油基塑性脂肪起砂机制及抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油基塑性脂肪产品具有理想的塑性温度范围,便于实际应用,同时经高温烘焙后具有典型的风味,留香持久。基于上述优点,其在烘焙型脂肪中占有大量份额。但由于牛油本身甘油三酯(TAG)组成及结晶上的缺陷,使得牛油基塑性脂肪产品中很容易出现砂粒晶体,破坏产品柔软延展的特性。本文围绕牛油基塑性脂肪产品起砂机制及抑制开展研究,在对劣化全牛油基起酥油中砂粒晶体进行分子组成、结晶行为表征的基础上,动态分析了砂粒晶体形成过程中油脂迁移及晶型衍变规律,推测砂粒晶体的形成机制,指导牛油酯交换改性及添加乳化剂改善牛油分子组成和结晶特性,抑制砂粒晶体的产生。
     通过对劣化全牛油基起酥油中砂粒晶体和无砂晶体的对比研究,发现高熔点TAG如S_3(PPP、PPS、PSS和SSS),S_2U(POS和SOS)在砂粒晶体中聚集,而低熔点S_2U和SU_2,如POP、SOO/SSL、PLO和POO则在无砂晶体中聚集,同时砂粒晶体中晶型已部分转化为β型。pNMR及振动流变结晶动力学分析都表明砂粒晶体部分结晶速率较慢,PLM晶体形态分析表明其在结晶过程中晶体聚集明显,形成的晶体束尺寸更大。
     在二种储存条件:①恒温(5℃和20℃);②温度波动(5℃12 h 20℃12 h为一周期温度往复)下诱导实验室自制全牛油基模型起酥油(BTMS)起砂,同时以全棕榈油基模型起酥油(POMS)作为对照,对砂粒晶体形成过程中的脂肪晶体迁移聚集、晶型衍变,人体感官分析进行了系统评价,发现无论是BTMS还是POMS,在温度波动储存条件下晶体的生长、分级聚集过程更为迅速。相比恒温储存,波动储存更容易诱导砂粒晶体形成,且晶型β转化的速率更快。综合晶体尺寸及感官评定分析结果,推导出人体对塑性脂肪砂粒晶体感官的临界晶体尺寸范围为40-90μm,大于此范围的晶体人体通过感官评定很容易感知,而更小尺寸的晶体只有在高晶体浓度时才能被人体感知。将BTMS和POMS置于温度波动条件下继续储存至6个月,挑出其中的砂粒晶体和无砂晶体进行脂肪结晶网络各级结构层次对比分析表明:无论是BTMS还是在POMS中,高熔点TAG,如BTMS中S_3(SSS、PSS、PPS和PPP),S_2U(SOS和POS);POMS中S_3(PPP),S_2U(POP和POS),在砂粒晶体中发生聚集,含量偏高,部分β′晶型转变为β晶型,TAG的二倍链长堆积部分转化为三倍链长堆积,形成β′,β二倍链长和三倍链长的混合结晶体,动力学分析表明其结晶速率较慢。
     由此推测塑性脂肪起砂机制为:在结晶初始阶段,高熔点S_3作为种晶首先结晶,形成β′二倍链长型晶核,在温度波动提供驱动力的情况下,S_2U附着在晶核表面,促进晶核晶体的生长;晶体经进一步熟化后,球晶体数目增多,单个晶体的尺寸增大,结晶网络进一步密集化,其中S_3和S_2U成为球晶的晶体骨架组份,而绝大部分SU_2和U_3都被排除在颗粒晶体周围;同时,伴随着部分β′二倍链长型晶体向同时含β′与β晶型,TAG二倍链长和三倍链长堆积方式共存的复杂混合晶体转变,晶体间通过范德华作用力相互作用,发生进一步的聚集及生长,形成大的晶体束;最终,当晶体束的微结构尺寸超过了人的感官临界范围(40-90μm),即表现为可被人体物理测定(手指间揉搓或口中融化砂粒般口感),破坏产品感官和功能特性的砂粒晶体。
     采用低芥酸菜籽油作为不饱和脂肪供体,对牛油进行化学酯交换改性。根据最短时间SFC变化最大的原则,得到优化的反应条件:CH_3ONa用量0.4%,反应温度60 oC,反应时间30 min。经酯交换后,U_3,S_3和部分S_2U的含量降低,TAG组成更均匀,相容性更理想,避免熔点差异较大TAG间的迁移聚集和分级结晶。由于乳化剂脂肪酸酰基链与脂肪TAG酰基链间的酰基—酰基相互作用及大分子尺寸乳化剂的空间位阻效应,1%的乳化剂(分子蒸馏单甘酯、大豆卵磷脂、P-170、S-170、斯潘65、斯潘60)能有效控制含10%-40%低芥酸菜籽油的牛油酯交油的晶体尺寸,样品在温度波动储存6个月后最大晶体尺寸仍小于50μm,并保持二倍链长β′型结构,感官评定无砂粒晶体。由此可见,通过配比适量的植物油进行酯交换改性,结合适宜的乳化剂控制脂肪结晶,能够提高牛油基塑性脂肪产品的晶体稳定性,提高其对温度波动的耐受性,抑制砂粒晶体的形成。
Beef tallow (BT)-based plastic fat products account for a large number of shares in baking fats due to its advantageous properties, such as ideal plasticity temperature range, ease of practical application, and typical aroma after baking, lasting fragrance. However, due to the triglyceride (TAG) composition and crystallization defect of BT, BT-based plastic fat products is prone to form granular crystals, which impair the consistency and plasticity of fat products. This research focuses on granular crystal formation mechanisms in plastic fats, and its inhibits. Based on characterize the TAG composition and crystallization behavior of the degradation all BT-based shortening, dynamic analysis the law of oil migration and polymorphism transformation during the formation of granular crystals, suggesting that the formation mechanism of granular crystals in plastic fats. Guide the BT interesterification modification and add the emulsifier to improve its molecular composition and crystalline properties, inhibit the formation of granular crystals.
     Through the comparative study of granular crystals and their surrounding materials separated from the degradation all BT-based shortening, it found that high melting point TAGs, such as S_3 (PPP, PPS, PSS and SSS), S_2U (POS and SOS) occurred aggregation in the granular crystals, while the low melting point S_2U and SU_2, such as POP, SOO/SSL, PLO and POO were gathered in surrounding materials, sometims, granular crystals partially transformed intoβ-typ. pNMR and oscillatory rheology crystallization kinetic analysis indicated that the crystallization rate of granular crystal parts was slow, PLM analysis also showed that the granular crystal parts gathered obviously to form larger size crystal during the crystallization process.
     The granular crystals in BT-based shortenings (BTMS) were induced under two storage conditions:①constant temperature (5℃and 20℃, repectively);②temperature fluctuations (5℃12 h 20℃12 h for a cycle), while the palm oil-based shortenings (POMS) as the control. The fat crystal migration and aggregation, polymorphism evolution, human sensory evaluations during the formation of granular crystals were investigated systematically. It compared to the constant temperature storage, the crystal growth, hierarchical aggregation process was more quickly under temperature fluctuation conditions, and easier to induce the formation of granular crystals, sometimes, theβ-typ crystal conversion rate was faster in both BTMS or POMS. Comprehensive analysis of crystal size and the sensory evaluation results, derived that the sense critical crystal size range of the human body to plastic fats is 40-90μm, human perception through sensory evaluation is very easy if the crystal is larger than this range, and only the smaller size of the crystals in high concentrations can be perceived by the body. BTMS and POMS will be continue stored under the temperature fluctuation conditions to 6 months, and then comparative analysis the granular crystals and their surrounding materials following the structure hierarchy of fat crystal networks. It was found that the migration and aggregation of higher-melting TAGs, such as S_3 (SSS, PSS, PPS and PPP), S_2U (SOS and POS) in BTMS, S_3 (PPP), S_2U (POP and POS) in POMS, and consequently, polymorphic transformation fromβ′form of double chain length structures to complicated crystal structures, in which concurrently comprising theβandβ′form crystals of triple chain length and double chain length structures had occurred in granular crystals and its crystallization rate was slower, whether in BTMS or in POMS.
