汪荣顺. ANSYS在低温压力容器应力分析与优化设计中的应用[J].低温与超导,2007,35(6):455~457
    [17] CSD-Stretching Directions 1991[S].Swedish Pressure Vessel Standardization. 1991
    [18] ASl210- Supp2-1999, Pressure Vessels-Cold-stretched Austenitic Stainless Steel Vessels[S].
    [19] EN 13458-2:2002,Cryogenic vessels-Static vacuum insulated vessels,Part 2:Design,fabrication,inspection,and testing,Annex C,2002[S]
    [20] RanaM D. Development of ISO Standards for Cryogenic Vessels,Pressure Vessel and Piping Codes and Standards[J]. ASME PVP453, 2005:225~234
    [21] ASME Code Case 2596-2008,Cold stretching of Austenitic Stainless Steel Pressure Vessels[S]
    [22] EN 13530-2:2002, Cryogenic Vessels Large Transportable Vacuum Insulated Vessels-Part2: Design, Fabrication, Inspection and Testing[S].
    [23] ISO 20421-1: 2006, Cryogenic Vessels-large Transportable Vacuum-insulated Vessels-part1: Design, fabrication, Inspection and Testing[S].
    [24] ISO 21009-1: 2008, Cryogenic Vessels-static Vacuum insulated Vessels-Part 1: Design, Fabrication,Inspection and Tests[S].
    [25]朱昌宏,莫伟,魏东.奥氏体不锈钢应变强化原理的应用[J].中国特种设备安全,2009,26(10):34~36
    [26]刘树勋,刘宪民,刘蕤等. 0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为[J].钢铁研究学报,2005,17(4):40~44
    [27]常志华.板材应变强化过程的不同一性及硬化性能参数的确定[J].武汉工学院学报,1991,13(2):75~80
    [28]田兴,田如锦,王爱宝.奥氏体不锈钢304L和304LN的加工硬化特点[J].大连铁道学院学报,2001,22(4):59~64
    [29]刘伟,何俊,周立涛等.冷轧奥氏体不锈钢的应变硬化行为及其焊接性能[J].铁道学报,2007,29(5):117~121
    [30]郑津洋,刘春峰,徐平等.容器应变强化系统及其所生产的奥氏体不锈钢低温容器[P].中国:200710119161.2,2006.01
    [31]刘树勋,刘宪民,刘蕤等. 0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为[J].钢铁研究学报,2005,17(4):40~44
    [32]李雅娴.应变强化奥氏体不锈钢低温容器材料及成形工艺研究[D].杭州:浙江大学,2010
    [33]王松涛,杨柯,单以银等.冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J].金属学报,2007,43(7):713~718
    [34]李维东,马金达.冷变形对304不锈钢组织和性能影响的探讨[J].理化检验-物理分册,2002,38(11):507~509
    [35]许淳淳,张新生,胡钢. AISI304不锈钢在冷加工过程中的微观组织变化[J].北京化大学学报,2002,29(6):27~31
    [36]胡钢,许谆淳,张新生.奥氏体304不锈钢微观组织变化与冷加工的关系[J].黄冈师范学院学报,2002,22(3):17~19
    [37]丁剑,张荻.应力控制条件下奥氏体不锈钢的低周疲劳性能[J].金属学报,2002,38(12):1261~1265
    [38]陈建存.奥氏体不锈钢设备的超压处理强化技术[J].石油化工设备,1979,(04):1~16
    [39]丁大伟.压力容器用钢在应变强化过程中的宏观性能与显微结构研究[D].北京:北京工业大学,2009
    [40]周高斌.应变强化奥氏体不锈钢低温容器研究[D].杭州:浙江大学,2007
    [41]马利,郑津洋,寿比南等.奥氏体不锈钢制压力容器强度裕度研究[J].压力容器,2008,25(1):1~5
    [42]许淳淳,张新生,胡钢.塑性变形对AISI304不锈钢组织及耐蚀性的影响[J].化工学报,2003,54(6):790~795
    [43] Cigada A, Mazza B, Pedeferri P, et. Stress Crossion of Cold-working Austenitic Stainless Steels[J]. Corrosion Science,1982,22(6):558-578.
