PMnS-PZN-PZT压电纤维的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料利用其正逆压电效应可主动调节其形变或输出电信号而在智能结构中获得广泛应用。压电纤维具有较高的压电应变常数、轴向机电耦合系数及好的各向异性等特点可独立与有机物复合用于医疗超声、水声换能或航空、航天领域的自适应表层。
     本文采用塑性聚合物方法制备PMnS-PZN-PZT压电纤维,排列-浇铸法制备1-3压电复合材料,系统研究了塑性泥料及压电纤维的的制备工艺,研究了环氧树脂的固化条件,讨论了树脂对压电纤维性能的影响以及纤维长径比对复合材料结构、性能与振动模式的影响。具体工作及结论如下:
     1、采用塑性聚合物方法制备了PMnS-PZN-PZT压电纤维,研究了粉体粒度、有机物含量及烧结工艺条件对泥料流变学特点及纤维结构和性能的影响。结果表明:陶瓷粉体球磨20h,聚乙烯醇加入量为0.56 wt%,丙三醇加入量为3.33 wt%时,泥料具有最好的塑性,此时,泥料的Zeta电位绝对值最大。1240℃,保温6h制备的压电纤维为完全的钙钛矿结构,晶粒间结合紧密,晶粒大小均匀。抗拉伸强度为16.5 MPa,具有脆性断裂的特点,而纤维素坯的力学性能则具有典型的塑性变形特点,说明塑性聚合物方法可制备高致密度高力学强度的压电纤维。
     2、研究了夹持状态对纤维铁电性能的影响,结果表明,压电纤维处于自由状态时,剩余极化强度和矫顽场分别为85.4μC/cm2和8.5 kV/cm,采用环氧树脂浇铸夹持之后,剩余极化强度和矫顽场分别为39.2 gC/cm2和15.0 kV/cm,说明夹持状态对纤维的铁电性能产生很大的影响,由漏电流测试结果表明,夹持利于纤维表面漏电流的降低,同时也降低了纤维的自由形变。
     3、将PMnS-PZN-PZT压电纤维采用排列-浇注法制备了1-3型压电复合材料,研究了复合材料的固化工艺和极化条件,分析了长径比(t/d)对复合材料压电性能的影响。结果表明,复合材料的g33与kt/kp明显高于其相应块体陶瓷材料,说明了纤维用于1-3复合材料具有很好的各向异性。纤维长径比(t/d)对复合材料的压电与介电性能产生很大的影响,当t/d=2时,复合材料的性能最佳,具有单纯的厚度振动模式。
Piezoelectric materials are being extended in smart structures for its positive-inverse piezoelectric effect to adjust deformation or electrical output signal initiatively. Piezoelectric fiber has more merits, such as higher piezoelectric constant, larger mechanical-electronical coupling coefficient, and better anisotropism, and it could be used to composite with polymer for medical ultrasonic, underwater transducer or self-adoption surface of aviation, spaceflight application
     In this article, PMnS-PZN-PZT fibers were fabricated by viscous polymer processing (VPP),1-3 piezoelectric composites were prepared by arranging fibers and casting epoxy resin. The preparation process of plastic ceramic mud and piezoelectric fiber and the conditions of epoxy resin curing are studied. The influences of the resin on the properties of piezoelectric fiber and the aspect ratio of fiber on the structure, properties and vibration patterns of composite material were discussed. Specific work and conclusions are as follows:
     (1) Piezoelectric materials with better properties were prepared by VPP for PMnS-PZN-PZT piezoelectric fibers. The influence of organic content of the mud compound on the preparation of the fiber and the sintering conditions on the structure and performance of fibers were analyzed. The results show that the optimal formula for the mud:the dosage of polyvinyl alcohol in the ceramic powder is 0.56 wt%, glycerol addition is 3.33 wt%, the value of zeta potential of ceramic mud is the largest. The optimum sintering temperature of fiber is 1240℃, holding for 6h. The ultimate tensile strength of fiber is to 16.5 MPa with brittle fracture and perovskite phase, and the grains combined with tight with uniform size. the piezoelectric fiber with high density and high mechanical strength could be prepared by the method of VPP for the green fiber presenting plastic.
     (2) Restrained state on the ferroelectric properties of fiber is studied. The remnant polarization and coercive field of piezoelectric fibers in the free state were 85.4μC/cm2 and 8.5 kV/cm respectively, while the remnant polarization and coercive field of fibers in restrained state were 39.2μC/cm2 and 15.0 kV/cm respectively. So the restrained state has a huge impact on ferroelectric properties of the fibers. The restrained state could reduce the leakage current of the surface of fiber and free deformation from the result of leakage current test.
     (3) The curing process and the polarization conditions of composites made by the way of arranging-casting were studied, and the effect of fiber aspect ratio (t/d) on the piezoelectric properties of composite materials was analyzed. The g33 andκt/κp of composites were higher than the ceramic bulk and fiber, and the 1-3 composite has better anisotropic. The ratio (t/d) of fiber has a large impact on the piezoelectric and dielectric properties of composite. When t/d=2, the composite has the best properties with single thickness vibration mode.
