贮藏过程中棕榈油基塑性脂肪结晶网络结构与宏观物理性能变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济及食品工业的发展以及人均消费水平的提高,塑性脂肪作为现代食品工业中新型食用油脂制品的需求量愈来愈大,对产品的质量要求也愈来愈高。塑性脂肪在贮藏过程中品质将会由于温度的不适或波动而劣化,品质的变化与其内部结构变化密切相关。了解塑性脂肪品质变化与内部结构变化规律对高品质塑性脂肪的生产有重要指导作用。有鉴于此,本论文以两种棕榈油基起酥油为研究对象,通过研究温度恒定贮藏(0°C、10°C、20°C、30°C、40°C)与温度波动贮藏(0°C12h-20°C12h、10°C12h-20°C12h、30°C12h-20°C12h、40°C12h-20°C12h,分别作为周期温度往复)模式下贮藏温度和时间对这两种起酥油样品的组成、宏观物理性能、热特性、结晶网络结构的变化规律,探讨贮藏过程中温度和时间对这类塑性脂肪的微观结构和宏观性能的影响机理,建立贮藏过程中结晶网络结构与宏观物理性能之间的关联,为高品质塑性脂肪的可控化生产及贮藏建立科学的理论基础。主要研究内容与结果如下:
     一、贮藏过程中棕榈油基起酥油的分子组成、固体脂肪含量、质构及流变性能变化
     采用HPLC、pNMR、TA和Hakee流变仪分别研究温度恒定及波动贮藏下模型起酥油样品的分子组成、固体脂肪含量、硬度及弹性模量的变化。研究发现,在两种温度作用模式下,两种模型起酥油的分子组成均未发生明显变化。在恒温贮藏时,随贮藏温度的升高,两种起酥油样品的固体脂肪含量呈线性下降,硬度呈指数关系下降,弹性模量逐渐下降;随贮藏时间的延长,二者的固体脂肪含量及弹性模量变化不显著,当温度≤20°C时硬度随时间的延长逐渐变大,当温度>20°C时硬度随时间的延长逐渐变小。在温度波动贮藏时,随波动温度的升高,两种样品的固体脂肪含量呈现先稳定(0°C-20°C)后下降的趋势(30°C-40°C),硬度呈先平稳(0°C-10°C)后降低(30°C-40°C)的趋势,弹性模量呈先下降(0°C-10°C)后趋于稳定(30°C-40°C);随贮藏时间的延长,二者的固体脂肪含量及弹性模量无显著变化,硬度呈对数下降。
     二、贮藏过程中棕榈油基起酥油的热性质及晶型的变化
     采用DSC和XRD方法分别研究温度恒定及波动贮藏下两种模型起酥油样品的热性质及晶型的变化。研究发现,在恒温及温度波动贮藏时,随着贮藏温度的升高,吸热峰的峰温升高,表明,样品中晶体内高熔点甘油三酯含量增加。通过对XRD谱图中β晶型相对强度进行计算得到,在恒温贮藏时,随着时间的延长及温度的升高,起酥油样品中β晶型的含量均逐渐上升。在温度波动贮藏时,随时间延长,其β型晶体含量显著增加,与温度恒定贮藏相比,两种样品在温度波动模式下贮藏时β'晶型向β晶型转变速率明显较快。
     三、贮藏过程中棕榈油基起酥油结晶网络结构的变化
     采用PLM及SEM对温度恒定及波动贮藏下两种模型起酥油样品的晶体形态、大小及网络结构进行研究,并对温度作用下塑性脂肪结晶网络变化机制进行了推测。结果表明,在恒温贮藏时,随贮藏时间的延长,晶体尺寸逐渐增大,两种起酥油样品的结晶网络中出现部分晶体聚集块,网络的不均匀性增大,在温度≤20°C时,Db值逐渐增大,在温度>20°C时,Db值逐渐减小;随着温度的升高,两种模型起酥油样品的晶体尺寸先增大(0-20°C)后减小(30°C-40°C),这一现象在低熔点起酥油样品中更为明显,同时,两种起酥油样品的Db值逐渐降低,网络坍塌较多。在温度波动贮藏时,两种起酥油样品的在四种波动模式下晶体随着时间的延长逐渐聚集;同时,随着波动温度的升高,Db值逐渐下降。与恒温贮藏相比,温度波动模式对两种样品的结晶网络及晶体尺寸影响更大。
     四、贮藏过程中起酥油结晶网络结构与宏观物理性能关系的探讨
     对温度恒定及波动贮藏过程中两种模型起酥油的结晶网络结构及宏观物理性能之间关系进行探讨,并建立人工神经网络模型。结果表明,在贮藏过程中,无论恒温还是温度波动贮藏,两种模型起酥油样品的固体脂肪含量、结晶网络结构及β晶型的含量为宏观物理性能变化的重要影响因素。同时,建立了精度较高的人工神经网络模型,该模型可以很好地用于关联及预测类模型起酥油塑性脂肪宏观物理性能及微观结构在贮藏过程中的变化,为高品质塑性脂肪的可控化生产及贮藏提供依据。
With the development of the national economy and food industry, and the rising percapita consumption, as a new type of edible oils and fats for products in the modern foodindustry, a large number of plastic fats with higher product quality are required.The impropertemperature or the fluctuant temperature during storage will induce deterioration in the qualityof plastic fats such as consistency and plasticity, which is related to the change of the internalstructure in plastic fats. Learning the variation of the quality and internal structure of plasticfats has an important guiding role on the production of high-quality plastic fat. Two kinds ofpalm oil-based shortening were employed to explore the effect of storage temperature andtime on the composition, physical properties, thermal characteristics, the structure of crystalnetwork under different storage modes for28days including constant temperatures (0°C,10°C,20°C,30°C,40°C, repectively) and fluctuant temperatures (0°C12h-20°C12h,10°C12h-20°C12h,30°C12h-20°C12h,40°C12h-20°C12h, repectively for a cycle), as wellas their relations. In addition, mathematic model between the microstructure and physicalproperties of palm oil-based shortenings during storage has been further built to proposescientific theory foundation for control administration production and storage of plastic fatswith high quality. The main contents and results of this study were as follows:
     (1) The variation of the triglyceride (TAG) composition, solid fat content, texture andrheological properties of two model palm oil-based shortenings during storage