     The results suggested that the mechanism of granular crystal formation in plastic fats: in the initial stages of crystallization, high melting point S_3 TAG as the seed crystal, form the double chain lengthβ′-typ nuclei and crystallized firstly in the plastic fat system. S_2U TAG attached to the nucleus surface promoting the growth of crystal nuclei in the case of the driving force provided by the temperature fluctuation; After further aging, the number of spherulitic crystal and the size of a single crystal increase, crystalline network to further intensification, including S_3, S_2U TAGs become crystal backbone components, and most of SU_2, U_3 TAG are excluded from the crystal; At the same time, accompanied by part ofβ′crystal of double chain length structure transform to the complex crystal comprising theβandβ′form crystals of triple chain length and double chain length structures of TAG stacking, crystals further aggregate and grow, form large crystal clusters; The microstructure size of these crystal aggregates exceeded the sensory threshold (40-90μm), and the aggregates could be detected upon visual and physical examination (by rubbing in between the fingers or melting in the mouth) and therefore impaired the sensory and functional properties of the finished products.
     Canola oil as the unsaturated fat donor, modify BT by chemical interesterification (CIE). According to the principle of the shortest time achieve the greatest change in SFC get the optimal reaction conditions: 0.4% CH_3ONa, reaction temperature 60 oC, reaction time 30 minimums. After CIE, U_3, S_3, and part of the S_2U TAGs lower, making the TAG of interesterified blends more uniform, while compatibility even better, to avoid migration, aggregation and fractional crystallization between the large differences melting TAGs. 1% emulsifier (molecular distilled monoglycerides, soy lecithin, P-170, S-170, Span 65, Span 60) can effectively control the crystal size of interesterified blends containing 10%-40% canola oil as the acyl-acyl interaction between fatty acyl chains of emulsifier and fatty acyl chains of TAGs, and steric effect of emulsifier macromolecular size. After 6 months’temperature fluctuation storage, the maximum crystal size of sample is still smaller than 50μm, while maintainingβ′crystal of the double chain length structures, and the sensory evaluation have no granular crystals. Thus, interesterified with an amount of vegetable oil, and combined with suitable emulsifiers to control the fat crystallization, which can increase crystal stability of BT-based plastic products, also can increase their tolerance to temperature fluctuations and inhibit the formation of granular crystals.
引文
[1] Y.H.Hui.贝雷:油脂化学与工艺学[M].第五版.北京:中国轻工出版. 2001: 1-16.
    [2]高红艳.牛油基起酥油的研制[D]: [硕士学位论文].无锡:江南大学, 2007.
    [3]冯光炷.油脂化工产品工艺学[M].北京:化学工业出版社. 2005: 1-101.
    [4] D. R. Mendon?a, H. M. C. Andrade, P. R. B. Guimar?es, R. F. Vianna, S. M. P. Meneghetti, L. A. M. Pontes, L. S. G. Teixeira. Application of full factorial design and doehlert matrix for the optimisation of beef tallow methanolysis via homogeneous catalysis [J]. Fuel Processing Technology, 2011, 92(3): 342-348.
    [5] L. S. G. Teixeira, J. C. R. Assis, D. R. Mendon?a, I. T. V. Santos, P. R. B. Guimar?es, L. A. M. Pontes, J. S. R. Teixeira. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel [J]. Fuel Processing Technology, 2009, 90(9): 1164-1166.
    [6]陈明,候建义.食品工业用牛油的精炼[J].江苏食品与发酵, 1997(3): 2-4.
    [7]许芳萍,许虎君,钮菊良.美国牛油的脱色研究[J].中国油脂, 2003, 28(8): 63-65.
    [8]张郁松,寇炜材.牛油精炼工艺的研究[J].食品工业科技, 2007, 28(4): 170-172.
    [9] A. Zeb, M. Ali. Thermal stability of animal tallow used in kebab preparation [J]. Journal of the Chemical Society of Pakistan, 2008, 30(5): 750-755.
    [10]高红艳,金青哲,王兴国.牛油与菜籽油、氢化菜籽油混合应用于起酥油的研究[J].中国粮油学报, 2007, 22(6): 91-94.
    [11]徐振波,王兴国,刘元法,胡鹏.乳化剂在全牛油基人造奶油配方中应用[J].中国油脂, 2008, 33(7): 7-12.
    [12]但晓容,李栋钢,卢晓黎.牛油火锅底料关键工艺参数优化[J].食品科学, 2010, 31(22): 211-215.
    [13] R. D. O’Brien. Fat and oils : Formulating and processing for applications [M]. Third Edition. Boca Raton: CRC Press. 2009: 1-72.
    [14]徐振波.酯交换对牛油使用性能影响的研究[D]: [硕士学位论文].无锡:江南大学, 2009.
    [15] B. S. Ghotra, S. D. Dyal, S. S. Narine. Lipid shortenings: A review [J]. Food Research International, 2002, 35(10): 1015-1048.
    [16]王德志,马传国,王高林.专用油脂在食品工业中的应用[J].中国油脂, 2008, 33(4): 7-11.
    [17]李双双,刘晓见,李艳娜.中国人造奶油的现状及发展趋势[J].中国油脂, 2004, 29(5): 14-16.
    [18]王德志,马传国,王高林,吴文民,葛瑞宏,刘彩丽.速冻食品专用油脂制备及其在汤圆中的应用评价[J].中国粮油学报, 2010, 25(12): 71-74.
    [19]李鹏,王凤成,王刚.油脂对面粉烘焙制品的作用及影响[J].农产品加工, 2006(4): 34-36.
    [20]杨萍芳.油脂在焙烤食品中的作用[J].农产品加工, 2008(8): 12.
    [21] F. Kincs. Meat fat formulation [J]. Journal of the American Oil Chemists' Society, 1985, 62(4): 815-818.
    [22] C. Lopez, C. Bourgaux, P. Lesieur, S. Bernadou, G. Keller, M. Ollivon. Thermal and structural behavior of milk fat: 3. Influence of cooling rate and droplet size on creamcrystallization [J]. Journal of Colloid and Interface Science, 2002, 254(1): 64-78.
    [23] L. A. Gills, A. V. A. Resurreccion. Sensory and physical properties of peanut butter treated with palm oil and hydrogenated vegetable oil to prevent oil separation [J]. Journal of Food Science, 2000, 65(1): 173-180.
    [24] B. Mogens, B. Juul. Non-lauric, non-trans, non-temper fat compositions [P]. United States, 2005/0142275 A1, 2005-06-30.
    [25] C. Lopez, P. Lesieur, C. Bourgaux, M. Ollivon. Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate [J]. Journal of Dairy Science, 2005, 88(2): 511-526.
    [26] N. A. Idris, N. L. H. M. Dian. Interesterified palm products as alternatives to hydrogenation [J]. Asia Pacific Journal of Clinical Nutrition, 2005, 14(4): 396-401.
    [27] Q. Jin, H. Gao, L. Shan, Y. Liu, X. Wang. Study on grainy crystals in edible beef tallow shortening [J]. Food Research International, 2007, 40(7): 909-914.
    [28] C. Garbolino, M. Bartoccini, E. Fl?ter. The influence of emulsifiers on the crystallisation behaviour of a palm oil-based blend [J]. European Journal of Lipid Science and Technology, 2005, 107(9): 616-626.
    [29] L. Kok, W. Fehr, E. Hammond, P. White. Trans -free margarine from highly saturated soybean oil [J]. Journal of the American Oil Chemists' Society, 1999, 76(10): 1175-1181.
    [30]华聘聘.人造奶油、起酥油品质劣化原因的探讨[J].中国油脂, 2003, 28(4): 30-32.
    [31]唐年初,王兴国.人造奶油常见缺陷及对策[J].西部粮油科技, 2000, 25(5): 37-39.