引文
[1]Curie J and Curie P. Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull Soc Min de France,1880.3:90-93
    [2]Jaffe B, et al. J Res Nat But Stand,1955.55:239
    [3]Miroslav Boudys. Relations between temperature coefficients of permittivity and elastic in PZT ceramics near the morphotropic phase boundary. IEEE Trans Ultrason ferroelectric Freq Control,1991.38(6):569-571
    [4]Saito Y, Takao H, Tani T, Nonoyama T, et al. Lead-free piezoceramics. Nature.2004. 432(7013):84-87.
    [5]Chen H Y, Long J W, Meng Z Y. Effect of Zr/Ti ratio on the properties of PMMN-PZT ceramics near the morphotropic phase boundary. Materials Science and Engineering B-Solid State Materials for Advanced Technology.2003.99(1-3):433-436.
    [6]Jin D Z, Chen X M. BaTiO3 ceramics toughened by dispersed coarse particles. Ceramics International.2003.29(4):371-375.
    [7]Lian J, Shiosaki T. Pyroelectric properties of Pb[Zr, Ti, (Zn, Nb)]O3 solid-solution ceramics. Ferroelectrics.1991.118(1-4):135-141.
    [8]Park C H, Baz A. Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. Journal of Vibration and Control.2005.11(3):331-346.
    [9]Wang R P, Xie R J, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na K-0.5(0.5))NbO3-PbTiO3 ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.2002.41(11B):7119-7122.
    [10]Wang Y, Su Y J, Chu W Y, Qiao L J. Effect of electric field, stress and environment on delayed fracture of a PZT-5 ferroelectric ceramic. Science in China Series G-Physics Mechanics & Astronomy.2005.48(1):89-100.
    [11]Morgan Electroceramics, Typical properties Equivelent DOD Navy,2004.10-18
    [12]Ouchi H, et al. Journal of the American Ceramic Society,1965.48(12):630
    [13]王树昕,董蜀湘,桂治轮,李龙土.压电陶瓷材料对超声马达性能的影响.压电与声光,2000.22(1):23~29
    [14]孙文华,周静,崔万秋.PZSN系压电陶瓷X射线衍射分析.材料研究学报,1996.10(1):77-79
    [15]周静,陈文,等.铅锰锑系压电陶瓷介电性研究.压电与声光,2001.23(6):437-442
    [16]Newham R E, Skinner D P, Cross L E. Connectivity and piezoelectric pyroelectric composites. Materials Research Bulletin,1978.13:525-535
    [17]Skinner D P, Newnham R E, Cross L E etal. Flexible composite transducers. Mater Res Bull, 1978.13:599-607
    [18]Rittenmeyer K, Shrout T R, Sehulze W A etal.Piezoeleetrie3-3eomPosites.Ferroelectries,1982. 41:189-195
    [19]Howarth, Thomas R, Ting Robert Y. Eletro acoustic ealuations of 1-3 piezocomposite SonoPanelTM materials. IEEE transaction on ultrasonic, ferroelectrics and frequency control, 2000.47(4):386-894
    [20]Savakus H P, Klieer K A, Nemnham R E. PZT-epoxy piezoelectric transducers a simplified fabrication proeedure..Materials Research Bulletins,1981.16(6):677-680
    [21]Richard Lo, Leary, Gordon Hayward. Investigation into the effects of modification of the Passive Phase for improved manufacture of 1-3 connectivity piezocomposite transducers. IEEE Transaction on Ultrasonic, ferroelectrics and frequency control.1999.46(3):511-516
    [22]Thomas R, Howarth, RobertY, etal. Electroacoustic evaluations of 1-3 piezocomposite sonopanel materials. IEEE Transaction on Ultrasonic, ferroelectrics and frequency control, 2000.47(4):886-894
    [23]Janas V E. Novel processing of 1-3 piezoelectric ceramic/polymer composites for transducer Applications. J. Am Ceramic,1995. TB(11):2945
    [24]Auld B A, Kunkel H A, Shui Y A, WangY.proc. IEEE Ultrasonics Symposium,1983. 554-555
    [25]Gentilman R, Fiore D, Serwatka, et al. Sonopanel 1-3 piezocomposite hydrophone-actuator panels. IEEE,1998.2032-2037.
    [26]Leslie J. Bowen, Richard L. Gentilman, Hong T. Pham, Daniel F. Fiore, and Kenneth W. French, Injection molded fine-scale piezoelectric composite transducers, IEEE Ultrasonics Symposium,1993.499-503.
    [27]Su B, Button T W, Schneider A, et al. Embossing of 3D Ceramic Microstructures. Microsystem Technologies,2002.8:359-362.
    [28]Carlos Negreira, Hector Gomez, Nicolas Perez, Ismael Nunez, Lateral modes and diffracted field behavior in non-periodical 1-3 piezocomposite transducers, IEEE Ultrasonics Symposium,1998.641-644.