    [44] Parvathavarthini N, Dayal R K. Influence of chemical composition, prior deformation and prolonged thermal aging on the sensitization characteristics of austenitic steels. Journal of Nuclear Materials,2002,305(2-3): 209~219
    [45] Johansson B, Vitos L, Korzhavyi P A. Chemical composition-elastic property maps of austenitic stainless steels. Solid State Sciences,2003,5(6):931~936
    [46]许淳淳,张新生,胡钢.不锈钢冷加工形变诱发马氏体相变及其腐蚀行为[J].材料保护, 2002,35(3):15-17
    [47]许淳淳,张新生,胡钢.拉伸变形对304不锈钢应力腐蚀的影响[J].材料研究学报,2003,17(3):310~314
    [48]徐瑞芬,许淳淳,欧阳维真等.奥氏体不锈钢的马氏体相变对耐蚀性的影响[J].北京化工大学学报,1998,25(2):57~62
    [49]刘伟,李志斌,王翔等.应变速率对奥氏体不锈钢应变诱发α’马氏体转变和力学行为的影响[J].金属学报,2009,45(3):285~291
    [50]常东华,周晓,魏佰友.应变硬化指数n值的测定和应用[J].理化检验-物理分册,2006,42(5):242~244
    [51]魏锋,凃善东,刘窧嫉?压力容器设计知识[M].北京:化学工业出版社,2005
    [52]刘伟,李强,焦德志等.冷轧301L奥氏体不锈钢的变形和应变硬化行为[J].金属学报,2008,44(7):775~780
    [53]林高用,张蓉,张振峰等.变形速度对304奥氏体不锈钢室温拉伸性能的影响[J].湘潭大学自然科学学报,2005,27(3):91~94
    [54] Soussan A, Degallaix S. Work-hardening Behavior of Nitrogen-alloyed Austenitic Stainless Steels[J]. Material Science Engineering, 1991, A 142: 169.
    [55] Ambrose S. Australian practice with cold stretched pressure vessels. The Ninth international conference on Pressure Vessels Technology, Sydney Australia, April 9~10, 2000:99~107
    [56]徐谦.典型承压结构的塑性极限载荷分析[D].北京:北京化工大学,2006
    [57]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2005:22~62
    [58]陈刚,刘应华.结构塑性极限与安定分析理论及工程方法.北京:科学出版社. 2004
    [59]余伟炜,高炳军.ANSYS在机械与化工装备中的应用[M].北京:中国水利水电出版社,2006
    [60]徐彤,孙亮,陈钢.考虑材料应变强化效应的应力应变关系双线性表征方法的研究[J].压力容器,2010,27(2):1~7
    [61]周连东,江楠.国产奥氏体不锈钢应变强化低温容器许用应力及应变确定[J].压力容器,2011,28(2):5~10
    [62] Yang-chun Deng, Liang SUN, Tong Xu etc. A study on plastic instability of structures in plane stress under proportional loading. Ninth International Conference on Engineering Structural Integrity Assessment-Engineering Structural Integrity Research, Development and Application, October 15~19,2007, Being, China: 613~616
    [63] G.H.Majzoobi, G.H.Farrahi, M.K. Pipelzadeh etc. Experimental and finite element prediction of bursting pressure in compound cylinders[J]. International Journal of Pressure Vessels and Piping 2004, (81): 889~896
    [64]邓阳春,陈钢,杨笑峰.简单结构平面应力等比例加载塑性失稳研究[J].机械强度,2010,32(4):675~680
    [65]邓阳春.考虑材料应变强化的压力容器静压承载能力[D].上海:华东理工大学,2009.
    [66]杜志明,范军政.安全裕度研究与应用进展[J].中国安全科学学报,2004,14(6):6~10
    [67] G.H. Majzoobi, Farrahi,A.H., Mahmoudi. A finite element simulation and an experimental study of autofrettage for strain hardened thick-walled cylinders[J]. Materials Science and Engineering ,2003(359): 326~321
    [68]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:430~499
    [69] Release 11.0 Documentation for ANSYS[Z]
    [70]尚晓江,邱峰,赵海峰等.ANSYS有限元结构高级分析方法与范例应用[M].北京:中国水利水电出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700