KNBT陶瓷纤维/环氧树脂1-3复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.3型压电纤维/聚合物复合材料兼具压电陶瓷的压电活性和聚合物的柔韧性,具有较高的压电应变常数和厚度机电耦合系数、低的机械品质因数和声阻抗,适合制作高灵敏度、宽带、窄脉冲的换能器,是医疗超声、无损探测和水声换能器的理想材料。
     针对环境协调性和1-3型压电复合材料在医疗超声换能器上的应用和要求,采用塑性聚合物方法制备了KNBT压电纤维,通过排列-浇注法制备了1-3型压电复合材料,系统研究了复合材料中压电相的排布方式和性能之间的相关性,探讨了纤维含量及长径比对复合材料性能的影响,获得压电复合材料性能变化规律。具体工作及结沦如下:
     1、采用塑性聚合物方法制各了KNBT压电纤维,分析了泥料的固含量和烧成条件对纤维结构与性能的影响。结果表明,当陶瓷固含量为83.3wt%时,可获得可塑性较好、有一定强度的压电纤维素坯。经过1100℃处理2h,KNBT纤维的结构致密、晶粒大小均匀,吸水率W_a、显气孔率P_a和体积密度p_v分别为0.45%、0.46%和5.94g.cm~(-3),抗拉伸强度可达20.52MPa。
     2、采用排列-浇注法制备了1-3型压电复合材料,对复合材料的固化工艺和极化条件进行了研究。结果表明,环氧树脂基体:固化剂:塑性剂:促进剂(质量百分比):100:85:5:0.3,固化温度为160℃时,固化效果较好。极化电场强度为3kV.mm~(-1),极化时间为30min,极化温度为80℃时,复合材料有较好的介电和压电性能。
     3、纤维体积含量对1-3型压电复合材料的性能有较大影响,随着纤维体积含量φ的增加,1-3型压电复合材料的介电常数(?)线性增加,剩余极化强度Pr和压电常数(?)显著增大,当φ=85%时,剩余极化强度Pr=29.40μC.cm~(-2);压电常数(?)=74pC.N~(-1)。
     4、纤维长径比t/d对1-3型压电复合材料的各项性能均产生大的影响。随t/d的增加,介电常数(?)和介电损耗tanδ均减小。压电应变常数(?)和压电电压系数(?)均随着t/d的增加而增大,且(?)比KNBT陶瓷大。
1-3 piezoelectric composites combine the high piezoelectric properties of piezoelectric ceramic and the flexibility of polymer. Thus 1-3 piezoelectric composites have more merits, such as higher piezoelectric constant, larger electro-mechanical coupling coefficient, lower mechanical quality factor and smaller acoustic impedance. They are suitable for transducers with high sensitivity, broad and narrow pulse, which have been widely used in medical ultrasonic, non-destructive testing and acoustic transducers.
     For the environmental harmony and applications of 1-3 piezoelectric composites to medical ultrasonic transducer. KNBT piezoelectric fibers were fabricated by viscous polymer processing (VPP) and 1-3 type piezoelectric composites were prepared by arrangement-pouring method. The interrelation of composites among arrangements and properties were studied systematically . And the effects of different composition and volume fraction of piezoelectric fibers on the composites properties were discussed. The concrete work and conclusions as follows.
     1、KNBT ceramic fibers were fabricated by viscous polymer processing (VPP). The affects of organic content and sintering condition on fiber structures and properties were analyzed. The results show that solid content is 83.3wt%,the green fibers with fine slasticity and strength were prepared.and the best sintering condition was done at 1100℃for 2h. To the KNBT fibers, the hygroscopic coefficient Wa, apparent porosity Pa and bulk density pv were 0.45%, 0.46% and 5.94g/cm~3, respectively. The ultimate tensile strength reached 20.52 MPa.
     2、1-3 piezoelectric composites achieved by arranging-casting technique. With study on curing technique of epoxy resin, The optimized composition of epoxy resin was 100 vs. 85 vs. 5 vs. 0.3 (epoxy resin E-51 vs. MTHPA vs. DOP vs. DMP-30, wt%), The electric field, temperature and time during poling dramatically influenced the properties of 1-3 composites. The optimal poling condition was processed on time of 30 min, temperature of 80℃, and electric field of 3 kV.mm~(-1).
     3、The fiber volume fractionφhad prodigious effects on properties of 1-3 composites. With increasing the ceramic volume fraction, the relative permittivity constant (?) of 1-3 composites rose linear, and remnant polarization gained prominently. The piezoelectric strain constant (?) increased with increasing of fiber volume fractions and the piezoelectric voltage constant (?) decreased.When thefiber volume fractionφreached 85%,the remnant polarization P_1 and piezoelectric strain constant (?) were 29.40μC.cm~(-2) and 74pC.N~(-1).
     4、The influences of aspect ratio t/d on properties of 1-3 composites were tremendous. As increasing t/d, the relative permittivity constant (?) and permittivity loss tanδwill reduce. At the same time, the piezoelectric strain constant (?) and piezoelectric voltage constant (?) will increase. And the values of (?) were higher than KNBT ceramic all through.
引文
[1] Zhang Q M, Cao W W, Wang H, et al. Characterization of the performance of 1-3 type piezocomposites for low-frequency applications, J. Appl. Phys., 1993, 73 (3): 1403-1410.
    