    [32] L. Wiedermann, T. Weiss, G. Jacobson, K. Mattil. A comparison of sodium methoxide-treated lards [J]. Journal of the American Oil Chemists' Society, 1961, 38(8): 389-395.
    [33] C. L. Sassen, L. H. Wesdorp. Edible fat spread [P]. United States, 6238723 B1, 2001-05-29.
    [34] Sassen, Cornelis, Laurentius. Edible plastic spread [P]. International Patent Classification, WO96/39855, 1996-12-19.
    [35]高红艳,金青哲,王兴国.牛油基起酥油的起砂原因初探[J].中国油脂, 2007, 32(2): 52-54.
    [36] S. R. Ullanoormadam. Trans free non-hydrogenated hard structural fat and non-hydrogenated hard palm oil fraction component [P]. United States, 2005/0276900 A1, 2005-12-15.
    [37] R. Bhatia, M. v. d. Kommer. Cooking fat and method of making [P]. United States, 6099890, 2000-08-08.
    [38] H. R. Kattenberg, C. Poot. Margarine fat blend [P]. United States, 4016302, 1977-04-05.
    [39] W. Stratmann, P. F.Legge. Fat blend useful for producing butter-like spreads [P]. United States, 4460614, 1984-07-17.
    [40] D. Moran. Phase behaviour of some palmito-oleo triglyceride systems [J]. Journal of Applied Chemistry, 1963, 13(2): 91-100.
    [41] H. Ishikawa, T. Mizuguchi, S. Kondo. Studies on granular crystals growing in palm oil [J]. Journal of Japan Oil Chemists' Society, 1980, 29: 235-242.
    [42] A. Watanabe, I. Tashima, N. Matsuzaki, J. Kurashige, K. Sato. On the formation ofgranular crystals in fat blends containing palm oil [J]. Journal of the American Oil Chemists' Society, 1992, 69(11): 1077-1080.
    [43] P. Chawla, J. M. Deman. Effect of temperature cycling on the crystalline form, size and textural properties of shortening fats [J]. Journal of Texture Studies, 1994, 25(2): 151-162.
    [44] P. Chawla, J. M. Deman. Effect of temperature cycling on the crystalline form, size and textural properties of margarine fats [J]. Journal of Food Lipids, 1994, 1(4): 313-324.
    [45] S. Miura, H. Konishi. Crystallization behavior of 1, 3-dipalmitoyl-2-oleoyl-glycerol and 1-palmitoyl-2, 3-dioleoyl-glycerol [J]. European Journal of Lipid Science and Technology, 2001, 103(12): 804-809.
    [46] L. Tanaka, S. Miura, T. Yoshioka. Formation of granular crystals in margarine with excess amount of palm oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(5): 421-426.
    [47] L. Tanaka, T. Isogai, S. Miura, M. Murakami. Effect of triacylglycerol species on the crystallizing behavior of a model water/oil emulsion [J]. European Journal of Lipid Science and Technology, 2010, 112(3): 304-309.
    [48] L. Tanaka, K. Tanaka, S. Yamato, S. Ueno, K. Sato. Microbeam X-ray diffraction study of granular crystals formed in water-in-oil emulsion [J]. Food Biophysics, 2009, 4(4): 331-339.
    [49] M. Shiota, A. Iwasawa, M. Kotera, M. Konno, T. Isogai, L. Tanaka. Effect of fatty acid composition of monoglycerides and shear on the polymorph behavior in water-in-palm oil-based blend [J]. Journal of the American Oil Chemists' Society, 2011, 88(8): 1103-1111.
    [50] A. Gercama, R. Schijf. Margarine fat blend with a reduced tendency to sandiness [P]. United States, 4501764, 1985-02-26.
    [51] J. N. Pronk, M. Soltau, T. Wieske. Fat having butter-like properties and a reduced tendency to develop graininess and process for producing such [P]. United States, 4590087, 1986-05-20.
    [52] V. H. Jan, P. Cornelis, R. Freek, S. M. F. Polyglycerol esters [P]. United States, 4456627, 1984-06-26.
    [53] N. Sshinya. Method for suppressing generation of granular crystal in palm oil or mixed oil and fat containing the palm oil [P]. Japan, 2007124948, 2007-05-24.
    [54] M. Sakamoto, K. Maruo, J. Kuriyama, M. Kouno, S. Ueno, K. Sato. Effects of adding polyglycerol behenic acid esters on the crystallization of palm oil [J]. Journal of Oleo Science, 2003, 52(12): 639-645.
    [55] S. E. Lumor, B. H. Kim, C. C. Akoh. Optimization of solid fat content and crystal properties of a trans-free structured lipid by blending with palm midfraction [J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9294-9298.
    [56] Y. Fedotova, R. Lencki. The effect of phospholipids on butter physical and sensory properties [J]. Journal of the American Oil Chemists' Society, 2010, 87(1): 75-82.
    [57] L. Wiedermann. Margarine and margarine oil, formulation and control [J]. Journal of the American Oil Chemists' Society, 1978, 55(11): 823-829.
    [58] T. Bessler, F. Orthoefer. Providing lubricity in food fat systems [J]. Journal of the American Oil Chemists' Society, 1983, 60(10): 1765-1768.
    [59] S. Kiyotaka. Crystallization behaviour of fats and lipids—a review [J]. Chemical Engineering Science, 2001, 56(7): 2255-2265.
    [60] I. Piska, M. Zárubová, T. Lou?ecky, H. Karami, V. Filip. Properties and crystallization of fat blends [J]. Journal of Food Engineering, 2006, 77(3): 433-438.
    [61] G. G. Rye, J. W. Litwinenko, A. G. Marangoni. Fat crystal networks [M]. Sixth Edition. New Jersey: John Wiley & Sons, Inc. 2005: 121-160.
    [62] S. Kiyotaka. Crystallization behaviour of fats and lipids—a review [J]. Chemical Engineering Science, 2001, 56(7): 2255-2265.
    [63] C. Himawan, V. M. Starov, A. G. F. Stapley. Thermodynamic and kinetic aspects of fat crystallization [J]. Advances in Colloid and Interface Science, 2006, 122(1-3): 3-33.
    [64] S. S. Narine, A. G. Marangoni. Relating structure of fat crystal networks to mechanical properties: A review [J]. Food Research International, 1999, 32(4): 227-248.
    [65] S. S. Narine, A. G. Marangoni. Mechanical and structural model of fractal networks of fat crystals at low deformations [J]. Physical Review E, 1999, 60(6): 6991-7000.
    [66] S. S. Narine, A. G. Marangoni. Microscopic and rheological studies of fat crystal networks [J]. Journal of Crystal Growth, 1999, 198/199: 1315-1319.
    [67] T. S. Awad, M. A. Rogers, A. G. Marangoni. Scaling behavior of the elastic modulus in colloidal networks of fat crystals [J]. The Journal of Physical Chemistry B, 2003, 108(1): 171-179.
    [68] W. Kloek, T. V. Vliet, P. Walstra. Large deformation behavior of fat crystal networks [J]. Journal of Texture Studies, 2005, 36(5-6): 516-543.
    [69] D. Tang, A. Marangoni. Microstructure and fractal analysis of fat crystal networks [J]. Journal of the American Oil Chemists' Society, 2006, 83(5): 377-388.
    [70] D. Tang, A. Marangoni. Computer simulation of fractal dimensions of fat crystal networks [J]. Journal of the American Oil Chemists' Society, 2006, 83(4): 309-314.
    [71] D. Tang, A. G. Marangoni. Modeling the rheological properties and structure of colloidal fat crystal networks [J]. Trends in Food Science & Technology, 2007, 18(9): 474-483.
    [72] M. Adam-Berret, M. Boulard, A. Riaublanc, F. O. Mariette. Evolution of fat crystal network microstructure followed by NMR [J]. Journal of Agricultural and Food Chemistry, 2011, 59(5): 1767-1773.
