1-3型PZT5/epoxy resin压电复合材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1-3型压电陶瓷/聚合物复合材料兼具压电陶瓷的压电活性和聚合物的柔韧性。与单相压电材料及压电聚合物相比,具有较高的压电应变常数和厚度机电耦合系数、低的机械品质因数和声阻抗,适合制作高灵敏度、宽带、窄脉冲的换能器,是医疗超声、无损探伤和水听器的理想材料。
     本文在分析1-3型压电复合材料研究现状的基础上,针对其在医疗超声换能器上的应用,采用塑性聚合物方法、排列-浇铸法,系统地研究了成型工艺、极化参数、压电陶瓷体积含量及纵横比等因素对1-3型压电复合材料的压电、介电、铁电性能和声阻抗的影响,并基于复合理论,研究了材料的相关规律,得到了实验与理论相吻合的研究结果,为这类材料的应用和开发提供了重要的理论依据。具体工作及结论如下:
     (1) 采用塑性聚合物方法分别制备了截面为圆形和方形的PZT5陶瓷纤维,分析了泥料中有机物含量、烧成条件对纤维结构与性能的影响。结果表明,最优化泥料配方为PZT5:PVA粘合剂:丙三醇=30:4:1(wt%),最佳烧成温度为1280℃,保温时间为4h。PZT5陶瓷纤维结构致密,晶粒大小均匀,约2~5μm。
     (2) 圆柱形PZT5纤维的吸水率W_a、显气孔率P_a和体积密度ρ_v分别为0.45%、0.44%和7.89g/cm~3。抗拉伸强度U.T.S.可达24.88MPa。剩余极化P_r与矫顽场E_c分别为41.40μC/cm~2和1.10kV/mm。方形PZT5纤维的体积密度ρ_v、抗拉伸强度U.T.S.、剩余极化P_r和矫顽场E_c分别为7.91g/cm~3、23.97MPa、41.68μC/cm~2和1.10kV/mm。
     (3) 环氧树脂的固化工艺表明,采用顺丁烯二酸酐为固化剂时可获得结构致密、几乎无气孔的环氧树脂。1kHz下,环氧树脂的相对介电常数ε~*和介电损耗tanδ分别为3.81和3%,且在0~10MHz范围内变化不大。极化工艺对1-3型压电复合材料的性能有较大的影响,最佳极化工艺参数为极化时间30min,极化温度100℃,极化电压2.5kV/mm左右。采用排列-浇铸法可实现PZT5纤维的非周期性分布排列。
     (4) 陶瓷体积含量φ对1-3型压电复合材料的性能有较大影响,性能的变化规律可以归纳为:随着陶瓷相含量φ的增加,1-3型压电复合材料的介电常数(?)几乎线性增加;剩余极化强度P_r显著增大,当φ为85%时,剩余极化强度P_r高达31.88μC/cm~2;压电应变常数(?)随着φ的增加而增大,其压电电压系数(?)比PZT5陶瓷大,随φ的增加而减小;径向机电耦合系数(?)比PZT5
1-3 piezoelectric composites combine high piezoelectric properties of piezoelectric ceramic and flexibility of polymer. Compared with pure ceramic or piezoelectric polymer, 1-3 piezoelectric composites have more marks, such as higher piezoelectric conatant, larger mechanical-electronical coupling coefficient, lower mechanical quanity factor and smaller acoustic impedance. They are suitable for transducers with high sencsitivity, wide bend and narrow pulse, which have been widely used in medical ultrasonic, nondestructive test and hydrophone.
    In this article, the development of 1-3 composites was discussed. PZT5 fibers were fabricated by viscous polymer processing (VPP). 1-3 piezoelectric composites were prepared by arranging PZT5 fibers and casting epoxy resin. Based on its use for medical ultrsonic transducer, the influences of procedure, poling, ceramic volume fraction and aspect ratio on piezoelectric properties, dielectric properties, ferroelectric properties and acoustic impedance were studied. And the rules of 1-3 composites were consistent with the composite theory, which were useful for their applications and developments.
