KNBT压电纤维的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电纤维不仅可作为压电复合材料的功能相而广泛用作传感器和驱动器,而且可直接应用于微纳米器件,实现换能器的微型化。它的出现,极大的扩展了压电材料的应用范围。
     Nao.5Bio.5Ti03(NBT)是一类具有较高压电系数和机电耦合系数性能的无铅压电材料,可望成为PZT应用的无铅化替代物。利用课题组已研制成功的压电性能较好的KNBT陶瓷组成,采用塑性聚合物方法制备压电纤维,采用排列-浇注法制备压电纤维复合材料。系统地研究了球磨时间对粉料性能及纤维力学性能的影响,分析了陶瓷固含量对压电纤维结构的影响,研究了不同聚合物对复合材料结构的影响,探讨了纤维间距对叉指型电极复合材料铁电性能影响。主要研究内容及结论如下:
     1、研究了球磨时间对粉料粒度及比表面积的影响,分析了粉料颗粒度对纤维力学性能的影响。结果表明,随着球磨时间延长,粉料粒度降低,比表面积增大,Zeta电位升高。粉料粒度对纤维力学性能产生大的影响,当平均粒度0.37μm左右时,可获得最大抗拉强度的压电纤维,其抗拉强度达40.01MPa。
     2、采用塑性聚合物方法制备了KNBT压电纤维,研究了陶瓷固含量、烧结工艺和极化工艺对纤维结构和性能的影响。结果表明,陶瓷固含量为83%时,纤维结构最致密。最佳烧结温度为1130℃,保温时间为2h,制备的KNBT纤维为完全的钙钛矿结构,且结构致密、晶粒大小均匀。最佳极化工艺参数为:极化时间20 min,极化温度120℃,极化电压3.5 kV/mm,单根纤维压电常数d33达到69 pC.N-1。
     3、采用排列一浇注法制备了压电纤维复合材料,研究了不同聚合物对复合材料结构的影响,研究了纤维间距对叉指型电极复合材料铁电性能影响。结果表明,环氧树脂比聚丙烯更适合于作为基体材料,随着纤维间距的缩小,复合材料剩余极化变大,紧密排列时Pr=6.9μC/cm2。
Piezoelectric fibers not only can be the main phase of the composites to be used as sensors and actuators, but also can be used in micro devices. Their appearances have widely expanded the applications of piezoelectric materials.
     Na0.5Bi0.5TiO3 (abbreviated as NBT) is a lead-free piezoelectric ceramics with good piezoelectric properties and high electromechanical coupling coefficient, can be a alternative to replay PZT. We use the KNBT ceramic system with a good piezoelectric properties which had studied by our lab, the fibers were fabricated by viscous polymer processing.1-3 piezoelectric composites were prepared by arranging fibers and casting epoxy resin. We discuss the influence of the balling time on the particle distribution and the surface area, analyze the mechanical property of fiber with different particle size, discuss the ferroelectric properties of interdigitated piezoelectric composites with different fiber spacing. Specific work and conclusions are as follows:
     1、We discuss the influence of the balling time on the particle distribution and the surface area, analyze the mechanical property of fiber with different particle size. As a result, when the milling time extend, the particle size of the powders reduce, the surface area increase, Zeta potential increase. The particle sizes of the powder have high influence to the mechanical property of the fibers. The fibers made by the powder of the average particle size 0.37μm have the highest ultimate tensile strength,40.01MPa.
     2、Piezoelectric materials with better properties were prepared by VPP for KNBT piezoelectric fibers. The affects of sintering condition on fiber structures and properties were analyzed. And the best sintering condition was done at 1130℃for 2 h. The fiber structure was dense, and the crystal size was uniform. The optimal poling condition was processed on time of 20 min, temperature of 120℃, and electric field of 3.5kV/mm. The piezoelectric strain constant was 69pC.N-1.
     3、KNBT piezoelectric fibers/epoxy resin composites were made by the arranging-casting technique. The remnant polarization and coercive field of single KNBT fiber in restrained state were 32.5μC/cm2 and 3.8kV/cm, while the remnant polarization and coercive field of KNBT piezoelectric fibers/epoxy resin composites of the fiber volume fractionΦ30% were 6.3μC/cm2 and 3.7kV/cm. The fiber spacing had prodigious effects on the ferroelectric properties. With decreasing the fiber spacing, the remnant polarization increased.
引文
[1]Gururaja T R, Panda R K, Chen J, et al. Single crystal transducers for medical imaging applications [J]. Ultrasonics Symposium,1999,2:969-272.
    [2]Bent A. Active fiber composite material systems for structural control application[J]. International Symposium on Smart Sructures and Materials,1999,166:1-5.