    [2] 赵数根,程伟,1-3型压电复合材料及其研究进展,力学进展,2002,32(1):57-68.
    
    [3] O'Leary R L, Parr ACS, Troge A, et al. Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties, Ultrason : 1073-1076 , 2005.
    
    [4] Meryer R J, Lopath J P, Yoshikawa S, et al. High Frequency 1-3 Composite Fabricated From Alkoxide-Derived PZT Fibers, IEEE Ultrasonics Symposium, 1997: 915-918.
    
    [5] Skinner D P, Newnham R E, Cros L E, Materials Research Bulletin, 1978, 13: 599-607.
    
    [6] Newnham R E, Skinner D P, Cross L E, et al. Connective and piezoelectric-pyroelectric composites, Material Research Bulletin, 1978, 13: 525-536.
    
    [7] Klicker K A, Bigger J V, Newnham R E, Composites of PZT and epoxy for hydrostatic transducer applications, Journal of American Ceramic Society, 1981, 64(1): 5-9.
    
    [8] Gururaja T R, Schulze W A, Shrout T R, et al. High frequency applications of PZT/polymer composite materials, Ferroelectrics, 1981, 39: 1245-1248.
    
    [9]Auld B A, Kunkel H A, Shui Y A, et al.Dynamic behavior of periodic piezoelectric composites, IEEE Ultrasonics Symposium, 1983, 1: 554-558.
    
    [10] Smith W A, Shaulov A A, Auld B A, Design of piezocomposites for ultrasonic transducers, Ferroelectrics, 1989,91: 155-162.
    
    [11]Gentilman R, Fiore D, Serwatka, et al. Sonopanel~TM 1-3 piezocomposite hydrophone-actuator panels, IEEE Ultrasonics Symposium, 1995, 3: 2032-2037.
    
    [12]Richard J, Meyer J R, Shoko Y, Thomas R S, Processing and properties of 15-70 MHz 1-3 PZT fiber/polymer composites, Material Research Innovat. 2000, 3: 324-331.
    
    [13]Hauke T, Steinhausen R, Seifert W, et al. Modeling of poling behavior of ferroelectric 1-3 composites, Journal of Applied Physics, 2001, 89(9): 5040-5047.
    
    [14]Takeuchi T, Masuzawa H, Nakaya C, et al. Medical ultrasonic probe using electrostrictive-ceramics/polymer composite, IEEE Ultrasonics Symposium, 1989, 2: 705-708.
    