    (1) PZT5 ceramic fibers were fabricated by viscous polymer processing (VPP). The affects of organic and sintering condition on fiber structures and properties were analyzed. The optimized composition of lurry was 30 vs. 4 vs. 1 (PZT5 vs. PVA binder vs. glycerine, wt%), and the best sintering condition was done at 1280 °C for 4 h. The fiber structure was dense, and the crystal size was uniform, about 2-5 μm.
    (2) To the round section PZT5 fibers, the hygroscopic coefficient W_u, apparent porosity P_a and bulk density ρ_y were 0.45%, 0.44% and 7.89 g/cm~3, respectively. The ultimate tensile strength (U.T.S.) reached 24.88 MPa. The remnant polarization P_r and coercive field E_c were 41.40 μC/cm~2 and 1.10 kV/mm, respectively. The square section PZT5 fibers were fabricated with bulk density ρ_v of 7.91 g/cm~3. The U.T.S. was 23.97 MPa. While the value of P_r and E_c were 41.68 μC/cm~2 and 1.10 kV/mm, respectively.
    (3) With study on curing technique of epoxy resin, it was found that the structure of epoxy resin was tight and almost had no pore when the curing agent
引文
[1] Sboros V, Glynos E, Pye S D, et al. Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy. Ultrasound Medical Biology. 2006, 32(4): 579-585.
    [2] 刘琳波.医用超声内窥镜探头设计及实时图像数字扫描变换的研究.硕士学位论文.天津大学.2004.
    [3] Halmshaw R. Non-destructive testing. Edivard Arnold, 2003.
    [4] Gardner W E. Improving the effectiveness and the reliability of non-destructive testing. Pergamon Press, 2002.
    [5] Mcmaster R C. Nondestructive testing handbook. The Ronald Press Co. 2004.
    [6] Wotfgaog S, Nelson N H. Ultrasonic transducers for materials testing and their characterization. Physical Acoustics. 1979, ⅪⅤ: 277-406.
    [7] Beige M, Kamlah. Modeling of poling behavior of ferroelectric 1-3 composites. Journal of Applied Physics. 2001, 89(9): 5040-5047.
    [8] Mattiat O E. Ultrasonic transducer materials. New York Plenum Press, 1971.
    [9] 刘梅冬,许毓春.压电铁电材料与器件.华中理工大学出版社.1992.
    [10] Gavrilya V, Fesenko E G. Piezoelectric effect in lead titanate single crystals. Soviet Physics Crystallography. 1971, 16(3): 549-552.
    [11] Kogan S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics-Solid State. 1964, 5(10): 2069-2070.
    [12] Lam K H, Chan H L W, Luo H S, Yin, Q R, Yin Z W. Piezoelectrically actuated ejector using PMN-PT single crystal. Sensors and Actuators A-Physical. 2005, 121(1): 197-202.
    [13] Lyubimov V N. Properties of surface elastic waves in piezoelectric crystals. Soviet Physics Crystallography. 1971, 15(6): 969-971.
    [14] Nakamura K, Adachi Y. Piezoelectric transformers using linbo3 single crystals. Electronics and Communications in Japan Part Ⅲ-Fundamental Electronic Science. 1998, 81(7): 1-6.
    [15] Ouchi H. Piezoelectric properties and phase relations of Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3-PbZrO_3 ceramics with barium or strontium substitutions. Journal of the American Ceramic Society. 1968, 51(3): 16-19.
    [16] Saito Y, Takao H, Tani T, Nonoyama T, et al. Lead-free piezoceramics. Nature. 2004, 432(7013): 84-87.
    [17] Chen H Y, Long J W, Meng Z Y. Effect of Zr/Ti ratio on the properties of PMMN-PZT ceramics near the morphotropic phase boundary. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2003, 99(1-3): 433-436.