    [29]Richard J. Meyer Jr. Shoko Yoshikawa, Thomas R. Shrout, Processing and properties of 15-70MHz 1-3 PZT fiber/polymer composites, Material Research Innovat,2000.3:324-331.
    [30]Leslie J. Bowen, Richard L. Gentilman, Hong T. Pham, Daniel F. Fiore, and Kenneth W. French, Injection molded fine-scale piezoelectric composite transducers, IEEE Ultrasonics Symposium,1993.499-503.
    [31]李坤,李金华,李锦春,等.PLZT压电纤维/环氧树脂1-3复合材料的制备和性能研究,无机材料学报,2004.19(2):631-366.
    [32]http://www.smart-materials.com
    [33]Richard Gentilmanl, Kelley McNeal Enhanced performance active fiber composites. Smart Mater. Struct.,2003.5054:350-359
    [34]Wilkie W K. Low-cost piezocomposite Actuator for Structural Control Applications, NASA Langley Research Center, Hampton,2005. VA23681-2199
    [35]Sato H, et al. Design of the metal-core piezoelectric fiber. Bellingham:Proceedings of SPIE, Smart Structures and Materials 2004:Smart Structures and Integrated Systems,2004. 5390:97-103.
    [36]Qiu J, Yamada N, TANI J, et al. Fabrication of piezoelectric fibers with metal core. San Diedo,CA, Proc of SPIE's 10th International Symposium on Smart Structures and Materials, Active Materials:Behavior and Mechanics,2003.475-483.
    [37]Sebald G, Qiu Jin-hao, Guyomar D, et al. Modeling and characterization of piezoelectric fibers with metal core. Japanese Journal of Applied Physics,2005.44(8):6156-6163.
    [38]Sato H, Nagamine M. Mechanical properties of metal-core piezoelectric fiber.Proc. of SPIE, Smart Structures and Materials2005:Smart Structures and Integrated Systems, Bellingham, WA,2005.623-629.
    [39]Wang Y, Jorge J, Santiago A, Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metal-organic decomposition process, Nanotechnology,2004.15:32-36.
    [40]李坤,李金华,李锦春,等.PLZT压电纤维/环氧树脂1-3复合材料的制备和性能研究,无机材料学报,2004.19(2):631-366.
    [41]张宗涛,胡黎明,纳米氧化锆粉末的塑性挤制成型研究,无机材料学报,1996,11(3):565-569.
    [42]Jinhao Qiu, Junji Tani, Yoshimasa Kobayashi etc. Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr, Ti)O3 powder and Pb(Zr, Ti)O3 sol mixture, Smart Mater. Struct., 2003.12:331-337.
    [43]刁玉强,何巨龙,于栋利,等.氧化铝、碳化硅压电纤维的成型与烧结,长春光学精密机械学院学报,1999.22(4):13-16
    [44]金格瑞W.D等[美].陶瓷导论.中国建筑工业出版社,1987.934~949
    [45]中华人民共和国国家标准,GB3389.5—82.
    [46]中华人民共和国国家标准,GB2414—81.
    [47]Zhu H, Liu J G, Wang X R. Applications of terfenol-d in chin. J Alloys Compd,1997.258:49
    [48]Wakiwaka H, Nagumo M. Impedance analysis of acoustic vibration element using giant magneto restrictive material. IEEE Trans Mag,1992.28:2208
    [49]李远,秦自楷,周志刚编.《压电与铁电材料的测量》.科学出版社,1984.
    [50]Xu Lingfang, Chen Wen, Zhou Jing, et al. Fabrication of niobium doped Pb(Zr,Ti)O3 fibers by viscous polymer processing. Trans Nonferrous Met Soc China,2006.16:29-32.
    [51]徐玲芳.1-3型PZT5/epoxy resin压电复合材料的制备、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料学院,2006
    [52]pandou A, Siffert B. Polyethyleneglycol adsorption at the TiO2-H2O interface:distortion of ionic structure and shear plane position. Colloid and Surfaces,1987.24:159-172.
    [53]仇家良,郭露村,水基明胶-氧化铝浆料的流变性及注凝特性,中国陶瓷,2006.42(3):32-35
    [54]周桃生,何昌鑫,柴荔英,等.一种新型压电陶瓷极化装置.电子元件与材料,1997.16(2):50-52.
    [55]黄世峰,常钧,徐荣华,等.水泥基压电复合材料的制备及极化工艺研究.压电与声光,2004.26(3):203-204.
    [56]王树彬,韩杰才,杜善义.压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展.功能材料,1999.30(2):113-115.
    [57]Steinhausen R S, Kern A, et al. A new measurement method of piezoelectric properties of single ceramic fibres. J. Eur. Ceram. Soc,2010.30(2):205-209.
    [58]Belloli A, Heiber J, et al. Novel Characterization procedure for single piezoelectric fibers. J Intell Mater Syst Struct,2009.20:355-363
    [59]Heiber J, Belloli A, et al. Ferroelectric characterization of single pzt fibers. J Intell Mater Syst Struct,2009.20:379-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700