    [73] N. C. Acevedo, F. Peyronel, A. G. Marangoni. Nanoscale structure intercrystalline interactions in fat crystal networks [J]. Current Opinion in Colloid & Interface Science, 2011, 16(5): 374-383.
    [74] N. C. Acevedo, A. G. Marangoni. Characterization of the nanoscale in triacylglycerol crystal networks [J]. Crystal Growth & Design, 2010, 10(8): 3327-3333.
    [75] S. S. Narine, A. G. Marangoni. Fractal nature of fat crystal networks [J]. Physical Review E, 1999, 59(2): 1908–1920.
    [76] A. G. Marangoni, S. S. Narine. Identifying key structural indicators of mechanical strength in networks of fat crystals [J]. Food Research International, 2002, 35(10): 957-969.
    [77] D. Tang, A. G. Marangoni. 3D fractal dimension of fat crystal networks [J]. Chemical Physics Letters, 2006, 433(1-3): 248-252.
    [78] D. Tang, A. G. Marangoni. Quantitative study on the microstructure of colloidal fat crystal networks and fractal dimensions [J]. Advances in Colloid and Interface Science, 2006, 128/130: 257-265.
    [79] R. Lam, M. Rogers, A. G.. Marangoni. Thermo-mechanical method for the determination of the fractal dimension of fat crystal networks [J]. Journal of Thermal Analysis and Calorimetry, 2009, 98(1): 7-12.
    [80] M. V. Boodhoo, K. L. Humphrey, S. S. Narine. Relative hardness of fat crystal networks using force displacement curves [J]. International Journal of Food Properties, 2009, 12(1): 129-144.
    [81] H. Fu, L. Yang, H. Yuan, F. Xiao, Y. Lo. Production of low acid value edible oil with reduced TFAs by electrochemical hydrogenation in a diaphragm reactor [J]. Journal of the American Oil Chemists' Society, 2008, 85(11): 1087-1096.
    [82] G. List, K. Warner, P. Pintauro, M. Gil. Low-trans shortening and spread fats produced by electrochemical hydrogenation [J]. Journal of the American Oil Chemists' Society, 2007, 84(5): 497-501.
    [83] M. Jackson, G. List, D. Palmquist. Low trans-fat spreads and shortenings from a catalyst-switching strategy [J]. Journal of the American Oil Chemists' Society, 2008, 85(5): 481-486.
    [84] B. Xu, K. Liew, J. Li. Effect of Ru nanoparticle size on hydrogenation of soybean oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(2): 117-122.
    [85] A. Philippaerts, S. Paulussen, A. Breesch, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Sels, P. Jacobs. Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite [J]. Angewandte Chemie International Edition, 2011, 50(17): 3947-3949.
    [86] A. Philippaerts, A. Breesch, G. De Cremer, P. Kayaert, J. Hofkens, G. Van den Mooter, P. Jacobs, B. Sels. Physical properties of nutritive shortenings produced from regioselective hardening of soybean oil with Pt containing zeolite [J]. Journal of the American Oil Chemists' Society, 2011, 88: 1-12.
    [87] T. Jeyarani, M. Imtiyaj Khan, S. Khatoon. Trans-free plastic shortenings from coconut stearin and palm stearin blends [J]. Food Chemistry, 2009, 114(1): 270-275.
    [88] S. Braipson-Danthine, C. Deroanne. Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings [J]. Food Research International, 2004, 37(10): 941-948.
    [89] W. Jirasubkunakorn, A. E. Bell, M. H. Gordon, K. W. Smith. Effects of variation in the palm stearin: Palm olein ratio on the crystallisation of a low-trans shortening [J]. Food Chemistry, 2007, 103(2): 477-485.
    [90] L. Bouzidi, M. V. Boodhoo, T. Kutek, V. Filip, S. S. Narine. The binary phase behavior of 1, 3-dilauroyl-2-stearoyl-sn-glycerol and 1, 2-dilauroyl-3-stearoyl-sn-glycerol [J]. Chemistry and Physics of Lipids, 2010, 163(6): 607-629.
    [91] M. V. Boodhoo, L. Bouzidi, S. S. Narine. The binary phase behavior of 1,3-dipalmitoyl-2-stearoyl-sn-glycerol and 1, 2-dipalmitoyl-3-stearoyl-sn-glycerol [J]. Chemistry and Physics of Lipids, 2009, 160(1): 11-32.
    [92] J. Vereecken, V. De Graef, K. W. Smith, J. Wouters, K. Dewettinck. Effect of TAG composition on the crystallization behaviour of model fat blends with the same saturated fat content [J]. Food Research International, 2010, 43(8): 2057-2067.
    [93] M. dos Santos, G. Le Roux, V. Gerbaud. Phase equilibrium and optimization tools: Application for enhanced structured lipids for foods [J]. Journal of the American Oil Chemists' Society, 2011, 88(2): 223-233.
    [94] E. Da Silva, D. Rousseau. Molecular order and thermodynamics of the solid-liquid transition in triglycerides via raman spectroscopy [J]. Physical Chemistry Chemical Physics, 2008, 10(31): 4606-4613.
    [95] R. E. Timms. Fractional crystallisation—the fat modification process for the 21st century [J]. European Journal of Lipid Science and Technology, 2005, 107(1): 48-57.
    [96] J. M. Son, K.-T. Lee, C. C. Akoh, M. R. Kim, M. J. Kim, J. H. Lee. Optimisation of tripalmitin-rich fractionation from palm stearin by response surface methodology [J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1520-1526.
    [97] F. Luddy, J. Hampson, S. Herb, H. Rothbart. Development of edible tallow fractions for specialty fat uses [J]. Journal of the American Oil Chemists' Society, 1973, 50(7): 240-244.
    [98] R. Chao, S. Mulvaney, H. Huang. Effects of extraction and fractionation pressures on supercritical extraction of cholesterol from beef tallow [J]. Journal of the American Oil Chemists' Society, 1993, 70(2): 139-143.
    [99] D. M. Bussey, T. C. Ryan, J. I. Gray, M. E. Zabik. Fractionation and characterization of edible tallow [J]. Journal of Food Science, 1981, 46(2): 526-530.
    [100] M. Grompone. Physicochemical properties of fractionated beef tallows [J]. Journal of the American Oil Chemists' Society, 1989, 66(2): 253-255.
    [101] A. G. Marangoni, D. Rousseau. Engineering triacylglycerols: The role of interesterification [J]. Trends in Food Science & Technology, 1995, 6(10): 329-335.
    [102] L. Liu. How is chemical interesterification initiated: Nucleophilic substitution orα-proton abstraction? [J]. Journal of the American Oil Chemists' Society, 2004, 81(4): 331-337.
    [103] X. Xu. Engineering of enzymatic reactions and reactors for lipid modification and synthesis [J]. European Journal of Lipid Science and Technology, 2003, 105(6): 289-304.
    [104] H. Kontkanen, S. Rokka, A. Kemppinen, H. Miettinen, J. Hellstr?m, K. Kruus, P. Marnila, T. Alatossava, H. Korhonen. Enzymatic and physical modification of milk fat: A review [J]. International Dairy Journal, 2011, 21(1): 3-13.
    [105] A. P. B. Ribeiro, R. C. Basso, R. Grimaldi, L. A. Gioielli, L. Gon?alves. Instrumental methods for the evaluation of interesterified fats [J]. Food Analytical Methods, 2009, 2(4): 282-302.
    [106] A. P. B. Ribeiro, R. Grimaldi, L. A. Gioielli, L. A. G. Gon?alves. Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications [J]. Food Research International, 2009, 42(3): 401-410.
    [107] A. P. B. Ribeiro, R. C. Basso, R. Grimaldi, L. A. Gioielli, A. O. dos Santos, L. P. Cardoso, L. A. Guaraldo Gon?alves. Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization properties of canola oil and fully hydrogenated cottonseed oil blends [J]. Food Research International, 2009, 42(8): 1153-1162.