    [18] Jin D Z, Chen X M. BaTiO_3 ceramics toughened by dispersed coarse particles. Ceramics International. 2003, 29(4): 371-375.
    [19] Lian J, Shiosaki T. Pyroelectric properties of Pb[Zr, Ti, (Zn, Nb)]O_3 solid-solution ceramics. Ferroelectrics. 1991, 118(1-4): 135-141.
    [20] Park C H, Baz A. Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. Journal of Vibration and Control. 2005, 11(3): 331-346.
    [21] Wang R P, Xie R J, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na K-0.5(0.5))NbO_3-PbTiO_3 ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2002, 41(11B): 7119-7122.
    [22] Wang Y, Su Y J, Chu W Y, Qiao L J. Effect of electric field, stress and environment on delayed fracture of a PZT-5 ferroelectric ceramic. Science in China Series G-Physics Mechanics & Astronomy. 2005, 48(1): 89-100.
    [23] Chen X D, Yang D, Jiang Y D, et al. 0-3 piezoelectric composite film with high d_(33) coefficient. Sensors and Actuators A. 1998, 65:194-196.
    [24] Gomez T E, Montero D E, Espinosa F, Levassort F, et al. Ceramic powder-polymer piezocomposites for electroacoustic transduction: modeling and design. Ultrasonics. 1998, 36: 907-923.
    [25] Marra S P, Ramesh K T, Douglas A S. The mechanical and electromechanical properties of calcium-modified lead titanate/poly (vinylidene fluoride-trifluoroethylene) 0-3 composites. Smart Materials and Structure. 1999, 8: 57-63.
    [26] Wan J G, Tao B Q. Design and study on a 1-3 anisotropy piezocomposite sensor. Materials and Design. 2000, 21: 533-536.
    [27] Bowen C R, Topolov V Y. Piezoelectric sensitivity of PbTiO_3-based ceramic-polymer composites with 0-3 and 3-3 connectivity. Acta Materials. 2003, 51 : 4965-4976.
    [28] Hashimoto K Y, Yamaguchi M. IEEE Ultrasonics Symposium. 1986, 697.
    [29] Li Z J, Zhang D, Wu K R. Cement matrix 2-2 piezoelectric composite-part 1. Sensory Effect Materials and Structures. 2001, 34(242): 506-512.
    [30] Turcu S, Jadidian B, Danforths C, Safari A. Piezoelectric properties of novel oriented ceramic-polymer composites with 2-2 and 3-3 connectivity. Journal of Electroceramics. 2003, 9(3): 165-171.
    [31] Zhang Q M, Cao W W, Wang H, Cross L E. Characterization of the performance of 1-3 type piezocomposites for low-frequency applications. Journal of Appiled Physics. 1993, 73 (3): 1403-1410.
    [32] 覃伟中,周啸.聚偏氟乙烯压电膜在医疗仪器中的应用.压电与声光.1995,17(6):24-31.
    [33] 赵数根,程伟.1-3型压电复合材料及其研究进展.力学进展.2002,32(1):57-68.
    [34] O'leary R L, Parr A C S, Troge A, et al. Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties. Ultrason. 2005: 1073-1076.
    [35] Brittain R H, Weight J P. Fabrication of non-uniformly excited wide-band ultrasonic transducers. Ultrasonics. 1987, 25(2): 100-106.
    [36] Meryer R J, Lopath P, Yoshikawa S, et al. High frequency 1-3 composite fabricated from alkoxide-derived PZT fibers. IEEE Ultrasonics Symposium. 1997:915-918.
    [37] Gualtieri J G, Kosinski J A, Ballato A. Piezoelectric materials for acoustic wave applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1994, 41(1): 53-59.
    [38] Solal M, Gelly J F, Mcavoy B R. A new method to decrease grating sidelobes level in medical acoustic arrays. IEEE Ultrasonics Symposium. 1988, 2: 655-658.