    [15]Hayward G, Gachagan A, Hamilton R, et al. Ceramic-epoxy composite transducers for non-contacting ultrasonic applications, Proceedings of the Spie - the International Society for Optical Engineering, 1992, 1733: 49-56.
    
    [16] Hamilton R, Hayward G, The modelling and design of controllable composite transducers, IEEE Ultrasonics Symposium, 1990, 1: 393-396.
    
    [17]Janas V F, Ting S M, Livneh S S, et al. Fine-scale, large area piezoelectric fiber/polymer composites for transducer applications, IEEE Ultrasonics Symposium, 1995: 295-298.
    
    [18] Chan W L H, Unsworth J, Simple mode for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1989, 36(4): 434-441.
    
    [19]Shui Y A, He X M, Mao Y M, et al. A nonlinear interaction of two acoustic beams on the solid interface, Nonlinear Acoustics in Perspective, 1996,321-327.
    
    [20]耿学仓,李明轩,检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究.应用声学.1991,10(5):10-14.
    
    [21]刘殿锋,李明轩.1-3型压电复合材料非均匀振动换能器的研究,应用声学,1998,17(1):11-14.
    
    [22]李邓化,李光,1-3型压电复合材料的机械品质因数,功能材料与器件学报,2004,10(1):71-74.
    
    [23]杨凤霞,王四德,兰从庆,1-3型PZT/polymer压电复合材料性能分析,压电与声光,2001,23(1):49-55.
    
    [24]李坤,李金华,李锦春,陈王丽华,PLZT陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究,无机材料学报,2004,19(2):631-366.
    
    [25]于新胜,葛骑岐,用1-3压电复合材料设计低旁辦水声换能器,青岛海洋大学学报,2003,33(5):747-752.
    
    [26]Richard C,lee H S,Guyomar D,Thermo-mechanical stress on 1-3 piezocomposite powertransducer performance,Ultrasonics,2004,42:417-424.
    
    [27]李邓化,李光,1-3型压电复合材料的机械品质因素,功能材料与器件学报,2004,10(1):71-74.
    
    [28]Zeng D W, Li K, Yung K C, et al. UV laser micromachining of piezoelectric ceramic using a pulsed Nd: YAG laser, Applied Physics A, 2004, 78: 415-421.
    
    [29] Panda R K, Janas V F , Safari A, Fabrication and Properties of Fine Scale 1-3 Piezocomposites by Modified Lost Mold Method, IEEE, 1996, 551-554.
    
    [30] Wan J G, Bao Q T, Design and Study on a 1-3 Anisotropy Piezocomposite Sensor, Materials adn Design, 2000, 21: 533-536.
    
    [31]Wang D Y, Chan W L H, A dual frequency ultrasonic transducer based on BNBT-6/epoxy 1-3 composite, Materials Science and Engineering B, 2003,99: 147-150.
    
    [32]Liu R, Harasiewicz K A, Knapik D, et al. Foster, F S Appl. Phys. Lett. 2001, 75: 3390.
    
    [33]Zipparos M, Thesis The Pennsylvania State University. 1996.
    
    [34]甄玉花,李敬锋,微细1-3型PZT/环氧树脂压电复合材料的制备及其性能,硅酸盐学报,2006,34(3):381-384
    
    [35]郭栋,李龙土,桂治轮,陶瓷聚合物压电复合材料的最新进展,高分子材料科学与工程,2001,17(6):44-47
    
    [36]Zeng D W, Li K, Yung K C, et al. UV Laser Micromachining of Piezoelectric Ceramic Using a Pulsed Nd:YAG laser. Appl. Phys. A, 2004, 78:415-421.
    
    [37]Gentilman R, Fiore D, et al. SonopanelTM 1-3 Piezocomposite Hydrophone-Actuator Panels.
    
    [38]Leslie J B, Richard L G, Pham T H, et al. Injection molded fine-scale piezoelectric composite transducers, IEEE Ultrasonics Symposium, 1993, 499-503.
    