    [108] F. Andreia Sch?fer De Martini Soares, R. Claro da Silva, K. Caroline Guimar?es da Silva, M. Bertolessi Louren?o, D. Ferreira Soares, L. Antonio Gioielli. Effects of chemical interesterification on physicochemical properties of blends of palm stearin and palm olein [J]. Food Research International, 2009, 42(9): 1287-1294.
    [109] B. Kowalski, K. Tarnowska, E. Gruczynska, W. Bekas. Chemical and enzymatic interesterification of a beef tallow and rapeseed oil equal-weight blend [J]. European Journal of Lipid Science and Technology, 2004, 106(10): 655-664.
    [110] B. Kowalski, K. Tarnowska, E. Gruczynska, W. Bekas. Chemical and enzymatic interesterification of beef tallow and rapeseed oil blend with low content of tallow [J]. Journal of Oleo Science, 2004, 53: 479-488.
    [111] N. Segura, R. da Silva, F. de M. Soares, L. Gioielli, I. Jachmanián. Valorization of beef tallow by lipase-catalyzed interesterification with high oleic sunflower oil [J]. Journal of the American Oil Chemists' Society, 2011, 88: 1-10.
    [112] K. Smith, K. Bhaggan, G. Talbot, K. van Malssen. Crystallization of fats: Influence of minor components and additives [J]. Journal of the American Oil Chemists' Society, 2011, 88(8): 1085-1101.
    [113] E. Fredrick, I. Foubert, J. V. De Sype, K. Dewettinck. Influence of monoglycerides on the crystallization behavior of palm oil [J]. Crystal Growth & Design, 2008, 8(6): 1833-1839.
    [114] R. C. Basso, A. P. B. Ribeiro, M. H. Masuchi, L. A. Gioielli, L. A. G. Gon?alves, A. O. D. Santos, L. P. Cardoso, R. Grimaldi. Tripalmitin and monoacylglycerols as modifiers in the crystallisation of palm oil [J]. Food Chemistry, 2010, 122(4): 1185-1192.
    [115] S. Saadi, A. A. Ariffin, H. M. Ghazali, M. S. Miskandar, S. M. Abdulkarim, H. C. Boo. Effect of blending and emulsification on thermal behavior, solid fat content, and microstructure properties of palm oil-based margarine fats [J]. Journal of Food Science, 2011, 76(1): C21-C30.
    [116] A. H. Saberi, O.-M. Lai, J. F. Toro-Vázquez. Crystallization kinetics of palm oil in blends with palm-based diacylglycerol [J]. Food Research International, 2011, 44(1): 425-435.
    [117] M. Cerdeira, S. Martini, R. W. Hartel, M. L. Herrera. Effect of sucrose ester addition on nucleation and growth behavior of milk fat?sunflower oil blends [J]. Journal of Agricultural and Food Chemistry, 2003, 51(22): 6550-6557.
    [118] C. Huck-Iriart, R. Candal, M. Herrera. Effects of addition of a palmitic sucrose ester on low-trans-fat blends crystallization in bulk and in oil-in-water emulsions [J]. Food Biophysics, 2009, 4(3): 158-166.
    [119] M. Cerdeira, S. Martini, R. Candal, M. Herrera. Polymorphism and growth behavior of low-trans fat blends formulated with and without emulsifiers [J]. Journal of the AmericanOil Chemists' Society, 2006, 83(6): 489-496.
    [120] J.-H. Oh, A. R. McCurdy, S. Clark, B. Swanson. Stabilizing polymorphic transitions of tristearin using diacylglycerols and sucrose polyesters [J]. Journal of the American Oil Chemists' Society, 2005, 82(1): 13-19.
    [121] K. Chaleepa, A. Szepes, J. Ulrich. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil [J]. Chemistry and Physics of Lipids, 2010, 163(4-5): 390-396.
    [122] J. W. Litwinenko, A. P. Singh, A. G. Marangoni. Effects of glycerol and tween 60 on the crystallization behavior, mechanical properties, and microstructure of a plastic fat [J]. Crystal Growth & Design, 2003, 4(1): 161-168.
    [123] C. L. Chong, Z. Kamarudin, P. Lesieur, A. G. Marangoni, C. Bourgaux, M. Ollivon. Thermal and structural behaviour of crude palm oil: Crystallisation at very slow cooling rate [J]. European Journal of Lipid Science and Technology, 2007, 109(4): 410-421.
    [124] G. Mazzanti, A. G. Marangoni, S. H. J. Idziak. Synchrotron study on crystallization kinetics of milk fat under shear flow [J]. Food Research International, 42(5-6): 682-694.
    [125] J. Pérez-Martínez, J. Reyes-Hernández, E. Dibildox-Alvarado, J. Toro-Vazquez. Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger [J]. Journal of the American Oil Chemists' Society, 2011, 88: 1-11.
    [1]高红艳,金青哲,王兴国.牛油基起酥油的起砂原因初探[J].中国油脂, 2007, 32(2): 52-54.
    [2] D. Tang, A. G. Marangoni. Microstructure and fractal analysis of fat crystal networks [J]. Journal of the American Oil Chemists' Society, 2006, 83(5): 377-388.
    [3] D. Tang, A. G. Marangoni. Computer simulation of fractal dimensions of fat crystal networks [J]. Journal of the American Oil Chemists' Society, 2006, 83(4): 309-314.
    [4] AOCS. Official Methods and Recommended Practices of the American Oil Chemists’Society [M]. Fifth Edition. Champaign: American Oil Chemists’Society. 1998.
    [5] Y. Liu, Z. Meng, F. Zhang, L. Shan, X. Wang. Influence of lipid composition, crystallization behavior and microstructure on hardness of palm oil-based margarines [J]. European Food Research and Technology, 2010, 230(5): 759-767.
    [6] Y. Liu, Z. Meng, L. Shan, Q. Jin, X. Wang. Preparation of specialty fats from beef tallow and canola oil by chemical interesterification: Physico-chemical properties and bread applications of the products [J]. European Food Research and Technology, 2010, 230(3): 457-466.
    [7] S. S. Narine, A. G. Marangoni. Fractal nature of fat crystal networks [J]. Physical Review E, 1999, 59(2): 1908-1920.
    [8] L. Tanaka, S. Miura, T. Yoshioka. Formation of granular crystals in margarine with excess amount of palm oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(5): 421-426.
    [9] J. Reyes-Hernández, E. Dibildox-Alvarado, M. Charó-Alonso, J. Toro-Vazquez. Physicochemical and rheological properties of crystallized blends containing trans -free and partially hydrogenated soybean oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(12): 1081-1093.
    [10] J. Vereecken, I. Foubert, K. W. Smith, K. Dewettinck. Relationship between crystallization behavior, microstructure, and macroscopic properties in trans-containing and trans-free filling fats and fillings [J]. Journal of Agricultural and Food Chemistry, 2007, 55(19): 7793-7801.
    [11] I. Foubert, J. Vereecken, K. W. Smith, K. Dewettinck. Relationship between crystallization behavior, microstructure, and macroscopic properties in trans containing and trans free coating fats and coatings [J]. Journal of Agricultural and Food Chemistry, 2006, 54(19): 7256-7262.
    [12] A. Tirtiaux. Tirtiaux fractionation: Industrial applications [J]. Journal of the American Oil Chemists' Society, 1983, 60(2): 473-473.
    [13] H. R. Mottram, R. P. Evershed. Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry [J]. Tetrahedron Letters, 1996, 37(47): 8593-8596.
    [14] A. Szyd(?)owska-Czerniak, G. Karlovits, M. Lach, E. Sz?yk. X-ray diffraction and differential scanning calorimetry studies ofβ′→βtransitions in fat mixtures [J]. Food Chemistry, 2005, 92(1): 133-141.
    [15] D. Rousseau, S. M. Hodge, M. T. Nickerson, A. T. Paulson. Regulating theβ′→βpolymorphic transition in food fats [J]. Journal of the American Oil Chemists' Society, 2005, 82(1): 7-12.