    [39] Smith W A. The application of 1-3 piezocomposites in acoustic transducers. IEEE Ultrasonics Symposium. 1991, 145-152.
    [40] Gururaja T R, Panda R K, Chen J, et al. Single crystal transducers for medical imaging applications. IEEE Ultrasonics Symposium. 1999, 2: 969-272.
    [41] Gururaja T R, Schulze W A, Newnham R E, et al. Composite piezoelectric transducers for ultrasonic medical imaging proceedings of the seventh annual conference of the ieee/engineering in medicine and biology society. Frontiers of Engineering and Computing in Health Care. 1985, 1: 226-230.
    [42] Wickramasinghe V K, Hagood N W. Durability characterization of active fiber composite actuators for helicopter rotor blade applications. Journal of Aircraft. 2004, 41(4): 931-937.
    [43] Hagood N W, Mcfarland A J. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1995, 42(2): 210-224.
    [44] Zhang Q M, Wang H, Zhao J, et al. A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1996, 43(1): 36-43.
    [45] Rossetti G A, Pizzochero A, Bent A A, et al. Recent advances in active fiber composites technology. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics. 2001, 2: 753-756.
    [46] Bent A A, Hagood N W. Piezoelectric fiber composites with interdigitated electrodes. Journal of Intelligent Material Systems and Structures. 1997, 8(11): 903-919.
    [47] Rodgers J P, Hagood N W, Murotsu Y, et al. Design, manufacture and testing of an integral twist-actuated rotor blade. Eigth International Conference on Adaptive Structures and Technologies. 1998, 63-72.
    [48] Du Plessis A J, Hagood N W, Rogers C A, et al. Performance investigation of twist actuated single cell composite beams for helicopter blade control. Sixth International Conference on Adaptive Structures. 1996, 191-216.
    [49] Wang D Y, Chan H L W. A dual frequency ultrasonic transducer based on BNBT-6/epoxy 1-3 composite. Materials Science and Engineering B. 2003, 99: 147-150.
    [50] Leslie J, Bowen R L, Gentilman R, Hong T P, Daniel F F, Kenneth W F. Injection molded fine-scale piezoelectric composite transducers. IEEE Ultrasonics Symposium. 1993, 499-503.
    [51] Skinner D P, Newnham R E, Cross L E. Materials Research Bulletin. 1978, 13: 599-607.
    [52] Newnham R E, Skinner D P, Cross L E, et al. Connective and piezoelectric-pyroelectric composites. Material Research Bulletin. 1978, 13: 525-536.
    [53] Klicker K A, Bigger J V, Newnham R E. Composites of PZT and epoxy for hydrostatic transducer applications. Journal of American Ceramic Society. 1981, 64(1): 5-9.
    [54] Gururaja T R, Schulze W A, Shrout T R, et al. High frequency applications of PZT/polymer composite materials. Ferroelectrics. 1981, 39: 1245-1248.
    [55] Auld B A, Kunkel H A, Shui Y A, Wang Y. Dynamic behavior of periodic piezoelectric composites. IEEE Ultrasonics Symposium. 1983, 1: 554-558.
    [56] Smith W A, Shaulov A A, Auld B A. Design of piezocomposites for ultrasonic transducers. Ferroelectrics. 1989, 91: 155-162.
    [57] Gentilman R, Fiore D, Serwatka, et al. Sonopanel~(TM) 1-3 piezocomposite hydrophone-actuator panels. IEEE Ultrasonics Symposium. 1995, 3: 2032-2037.
    [58] Richard J, Meyer J R, Shoko Y, Thomas R S. Processing and properties of 15-70 MHz 1-3 PZT fiber/polymer composites. Material Research Innovat. 2000, 3:324-331.
    [59] Hauke T, Steinhausen R, Seifert W, Kamlah M. Modeling of poling behavior of ferroelectric 1-3 composites. Journal of Applied Physics. 2001, 89(9): 5040-5047.