    [39]Leslie J B, Richard L G, Hong T P, et al. Injection molded fine-scale piezoelectric composite transducers, IEEE Ultrasonics Symposium, 1993, 499-503.
    
    [40]Su B, Button T W, Schneider A, et al. Embossing of 3D Ceramic Microstructures, Microsystem Technologies, 2002, 8: 359-362.
    
    [41]Negreira C, Gomez H, Perez N, Nunez 1, Lateral Modes and Diffracted Field Behaviour in Non-Periodical 1-3 Piezocomposite Transducers, IEEE Ultrasonics Symposium, 1998, 641-644.
    
    [42]Meryer R J, Lopath P, Yoshikawa S, et al. High Frequency 1-3 Composite Fabricated From Alkoxide-Derived PZT Fibers, IEEE Ultrasonics Symposium, 1997: 915-918.
    
    [43]Meyer R J, Shrout T R, Yoshikawa S, Development of ultra-fine scale piezoelectric fibers for use in high frequency 1-3 transducers, IEEE, 1996: 547-550.
    
    [44]李坤,曹大呼,李金华,等.锌铌酸铅-锆钛酸铅(PZN-PZT)压电陶瓷和压电纤维的制备,无机材料学报,2005,20(5):1099-1105.
    
    [45]Negreira C,Gomez H,Perez N,Nunez I,Lateral Modes and Diffracted Field Behaviour inNon-Periodical 1-3 Piezocomposite Transducers,IEEE Ultrasonics Symposium,1998,641-644.
    
    [46]徐玲芳,陈文,周静,等.锆钛酸铅镧纤维 1-3压电复合材料的制备及性能,硅酸盐学报,2007,35(9):1152-1156.
    
    [47]杨凤霞,王四德,兰从庆,1-3型PZT/Polymer压电复合材料性能分析,压电与声光,2001,23(1):49-55.
    
    [48] Haun M J, Moses P, Gururaja T R, et al. Ferroelectrics, 1983,49: 256-264.
    
    [49]Choy S H, Chan W H L, et al. Study of 1-3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integrate Ferroelectrics. 2004, 63: 621-627.
    
    [50]Jadidian B,Janas V,Safari A,et al.Development of fine scale piezoelectric ceramic/polymer composites via incorporation of fine PZT fibers.Proceedings of the Tenth IEEE International Symposium On Applications Of Ferroelectrics.1996,1-2:31-34.
    
    [51]Kim H W,Kim H E,Nanofiber of ultra-structured aluminum and zirconium oxide hybrid,Journal of Nanoscence and Nanotechnology.2006,6(2): 505-509.
    
    [52]翟学良,胡亚伟,刘伟华,合成压电纤维材料的制备工艺及发展趋势,无机盐工业,2006,38(5):7-10.
    
    [53]Chandradass J,Balasubramanian M,Sol-gel processing of alumina fibres.Journal of Materials Process Technique,2006,173(3): 275-280.
    
    [54]Xie J,Hu M,Ling S F,et al.Fabrication and characterization of piezoelectric cantilever for micro transducers,Sensors and Actuators A (Physical),2006,126(1): 182-186.
    
    [55]Li K,Piezoelectric ceramic fiber/polymer 1-3 composites for transducer applications,Thesis for Ph.D.Degree,Hong Kong Polytechnic University,Hong Kong,2002.
    
    [56]王德刚,刘润涛,顾利霞,溶胶-凝胶法在陶瓷/玻璃纤维制备中的应用,山尔陶瓷,2001,24(4):13-16.
    
    [57]曹凯,沈湘黔,王涛平,等.溶胶凝胶法制备纳米结构氧化铝压电纤维,矿冶工程,2004,24(5):76-79.
    
    [58]包定华,张良莹,姚熹,溶胶凝胶工艺制备功能压电纤维,功能材料,1997,28(6):566-569.
    