    [16] J. H. Lee, C. C. Akoh, D. S. Himmelsbach, K.-T. Lee. Preparation of interesterified plastic fats from fats and oils free of trans fatty acid [J]. Journal of Agricultural and Food Chemistry, 2008, 56(11): 4039-4046.
    [17] S. D. Campbell, H. D. Goff, D. Rousseau. Comparison of crystallization properties of a palm stearin/canola oil blend and lard in bulk and emulsified form [J]. Food Research International, 2002, 35(10): 935-944.
    [18] P. J. Lawler, P. S. Dimick. Crystallization and polymorphism of fats [M]. Third Edition. New York: CRC Press. 2008: 245-266.
    [19] L.-Z. Cheong, H. Zhang, Y. Xu, X. Xu. Physical characterization of lard partial acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil [J]. Journal of Agricultural and Food Chemistry, 2009, 57(11): 5020-5027.
    [20] A. Wright, R. Hartel, S. S. Narine, A. G. Marangoni. The effect of minor components on milk fat crystallization [J]. Journal of the American Oil Chemists' Society, 2000, 77(5): 463-475.
    [21] V. De Graef, I. Foubert, K. W. Smith, F. W. Cain, K. Dewettinck. Crystallization behavior and texture of trans-containing and trans-free palm oil based confectionery fats [J]. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10258-10265.
    [22] J. Toro-Vazquez, V. Herrera-Coronado, E. Dibildox-Alvarado, M. Charo-Alonso, C. Gomez-Aldapa. Induction time of crystallization in vegetable oils, comparative measurements by differential scanning calorimetry and diffusive light scattering [J]. Journal of Food Science, 2002, 67(3): 1057-1064.
    [23] J. Toro-Vazquez, D. Pérez-Martínez, E. Dibildox-Alvarado, M. Charó-Alonso, J. Reyes-Hernández. Rheometry and polymorphism of cocoa butter during crystallization under static and stirring conditions [J]. Journal of the American Oil Chemists' Society, 2004, 81(2): 195-202.
    [24] V. De Graef, K. Dewettinck, D. Verbeken, I. Foubert. Rheological behavior of crystallizing palm oil [J]. European Journal of Lipid Science and Technology, 2006, 108(10): 864-870.
    [25] J. Lee, C. Akoh, K.-T. Lee. Physical properties of trans-free bakery shortening produced by lipase-catalyzed interesterification [J]. Journal of the American Oil Chemists' Society, 2008, 85(1): 1-11.
    [1] V. Ghosh, G. R. Ziegler, R. C. Anantheswaran. Fat, moisture, and ethanol migration through chocolates and confectionary coatings [J]. Critical Reviews in Food Science and Nutrition, 2002, 42(6): 583-626.
    [2] P. Lonchampt, R. W. Hartel. Fat bloom in chocolate and compound coatings [J]. European Journal of Lipid Science and Technology, 2004, 106(4): 241-274.
    [3] K. L. McCarthy, M. J. McCarthy. Oil migration in chocolate–peanut butter paste confectionery as a function of chocolate formulation [J]. Journal of Food Science, 2008, 73(6): E266-E273.
    [4] T. M. Guiheneuf, P. J. Couzens, H.-J. Wille, L. D. Hall. Visualisation of liquid triacylglycerol migration in chocolate by magnetic resonance imaging [J]. Journal of the Science of Food and Agriculture, 1997, 73(3): 265-273.
    [5] J. M. Aguilera, M. Michel, G. Mayor. Fat migration in chocolate: Diffusion or capillary flow in a particulate solid?—a hypothesis paper [J]. Journal of Food Science, 2004, 69(7): 167-174.
    [6] S. Hodge, D. Rousseau. Fat bloom formation and characterization in milk chocolate observed by atomic force microscopy [J]. Journal of the American Oil Chemists' Society, 2002, 79(11): 1115-1121.
    [7] D. Rousseau, S. Sonwai. Influence of the dispersed particulate in chocolate on cocoa butter microstructure and fat crystal growth during storage [J]. Food Biophysics, 2008, 3(2): 273-278.
    [8] P. Smith, A. Dahlman. The use of atomic force microscopy to measure the formation and development of chocolate bloom in pralines [J]. Journal of the American Oil Chemists' Society, 2005, 82(3): 165-168.
    [9] M. E. Miquel, L. D. Hall. A general survey of chocolate confectionery by magnetic resonance imaging [J]. LWT-Food Science and Technology, 1998, 31(2): 93-99.
    [10] M. E. Miquel, S. Carli, P. J. Couzens, H.-J. Wille, L. D. Hall. Kinetics of the migration of lipids in composite chocolate measured by magnetic resonance imaging [J]. Food Research International, 2001, 34(9): 773-781.
    [11] M. E. Miquel, L. D. Hall. Measurement by MRI of storage changes in commercial chocolate confectionery products [J]. Food Research International, 2002, 35(10): 993-998.
    [12] Y. Kinta, T. Hatta. Composition, structure, and color of fat bloom due to the partial liquefaction of fat in dark chocolate [J]. Journal of the American Oil Chemists' Society, 2007, 84(2): 107-115.
    [13] E. O. Afoakwa, A. Paterson, M. Fowler, J. Vieira. Effects of tempering and fat crystallisation behaviour on microstructure, mechanical properties and appearance in dark chocolate systems [J]. Journal of Food Engineering, 2008, 89(2): 128-136.
    [14] A. Szyd(?)owska-Czerniak, G. Karlovits, M. Lach, E. Sz?yk. X-ray diffraction and differential scanning calorimetry studies ofβ′→βtransitions in fat mixtures [J]. Food Chemistry, 2005, 92(1): 133-141.
    [15] D. Rousseau, S. Hodge, M. Nickerson, A. Paulson. Regulating theβ′→βpolymorphic transition in food fats [J]. Journal of the American Oil Chemists' Society, 2005, 82(1): 7-12.
    [16] S. Braipson-Danthine, C. Deroanne. Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings [J]. Food Research International, 2004, 37(10): 941-948.
    [17] S. Braipson-Danthine, C. Deroanne. Determination of solid fat content (SFC) of binary fat blends and use of these data to predict SFC of selected ternary fat blends containing low-erucic rapeseed oil [J]. Journal of the American Oil Chemists' Society, 2006, 83(7): 571-581.
    [18] H. Zhang, C. Jacobsen, J. Adler-Nissen. Storage stability study of margarines produced from enzymatically interesterified fats compared to margarines produced by conventional methods. I. Physical properties [J]. European Journal of Lipid Science and Technology, 2005, 107(7-8): 530-539.
    [19] N. Arifin, L.-Z. Cheong, S.-P. Koh, K. Long, C.-P. Tan, M. S. A. Yusoff, I. Nor Aini, S.-K. Lo, O.-M. Lai. Physicochemical properties and sensory attributes of medium-and long-chain triacylglycerols(MLCT)-enriched bakery shortening [J]. Food and Bioprocess Technology, 2011, 4(4): 587-596.
    [20] A.-D. S(?)rensen, X. Xu, L. Zhang, J. Kristensen, C. Jacobsen. Human milk fat substitute from butterfat: Production by enzymatic interesterification and evaluation of oxidative stability [J]. Journal of the American Oil Chemists' Society, 2010, 87(2): 185-194.
    [21] H. R. Kattenberg, C. Poot. Margarine fat blend [P]. United States, 4016302, 1977-04-05.
    [22] S. Miura, H. Konishi. Crystallization behavior of 1, 3-dipalmitoyl-2-oleoyl-glycerol and 1-palmitoyl-2, 3-dioleoyl-glycerol [J]. European Journal of Lipid Science and Technology, 2001, 103(12): 804-809.
    [1] S. Miura, H. Konishi. Crystallization behavior of 1, 3-dipalmitoyl-2-oleoyl-glycerol and 1-palmitoyl-2, 3-dioleoyl-glycerol [J]. European Journal of Lipid Science and Technology, 2001, 103(12): 804-809.
    [2] L. Tanaka, S. Miura, T. Yoshioka. Formation of granular crystals in margarine with excess amount of palm oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(5): 421-426.