    [60] Takeuchi H, Masuzawa H, Nakaya C, et al. Medical ultrasonic probe using electrostrictive-ceramics/polymer composite. IEEE Ultrasonics Symposium. 1989, 2: 705-708.
    [61] Hayward G, Gachagan A, Hamilton R, Hutchins D A, Wright W M D. Ceramic-epoxy composite transducers for non-contacting ultrasonic applications. Proceedings of the Spie - the International Society for Optical Engineering. 1992, 1733: 49-56.
    [62] Hamilton R, Hayward G. The modelling and design of controllable composite transducers. IEEE Ultrasonics Symposium. 1990, 1: 393-396.
    [63] Janas V F, Ting S M, Livneh S S, Walker F R, et al. Fine-scale, large area piezoelectric fiber/polymer composites for transducer applications, IEEE Ultrasonics Symposium. 1995: 295-298.
    [64] Chan W L H, Unsworth J. Simple mode for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1989, 36(4): 434-441.
    [65] Shui Y A, He X M, Mao Y M, et al. A nonlinear interaction of two acoustic beams on the solid interface. Nonlinear Acoustics in Perspective. 1996, 321-327.
    [66] 耿学仓,李明轩.检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究.应用声学.1991,10(5):10-14.
    [67] 刘殿锋,李明轩.1-3型压电复合材料非均匀振动换能器的研究.应用声学.1998,17(1):11-14.
    [68] 李邓化,李光.1-3型压电复合材料的机械品质因数.功能材料与器件学报.2004,10(1):71-74.
    [69] 杨凤霞,王四德,兰从庆.1-3型PZT/polymer压电复合材料性能分析.压电与声光.2001,23(1):49-55.
    [70] 李坤,李金华,李锦春,陈王丽华.PLZT陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究.无机材料学报.2004,19(2):631-366.
    [71] 于新胜,葛骑岐.用1-3压电复合材料设计低旁瓣水声换能器.青岛海洋大学学报.2003,33(5):747-752.
    [72] Smith W A, McAvoy B R. Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio. IEEE Ultrasonics Symposium. 1991, 1: 661-666.
    [73] Yamaguchi M, Hashimoto K Y, Makita H, et al. Finite element method analysis of dispersion characteristics for 1-3 type piezoelectric composites. IEEE Ultrasonics Symposium. 1987, 2: 657-661.
    [74] Geng X C, Zhang Q M. Resonance modes and losses in 1-3 piezocomposites for ultrasonic transducer applications. Journal of Applied Physics. 1999, 85(3): 1342-1350.
    [75] 水永安.压电复合材料的理论模型.物理学进展.1996,16(3):353-361.
    [76] Zhang Q M, Wang H, Cross L E. Piezoelectric tubes and tubular composites for actuator and sensor applications. Journal of Materials Science. 1993, 84(10): 5725-5728.
    [77] Reynolds P, Hyslop J, Hayward G. Analysis of spurious resonances in single and multi-element piezocomposite ultrasonic transducers. IEEE Ultrasonics Symposium. 2003, 1650-1653.
    [78] Steinhausen R, Hauke T, Seifert W, et al. Finescaled piezoelectric 1-3 composites: properties and modeling. Journal of the Europe Ceramic Society. 1999, 19:1289-1293.
    [79] Haun M J, Newnham R E. An experimental and theoretical study of 1-3 and 1-3-0 piezoelectric PZT-polymer composites for hydrophone applications. Ferroelectrics. 1986, 68(1-4):123~139.
    [80] Steinhausen R, Hauke T, Seifert W, Beige H, Watzka W, Seifert S, Sporn D, Starke S, Schonecker A. Finescaled Piezoelectric 1-3 Composites: Properties and Modeling, Journal of The Europe Ceramic Society. 1999, 19: 1289-1293.
    [81] Smith W A. modeling 1-3 composite piezoelectrics: hydrostatic response. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.1993, 40(1): 41-48.