    [3]Q. M. Zhang, Wenwu Cao, H. Wang, et al. Characterization of the performance of 1-3 type piezo-composites for low-frequency applications[J]. J. Appl. Phys,1993,73 (3):1403-1410.
    [4]刘梅冬,许毓春.压电铁电材料与器件[M].华中理工大学出版社,1992.
    [5]徐玲芳.1-3型PZT5/epoxyresin压电复合材料的制备、结构与性能研究[D].武汉:武汉理工大学,2006.
    [6]刘小楠,杨世源.PZT/聚合物压电复合材料的研究现状及应用前景[J].材料导报,2007,21(7):16-19.
    [7]谢蒙萌,万建国.0-3型压电复合材料的压电性能研究[J].材料工程,2002,1:12.
    [8]Rittenmeyer K, Shrout T R, Sehulze W A, et al. Piezoelectric-composites[J]. Ferroelectrics, 1982,41(2):189-195
    [9]赵数根,程伟.1-3型压电复合材料及其研究进展[J].力学进展,2002,32(1):57-68.
    [10]Newnham R E, Skinner D P, Cross L E, et al. Connective and piezoelectric-pyroelectric composites[J]. Material Research Bulletin,1978,13:525-536.
    [11]Klicker K A, Bigger J V, Newnham R E. Composites of PZT and epoxy for hydrostatic transducer applications[J]. Journal of American Ceramic Society,1981,64(1):5-9.
    [12]Auld B A, Kunkel H A, Shui Y A, et al. Dynamic behavior of periodic piezoelectric composites[J]. Ultrasonics Symposium.1983,33:554-558.
    [13]Smith W A, Shaulov A A, Auld B A. Design of piezo-composites for ultrasonic transducers[J]. Ferroelectrics,1989,91:155-162.
    [14]Bent A A, Hagood N W. Piezoelectric fiber composites with interdigitated electrodes[J]. Journal of Intelligent Material Systems and Structures,1997,8(11):903-919.
    [15]Kud va J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures,2004,15(3):261-268.
    [16]吴燕杰,刘军,唐利强,等.压电陶瓷纤维的制备及应用[J].硅酸盐通报,2007,26(1):97-100.
    [17]Chan Wa L H, Unsworth J. Simple mode for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer[J]. Ferroelectrics,1989,36(4):434-441.
    [18]Shui Y A, He X M, Mao Y M, et al. A nonlinear interaction of two acoustic beams on the solid interface[J]. Nonlinear Acoustics in Perspective,1996:321-327.
    [19]耿学仓,李明轩.检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究[J].应用声学,1991,10(5):10-14.
    [20]刘殿锋,李明轩.1-3型压电复合材料非均匀振动换能器的研究[J].应用声学.1998,17(1):11-14.
    [21]李邓化,李光.1-3型压电复合材料的机械品质因素[J].功能材料与器件学报,2004,10(1):71-74.
    [22]李坤,李金华,李锦春,等PLZT陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究[J].无机材料学报,2004,19(2):631-636.
    [23]于新胜,葛骑岐.用1-3压电复合材料设计低旁瓣水声换能器[J].青岛海洋大学学报,2003,33(5):747-752.
    [24]杨凤霞,王四德,兰从庆.1-3型PZT/Polymer压电复合材料性能分析[J].压电与声光,2001,23(1):49-55
    [25]C Richard, H. S. Lee, D.Guyomar. Thermo-mechanical stress on 1-3 piezo-composite power transducer performance[J]. Ultrasonics,2004,42:417-424
    [26]R. K. Panda, V. F. Janas, A. Safari. Fabrication and properties of fine scale 1-3 piezocomposites by modified lost mold method[J]. Proceedings of the IEEE international symposium on,1996,2:551-554
    [27]Jian Guo Wan, Bao Qi Tao. Design and study on a 1-3 anisotropy piezocomposite sensor[J]. Materials and Design,2000,21:533-536.
    [28]Bent A A, Hagood N W. Improved performance in piezoelectric fiber composites using interdigirated electrodes [A]. Proceeding of SPIE,2001,12441:196-211.
    [29]Bent A A. Active fiber composite material systems for structure control applications[A]. Proceeding of SPIE,1999,3674:166-177.
    [30]Galea S C, Ryall T G. Next generation active buffet suppression system[A]. AIAA, 2003,12:2905-2912.
    [31]O.Bilgen, K.B.Kochersberger, D,J.Inman. Macro-fiber composite actuators for a swept wing unmanned aircraft[J]. The Aeronautical Journal,2009,113:385-395.
    [32]Juliane Heiber, Alberto Belloli, Paolo Ermanni. Ferroelectric Characterization of single PZT fibers[J], Journal of Intelligent Material Systems and Structures,2009,20:379-384.