    [3] L. Tanaka, K. Tanaka, S. Yamato, S. Ueno, K. Sato. Microbeam X-ray diffraction study of granular crystals formed in water-in-oil emulsion [J]. Food Biophysics, 2009, 4(4): 331-339.
    [4] R. D. O’Brien. Fats and oils—formulating and processing for applications [M]. Boca Raton: CRC Press. 2009: 1-72.
    [5]毕艳兰.油脂化学[M].北京:化学工业出版社. 2005: 8-19.
    [6] J. M. de Man. Functionality of palm oil in foods [J]. Journal of Food Lipids, 1998, 5(2): 159-170.
    [7] F. J. Hidalgo, R. Zamora. Handbook of food science, technology, and engineering [M]. Boca Raton: CRC Taylor & Francis. 2006: 142-168.
    [8] Y. Liu, Z. Meng, L. Shan, Q. Jin, X. Wang. Preparation of specialty fats from beef tallow and canola oil by chemical interesterification: Physico-chemical properties and bread applications of the products [J]. European Food Research and Technology, 2010, 230(3): 457-466.
    [9] S. W. Lin. Vegetable oils in food technology: Composition, properties and uses [M]. Oxford: Blackwell Publishing. 2002: 59-97.
    [10] A. P. B. Ribeiro, R. Grimaldi, L. A. Gioielli, L. A. G. Gon?alves. Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications [J]. Food Research International, 2009, 42(3): 401-410.
    [11] L. Wiedermann. Margarine and margarine oil, formulation and control [J]. Journal of the American Oil Chemists' Society, 1978, 55(11): 823-829.
    [12] S. D. Campbell, H. D. Goff, D. Rousseau. Comparison of crystallization properties of a palm stearin/canola oil blend and lard in bulk and emulsified form [J]. Food Research International, 2002, 35(10): 935-944.
    [13] A. Ribeiro, R. Basso, R. Grimaldi, L. Gioielli, L. Gon?alves. Instrumental methods for the evaluation of interesterified fats [J]. Food Analytical Methods, 2009, 2(4): 282-302.
    [14] J.-A. Shin, C. C. Akoh, K.-T. Lee. Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor [J]. Journal of Agricultural and Food Chemistry, 2009, 57(3): 888-900.
    [15] D. Rousseau, S. Hodge, M. Nickerson, A. Paulson. Regulating theβ′→βpolymorphic transition in food fats [J]. Journal of the American Oil Chemists' Society, 2005, 82(1): 7-12.
    [16] C. Garbolino, M. Bartoccini, E. Fl?ter. The influence of emulsifiers on the crystallisation behaviour of a palm oil-based blend [J]. European Journal of Lipid Science and Technology, 2005, 107(9): 616-626.
    [17] V. De Graef, I. Foubert, K. W. Smith, F. W. Cain, K. Dewettinck. Crystallization behavior and texture of trans-containing and trans-free palm oil based confectionery fats [J]. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10258-10265.
    [18] A. G. Marangoni, S. E. McGauley. Relationship between crystallization behavior and structure in cocoa butter [J]. Crystal Growth & Design, 2002, 3(1): 95-108.
    [19] M. Sakamoto, K. Maruo, J. Kuriyama, M. Kouno, S. Ueno, K. Sato. Effects of adding polyglycerol behenic acid esters on the crystallization of palm oil [J]. Journal of Oleo Science, 2003, 52(12): 639-645.
    [20] L.-Z. Cheong, H. Zhang, Y. Xu, X. Xu. Physical characterization of lard partial acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil [J]. Journal of Agricultural and Food Chemistry, 2009, 57(11): 5020-5027.
    [21] S. K, G. N. Crystallization processes in fats and lipid systems [M]. New York: Marcel Dekker. 2001: 289-292.
    [22] K. Higaki, T. Koyano, I. Hachiya, K. Sato. In situ optical observation of microstructure ofβ-fat gel made of binary mixtures of high-melting and low-melting fats [J]. FoodResearch International, 2004, 37(1): 2-10.
    [23] G. Mazzanti, S. E. Guthrie, E. B. Sirota, A. G. Marangoni, S. H. J. Idziak. Orientation and phase transitions of fat crystals under shear [J]. Crystal Growth & Design, 2003, 3(5): 721-725.
    [24] A. Stapley, H. Tewkesbury, P. Fryer. The effects of shear and temperature history on the crystallization of chocolate [J]. Journal of the American Oil Chemists' Society, 1999, 76(6): 677-685.
    [25] S. Bolliger, Y. Zeng, E. Windhab. In-line measurement of tempered cocoa butter and chocolate by means of Near-Infrared Spectroscopy [J]. Journal of the American Oil Chemists' Society, 1999, 76(6): 659-667.
    [1] A. R. Norizzah, C. L. Chong, C. S. Cheow, O. Zaliha. Effects of chemical interesterification on physicochemical properties of palm stearin and palm kernel olein blends [J]. Food Chemistry, 2004, 86(2): 229-235.
    [2] B. S. Chu, H. M. Ghazali, O. M. Lai, Y. B. Che Man, S. Yusof. Physical and chemical properties of a lipase-transesterified palm stearin/palm kernel olein blend and its isopropanol-solid and high melting triacylglycerol fractions [J]. Food Chemistry, 2002, 76(2): 155-164.
    [3] L. Tanaka, S. Miura, T. Yoshioka. Formation of granular crystals in margarine with excess amount of palm oil [J]. Journal of the American Oil Chemists' Society, 2007, 84(5): 421-426.
    [4] E. Lutton, M. Mallery, J. Burgers. Interesterification of lard [J]. Journal of the American Oil Chemists' Society, 1962, 39(5): 233-235.
    [5] S. Laning. Chemical interesterification of palm, palm kernel and coconut oils [J]. Journal of the American Oil Chemists' Society, 1985, 62(2): 400-407.
    [6] AOCS. Official Methods and Recommended Practices of the American Oil Chemists’Society [M]. Fifth Edition. Champaign: American Oil Chemists’Society. 1998.
    [7] D. Rousseau, K. Forestière, A. Hill, A. G.. Marangoni. Restructing butterfat through blending and chemical interesterification. 1. Melting behavior and triacylglycerol modifications [J]. Journal of the American Oil Chemists' Society, 1996, 73(8): 963-972.
    [8] S. Braipson-Danthine, C. Deroanne. Determination of solid fat content (SFC) of binary fat blends and use of these data to predict SFC of selected ternary fat blends containing low-erucic rapeseed oil [J]. Journal of the American Oil Chemists' Society, 2006, 83(7): 571-581.
    [9] F. D. Gunstone. Fatty acid and lipid chemistry. London: Blackie Academic & Professional. 1996: 205-222.
    [10] C.E. H(?)y, X. B. Xu. Structured triacylglycerols. New York: CRC Press. 2001: 209-240.
    [11] R. D. O’Brien. Raw materials. Third Edition. Boca Raton: CRC Press. 2009: 1-72.
    [12] I. Karabulut, S. Turan, G. Ergin. Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends [J]. European Food Research and Technology, 2004, 218(3): 224-229.
    [13] H. Noor Lida, K. Sundram, W. Siew, A. Aminah, S. Mamot. TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein belends before and after chemical interesterification [J]. Journal of the American Oil Chemists' Society, 2002, 79(11): 1137-1144.
    [14] R. C. Silva, L. N. Cotting, T. P. Poltronieri, V. M. Balc?o, D. B. de Almeida, L. A. G. Goncalves, R. Grimaldi, L. A. Gioielli. The effects of enzymatic interesterification on the physical-chemical properties of blends of lard and soybean oil [J]. LWT-Food Science and Technology, 2009, 42(7): 1275-1282.
    [15] A. P. B. Ribeiro, R. Grimaldi, L. A. Gioielli, L. A. G. Gon(?)alves. Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications [J]. Food Research International, 2009, 42(3): 401-410.