    [82] Zipparos M J. Ph D thesis. The Pennsylvania State University.1996.
    [83] Liu R B, Harasiewicz K A, Foster F S. Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2001, 48(1): 299-306.
    [84] Zeng D W, Li K, Yung K C, Chan W L H, Choy C L, Xie C S. UV laser micromachining of piezoelectric ceramic using a pulsed Nd: Yag laser. Applied Physics Letter A. 2004, 78: 415-421.
    [85] Leslie J B, Richard L G, Hong T P, Daniel F F, Kenneth W F. Injection molded fine-scale piezoelectric composite transducers. IEEE Ultrasonics Symposium. 1993, 499-503.
    [86] Pearce D H, Seffen K A, Button T W. Net shape formed spiral and helical piezoelectric actuators. Journal of Materials Science. 2002, 37(15): 3117-3122.
    [87] Su B, Button T W, Schneider A, et al. Embossing of 3D ceramic microstructures. Microsystem Technologies. 2002, 8: 359-362.
    [88] Carlos N, Hector G, Nicolas P, Ismael N. Lateral modes and diffracted field behaviour in non-periodical 1-3 piezocomposite transducers. IEEE Ultrasonics Symposium. 1998, 641-644.
    [89] Haun M J, Moses P, Gururaja T R, et al. Transversely reinforced 1-3 and 1-3-0 piezoelectric composites. Ferroelectrics. 1983, 49(1-4): 256-264.
    [90] Choy S H, Chan W H L, et al. Study of 1-3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integrate Ferroelectrics. 2004, 63: 621-627.
    [91] Jadidian B, Janas V, Safari A, et al. Development of fine scale piezoelectric ceramic/polymer composites via incorporation of fine pzt fibers. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics. 1996, 1-2: 31-34.
    [92] Kim H W, Kim H E. Nanofiber of ultra-structured aluminum and zirconium oxide hybrid. Journal of Nanoscence and Nanotechnology. 2006, 6(2): 505-509.
    [93] Chandradass J, Balasubramanian M. Sol-gel processing of alumina fibres. Journal of Materials Process Technique. 2006, 173(3): 275-280.
    [94] Xie J, Hu M, Ling S F, et al. Fabrication and characterization of piezoelectric cantilever for micro transducers. Sensors and Actuators A (Physical). 2006, 126(1): 182-186.
    [95] 汪长安,黄勇,郭海,徐利华,李建保.定向排布的SiC晶须补Si_3N_4复合材料的制备.硅酸盐学报.1997,25(11):54-60.
    [96] 张宗涛,胡黎明.纳米氧化锆粉末的塑性挤制成型研究.无机材料学报.1996,11(3):565-569.
    [97] Montgomery R E, Richard C. An analytical model for the hydrostatic pressure response of a 1-3 composite. IEEE Ultrasonics Symposium. 1994, 307-312.
    [98] Klicker K A, Schulze W A, Biggers J V. Piezoelectric composites with 3-1 connectivity and a foamed polyurethane matrix. Journal of the American Ceramic Society. 1982, 65(12): 208-210.
    [99] GB/T 3077—1999.合金结构钢技术条件.
    [100] GB 3362-81.
    [101] 李远,秦自楷,周志刚.压电与铁电材料的测量.科学出版社.1984.
    [102] 谢希文,过梅丽.材料工程基础.北京航空航天大学出版社.2001.
    [103] GB/T 3077-1999.优质碳素结构钢技术条件.
    [104] Li K, Pang G, Chan W H L, Choy C L, Li J H. Mn and Sm doped lead titanate ceramic fibers and fiber/epoxy 1-3 composites. Journal of Applied Physics. 2004, 95(10): 5691-5695.
    [105] Kuczynski G C. Sintering and related phenomena. New York Plenum Press. 1973.
    [106] Goto Y, Tsuge A. Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si/Sub 3/N/Sub 4/fabricated by extrusion and hot-pressing. Journal of American Ceramic Society. 1993, 76(6): 1420-1424.