    [33]Henry A. Macro-Fiber composites for sensing, actuation and power generation[J]. Blacksburg faculty of the Virginia polytechnic institute and state university,2003.
    [34]Wang Y, Jorge J, Santiago A. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metal-organic decomposition process[J]. Nanotechnology,2004,5(1):32-36.
    [35]麦满芳.PZT压电陶瓷纤维连续纺丝及其在1-3型压电纤维复合材料的应用[D].厦门,厦门大学,2009.
    [36]王英姿,侯宪钦,陶文宏,等.氧化锆陶瓷纤维特点及制备方法[J].河南建材,2005,1:29-31.
    [37]Helbig J, Glaubitt W, Spaniol H, et al. Development and technology of doped sol-gel derived lead zirconate titanate fibers[J]. Smart Materials and Structures,2003,12: 987-992.
    [38]李坤,李金华,李锦春,等PLZT压电 纤维/环氧树脂1-3复合材料的制备和性能研究[J].无机材料学报,2004,19(2):631-366.
    [39]ZHANG D, SU B, BUTTOM T W. Piezoelectric 1-3 composites for high frequency ultrasonic transducer applications[J]. Ferroelectrics,2004,304:201-205.
    [40]Su B, Button T W, Schneider A, et al. Embossing of 3D Ceramic Microstructures[J]. Microsystem Technologies,2002,8(2):359-362.
    [41]徐磊,PMnS-PZN-PZT压电纤维的制备与性能研究[D].武汉:武汉理工大学,2010.
    [42]Wikie W K. Low-cost piezocomposite actuator for structural control applications[J]. Hampton,2005,3991(3):323-326
    [43]杨桂华,周昌荣BNT-BKT-BiFeO3无铅压电陶瓷的压电性能和退极化温度[J].人工晶体学报,2009,38(2):335-339
    [44]Li Yueming, Chen Wen, Zhou Jing, et al. Dielectric and ferroelectric properties of lead-free ferroelectric ceramics of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system[J]. Ceramic international. 2005,31(1):139-142
    [451吴成宝,胡小芳,段百涛.粉体堆积密度的理论计算[J].中国粉体技术,2009,15(5):76-81.
    [46]杨粉荣,文洪杰,钟勤.陶瓷粉料特性及激光粒度分析中若干影响因素[J].物理测试,2006,24(1):13-15
    [47]王军霞,杨世源,梁晓峰,等.促进PZT压电陶瓷烧结的几条途径[J].材料导报,2005,19(5):94-96
    [48]Siffert B, Jada A, Lestango J E. Location of the shear lane in the electric double layer in an organic medium[J]. J Colloid & Interface Sci,1994,163:327-333
    [49]GB3362-81[S]
    [50]金格瑞W.D等[美].陶瓷导论[M].北京:中国建筑工业出版社,1987:934~949
    [51]李远,秦自楷,周志刚编.压电与铁电材料的测量[M].北京:科学出版社 1984:565~570
    [52]黄世峰,常钧,徐荣华,等.水泥基压电复合材料的制备及极化工艺研究[J].压电与声光,2004,26(3):203-204.
    [53]周桃生,昌鑫,荔英,等.一种新型压电陶瓷极化装置[J].子元件与材料,1997,6(2):0-52.
    [54]刘卫民,陈勇,刘永刚,等.交叉指形电极压电纤维复合材料的优化设计[J].机械工程材料,2006,30(2):9-31
    [55]黄丽.聚合物复合材料[M].北京:中国轻工业出版社.2000.
    [56]Xu Lingfang, Chen Wen, Zhou Jing, et al. Fabrication of niobium doped Pb(Zr,Ti)O3 fibers by viscous polymer processing[J]. Trans Nonferrous Met Soc China,2006,16:29-32.
    [57]徐磊,周静,唐耀波,等PMnS-PZN-PZT压电纤维的制备与铁电性能[J].硅酸盐学报,2010,38(8):1411-1414
    [58]Nelson L. J, Bowen. C. R, Stevens R, et al. Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimization of piezofibre composites[J]. Smart Structures and Materials 2003,5053:556-567.
    [59]李允,沈星,徐蕾.基于ANSYS的1-3型压电复合材料结构优化[J].航天制造技术,2008,4:1-5
    [60]BaominXu, Yaohongye, EricCross. L, et al. Dielectric hysteresis under transverse electric fields in Sol-gel lead zirconate titanate films deposited on ZrO2 passivated silicon[J]. Integrate Ferroelectrics,1999,24(1):19-31.
    [61]Bent A A, Hagood N.W. Improved performance in piezoelctric fiber composites using Interdigitated electrodes[A]. Proc. SPIE 2441,1995,196:196-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700