    [59]张柏清,裴佳宏,汤国兴,等.真空练泥机中陶瓷泥料挤出过程的研究,中国陶瓷工业,2004,11(3):10-13.
    
    [60]张贵华,塑性压制成型工艺,河北陶瓷,1995,23(1):16-18.
    
    [61]Wang Y,Jorge J,Synthesis of lead zirconate titanate nanofibres and the Fourier-transforminfrared characterization of their metallo-organic decomposition process,Nanotechnology,2004,15:32-36.
    
    [62]王英姿,侯宪钦,陶文宏,等.氧化锆压电纤维特点及制备方法,河南建材,2005,1:29-31.
    
    [63]Helbig J,Glaubitt W,Spaniol H,et al.Development and technology of doped sol-gelderived lead zirconate titanate fibers,Smart Materials and Structures,2003,12:987-992.
    
    [64]李坤,李金华,李锦春,等.PLZT压电纤维/环氧树脂1-3复合材料的制备和性能研究,无机材料学报,2004,19(2):631-366.
    
    [65]汪长安,黄勇,郭海,等.定向排布的SiC晶须补Si_3N_4复合材料的制备,硅酸盐学报,1997,25(11):54-60.
    
    [66]张宗涛,胡黎明,纳米氧化锆粉末的塑性挤制成型研究,无机材料学报,1996,11(3):565-569.
    
    [67]Qiu J H,Tani J J,Kobayashi Y,et al.Fabrication of piezoelectric ceramic fibers by extrusionof Pb(Zr,Ti)O_3 powder and Pb(Zr,Ti)O_3 sol mixture,Smart Materials and Structures,2003,12:331-337.
    
    [68]徐玲芳,陈文,周静,等.锆钛酸铅镧纤维1-3压电复合材料的制备及性能,硅酸盐学报,2007,35(9):1152-1156.
    
    [69]刁玉强,何巨龙,于栋利,等.氧化铝、碳化硅压电纤维的成型与烧结,长春光学精密机械学院学报,1999,22(4):13-16.
    
    [70]Li Y M,Chen W,Zhou J,et al.Dielectric and piezoelecrtic properties of lead-free(Na_(0.5)Bi_(0.5))TiO_3-NaNbO_3 ceramics,Material Science and Engineering B,2004,112:5.
    
    [71]GB/T 3077-1999.合金结构钢技术条件.
    
    [72]GB 3362-81.
    
    [73]李远,秦自楷,周志刚,压电与铁电材料的测量.科学出版社.1984.
    
    [74]中华人民共和国国标.压电陶瓷材料性能试验方法-圆片径向伸缩振动模式.中国标准出版社出版,1999年4月,GB/T 2414.1-1998
    
    [75]姚义俊,丘泰,氮化铝陶瓷浆料流变性能的研究[J],材料工程,2003,6:10-13.
    
    [76]Hidber P C,Graule T J,Gauckler L J,Citric acid a dispersant for aqueous aluminasuspensions [J],J Am Ceram Soc,1996,79(7):1857-1867.
    
    [77]仇家良,郭露村,水基明胶-氧化铝浆料的流变性及注凝特性[J],中国陶瓷,2006,42(3):32-35.
    
    [78]胡云香,周东祥,龚树萍,等.用柠檬酸三铵分散和稳定Ba7iO_3水浆料[J],电子元件与材料,2000,19:(6):12-14.
    
    [79]金格瑞,等.陶瓷导论,清华大学译,中国建筑工业出版社,1982.
    
    [80]李古晓,张治文,夏钟福,等.空间电荷在聚合物老化和击穿过程中的作用,科学通报.2000,45:2469-2475.
    
    [81]谢大荣,巫松桢,电子高分子物理,西安交通大学出版社,1990.
    
    [82]顾振,王寿泰,聚合物的电性和磁性,上海交通大学出版社,1990.
    
    [83]何平笙,高聚物的结构与性能,中国科技大学高分子物理教研室,科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700