    [107] 金格瑞W D等.陶瓷导论.清华大学译。中国建筑工业出版社.1982.
    [108] Zech. Epoxide preparation. U. S. 1951, 2.
    [109] Greenlee. Manufacture ofepoxide resins. U. S. 1954, 2.
    [110] Narracott. The curing ofepoxide resins. British Plastics. 1953, 26: 120-123.
    [111] Fisch, Hofmann, Koskikallio. The curing mechanism of epoxy resins. Symposium of British Society of Chemical Industry. 1956.
    [112] 李芳,张吉才,杜文才.用差热分析(DTA)法对环氧树脂固化条件的研究.光谱实验室.2001,18(3):369-372.
    [113] GB/T 2414.1-1998.
    [114] GB 3389.5-82.
    [115] GB 2414-81.
    [116] 李吉晓,张治文,夏钟福,秦晓岿,彭宗仁.空间电荷在聚合物老化和击穿过程中的作用.科学通报.2000,45:2469-2475.
    [117] 谢大荣,巫松桢.电子高分子物理.西安交通大学出版社.1990.
    [118] 顾振,王寿泰.聚合物的电性和磁性.上海交通大学出版社.1990.
    [119] 何平笙.高聚物的结构与性能.中国科技大学高分子物理教研室.科学出版社.1998
    [120] Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics: thichness-mode oscillations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1991, 38(1): 40-47.
    [121] Waller D, Chen J, Gururaja T R, et al. Requirements of piezoelectric materials for medical ultrasound transducers. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics. 1996, 2: 565-568.
    [122] Li K. Piezoelectric ceramic fiber/polymer 1-3 composites for transducer applications. Ph D Thesis. Hong Kong Polytechnic University. 2002.
    [123] D. Certon, F. Patat, O. Casula, L. P. Tran Hu Hue, 2 dimensional modeling of lateral modes in 1-3 piezocomposites. Ultrosonic Symposium. 1994, 991-994.
    [124] 党长久,李明轩.1-3型压电复合材料.应用声学.1994,14(1):2-7.
    [125] Gururaja T R, Schulze W A, Cross L E, et al. Piezoelectric composite materials for ultrasonic transducer applications: evaluation of ultrasonic medical applications. IEEE Transactions on Sonics and Ultrasonics. 1985, 32(4): 499-513.
    [126] Gururaja T R, Schulze W A, Cross L E, et al. Piezoelectric composite materials for ultrasonic transducer applications, i. resonant modes of vibration of PZT rod-polymer composites. IEEE Transactions on Sonics and Ultrasonics. 1985, 32(4): 481-498.
    [127] Auld B A, Kunkel H A, Shui Y A, et al. Dynamic behavior of periodic piezoelectric composites. IEEE Ultrasonics Symposium. 1983, 1: 554-558.
    [128] Auld B A, Shui Y A, Wang Y. Elastic wave propagation in three-dimensional periodic composite materials. Journal de Physique Colloque. 1984, 45(5): 159-163.
    [129] Kunkei H A, Auld B A. The use of guided acoustic interface waves in the study of differentially poled piezoelectric ceramics. Ferroelectrics. 1983, 51(1-2): 759-764.
    [130] Steinhausen R, Hauke T, Seifert W, Beige H, Watzka W, Seifert S, Sporn D, Starke S, Schonecker A. Finescaled piezoelectric 1-3 composites: properties and modeling. Journal of the Europe Ceramic Society. 1999, 19: 1289-1293.
    [131] Geng X C, Zhang Q M. Resonance modes and losses in 1-3 piezocomposites for ultrasonic transducer applications. Journal of Applied Physics. 1999, 85(3): 1342-1350.
    [132] Rainer M, Schmitt W, Scott G, Richard D I. Numerical validation of an advanced finger print sensor based on 1-3 composites. IEEE Ultrasonics Symposium. 2003, 1074-1077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700