    [16] A. P. B. Ribeiro, R. C. Basso, R. Grimaldi, L. A. Gioielli, A. O. dos Santos, L. P. Cardoso, L. A. Guaraldo Gon(?)alves. Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization properties of canola oil and fully hydrogenated cottonseed oil blends [J]. Food Research International, 2009, 42(8): 1153-1162.
    [17] Z. Zainal, M. Affandi Yusoff. Enzymatic interesterification of palm stearin and palm kernel olein [J]. Journal of the American Oil Chemists' Society, 1999, 76(9): 1003-1008.
    [18] R. C. da Silva, D. F. Soares, M. B. Louren?o, F. A. S. M. Soares, K. G. da Silva, M. I. A. Gon(?)alves, L. A. Gioielli. Structured lipids obtained by chemical interesterification of olive oil and palm stearin [J]. LWT-Food Science and Technology, 2010, 43(5): 752-758.
    [19] I. Karabulut, S. Turan, G. Ergin. Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends [J]. European Food Research and Technology, 2004, 218(3): 224-229.
    [20] M. Aguedo, E. Hanon, S. Danthine, M. Paquot, G. Lognay, A. Thomas, M. Vandenbol, P. Thonart, J.-P. Wathelet, C. Blecker. Enrichment of anhydrous milk fat in polyunsaturated fatty acid residues from linseed and rapeseed oils through enzymatic interesterification [J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1757-1765.
    [21] B. S. Ghotra, S. D. Dyal, S. S. Narine. Lipid shortenings: A review [J]. Food Research International, 2002, 35(10): 1015-1048.
    [22] L. Ahmadi, A. G. Marangoni. Functionality and physical properties of interesterified high oleic shortening structured with stearic acid [J]. Food Chemistry, 2009, 117(4): 668-673.
    [23] R. E. Timms. Phase behaviour of fats and their mixtures [J]. Progress in Lipid Research, 1984, 23(1): 1-38.
    [24] D. Rousseau, A. G. Marangoni. Chemical interesterification of food lipids: Theory and practice. New York: CRC Press. 2002: 301-335.
    [25] K.L. Humphrey, S. S. Narine. Lipid phase behavior. New York: Marcel Dekker. 2005: 83-115.
    [26] M. Aguedo, E. Hanon, S. Danthine, M. Paquot, G. Lognay, A. Thomas, M. Vandenbol, P. Thonart, J.-P. Wathelet, C. Blecker. Enrichment of anhydrous milk fat in polyunsaturated fatty acid residues from linseed and rapeseed oils through enzymatic interesterification [J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1757-1765.
    [27] I. Piska, M. Zárubová, T. Lou(?)ecky, H. Karami, V. Filip. Properties and crystallization of fat blends [J]. Journal of Food Engineering, 2006, 77(3): 433-438.
    [28] A. Rodríguez, E. Castro, M. Salinas, R. López, M. Miranda. Interesterification of tallow and sunflower oil [J]. Journal of the American Oil Chemists' Society, 2001, 78(4): 431-436.
    [29] D. Rousseau, A. Hill, A. G. Marangoni. Restructuring butterfat through blending and chemical interesterification. 3. Rheology [J]. Journal of the American Oil Chemists' Society, 1996, 73(8): 983-989.
    [1] T. Katsuragi. Interactions between surfactants and fats. Champaign: AOCS Press. 1999: 211-219.
    [2] R. C. Basso, A. P. B. Ribeiro, M. H. Masuchi, L. A. Gioielli, L. A. G. Gon(?)alves, A. O. dos Santos, L. P. Cardoso, R. Grimaldi. Tripalmitin and monoacylglycerols as modifiers in the crystallisation of palm oil [J]. Food Chemistry, 2010, 122(4): 1185-1192.
    [3] R. Dérick. Fat crystals and emulsion stability—a review [J]. Food Research International, 2000, 33(1): 3-14.
    [4] J. N. Coupland. Crystallization in emulsions [J]. Current Opinion in Colloid & Interface Science, 2002, 7: 445-450.
    [5] T. Awad, Y. Hamada, K. Sato. Effects of addition of diacylglycerols on fat crystallization in oil-in-water emulsion [J]. European Journal of Lipid Science and Technology, 2001, 103(11): 735-741.
    [6] T. Katsuragi, N. Kaneko, K. Sato. Effects of addition of hydrophobic sucrose fatty acid oligoesters on crystallization rates of n-hexadecane in oil-in-water emulsions [J]. Colloids and Surfaces B: Biointerfaces, 2001, 20(3): 229-237.
    [7] M. Sakamoto, A. Ohba, J. Kuriyama, K. Maruo, S. Ueno, K. Sato. Influences of fatty acid moiety and esterification of polyglycerol fatty acid esters on the crystallization of palm mid fraction in oil-in-water emulsion [J]. Colloids and Surfaces B: Biointerfaces, 2004, 37: 27-33.
    [8] T. S. Awad, K. Sato. Fat crystallization in O/W emulsions controlled by hydrophobic emulsifier additives [M]. New York: CRC Press. 2002.
    [9] J. W. Litwinenko, A. P. Singh, A. G. Marangoni. Effects of glycerol and tween 60 on the crystallization behavior, mechanical properties, and microstructure of a plastic fat [J]. Crystal Growth & Design, 2003, 4(1): 161-168.
    [10] K. Chaleepa, A. Szepes, J. Ulrich. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil [J]. Chemistry and Physics of Lipids, 2010, 163: 390-396.
    [11] M. Cerdeira, S. Martini, R. W. Hartel, M. L. Herrera. Effect of sucrose ester addition on nucleation and growth behavior of milk fat?sunflower oil blends [J]. Journal of Agricultural and Food Chemistry, 2003, 51(22): 6550-6557.
    [12] M. C. Puppo, S. Martini, R. W. Hartel, M. L. Herrera. Effects of sucrose esters onisothermal crystallization and rheological behavior of blends of milk-fat fraction sunflower oil [J]. Journal of Food Science, 2002, 67(9): 3419-3426.
    [13] J.-H. Oh, A. McCurdy, S. Clark, B. Swanson. Stabilizing polymorphic transitions of tristearin using diacylglycerols and sucrose polyesters [J]. Journal of the American Oil Chemists' Society, 2005, 82(1): 13-19.
    [14] P. R. Smith. The effects of phospholipids on crystallisation and crystal habit in triglycerides [J]. European Journal of Lipid Science and Technology, 2000, 102(2): 122-127.
    [15] E. Fredrick, I. Foubert, J. V. De Sype, K. Dewettinck. Influence of monoglycerides on the crystallization behavior of palm oil [J]. Crystal Growth & Design, 2008, 8(6): 1833-1839.
    [16] S. Braipson-Danthine, C. Deroanne. Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings [J]. Food Research International, 2004, 37(10): 941-948.
    [17] S. Braipson-Danthine, C. Deroanne. Determination of solid fat content (SFC) of binary fat blends and use of these data to predict SFC of selected ternary fat blends containing low-erucic rapeseed oil [J]. Journal of the American Oil Chemists' Society, 2006, 83(7): 571-581.
    [18] A. P. B. Ribeiro, R. C. Basso, R. Grimaldi, L. A. Gioielli, A. O. dos Santos, L. P. Cardoso, L. A. Guaraldo Gon(?)alves. Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization properties of canola oil and fully hydrogenated cottonseed oil blends [J]. Food Research International, 2009, 42(8): 1153-1162.
    [19] Y. Fedotova, R. Lencki. The effect of phospholipids on butter physical and sensory properties [J]. Journal of the American Oil Chemists' Society, 2010, 87(1): 75-82.
    [20] S. E. Lumor, B. H. Kim, C. C. Akoh. Optimization of solid fat content and crystal properties of a trans-free structured lipid by blending with palm midfraction [J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9294-9298.
    [21] C. Garbolino, M. Bartoccini, E. Fl?ter. The influence of emulsifiers on the crystallisation behaviour of a palm oil-based blend [J]. European Journal of Lipid Science and Technology, 2005, 107(9): 616-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700