     The TAG composition, solid fat content, texture and rheological properties of two modelpalm oil-based shortenings stored at constant and fluctuant temperatures for28days wereanalyzed by pNMR, TA and Hakee rheometer. The results indicated that the TAG compositiondid not change during constant and fluctuant temperature storage. When stored at constanttemperature, as the temperature increased, the solid fat content values of two palm oil-basedshortenings have been found to decrease linearly, the hardness decreased in an exponentialmanner, the elasticity modulus decreased with the rising temperature; with the extension ofthe storage time, the solid fat content values and the elasticity modulus of the two modelshortenings did not change, the hardness increased when the temperature≤20°C anddecreased when the temperature>20°C. When stored at fluctuant temperatures, as the temperature increased, the solid fat content values of two model palm oil-based shorteningswere constant in the temperature range from0°C to20°C and then decreased (30°C-40°C),the hardness decreased when the temperature was higher than10°C, the elasticity modulusdecreased initially when the temperature was lower than10°C and then turned to be stable;with the extension of the storage time, the solid fat content values and the elasticity modulusof the two model shortenings did not change and the hardness decreased in a logarithmicmanner.
     (2) The variation of the thermal characteristics and crystal form of two model palmoil-based shortenings during storage
     The thermal characteristics and crystal form of two model palm oil-based shorteningsstored at constant and fluctuant temperatures for28days were analyzed by DSC and XRD.When the model shortenings were stored at constant and fluctuant temperatures, the peaktemperature in the melting curves shifted to higher temperature, suggesting higher content ofhigh-melting TAG in the crystals of the two model shortenings. When storing at constanttemperatures, the content of the β form crystal increased with the increasing storagetemperature and time. When the two model shortenings were stored at fluctant temperatures,the content of the β form crystal increased with the extension of the storage time. Comparedwith the constant temperature storage, the β-type crystal conversion rate of the twoshortenings stored at fluctuant temperatures was faster.
     (3) The variation of the crystal network structure of two model palm oil-basedshortenings during storage
     The crystal morphology, size, and fractal dimensions of the crystal network in the twomodel palm oil-based shortenings stored at constant and fluctuant temperatures for28dayswere analyzed by PLM and SEM, and the mechanisms of the crystal network variation underdifferent temperatures were summarized. When the two model shortenings were stored atconstant temperatures, with the extension of the storage time, the crystal size increased, somecrystal aggregates appeared, resulting in the increasing of the crystal network inhomogeneity,the fractal dimensions Dbincreased when the temperature was higher than20°C anddecreased when the temperature was lower than20°C. When the two model shortenings werestored at fluctuant temperatures, with the extension of the storage time, the different crystal aggregates appeared, and the size of the crystal aggregates increased. Meanwhile, the fractaldimensions Dbof the two model shortenings decreased as the fluctuant temperature increased.Compared with the constant temperature storage, the fluctuant temperature storage showed agreater impact on the crystal network and crystal size.
     (4) The relationship between the crystal network structure and macroscopic physicalproperties of the two model palm oil-based shortenings during storage
     The relationship between the crystal network structure and macroscopic physicalproperties of the two model palm oil-based shortenings were discussed and the artificialneural network models were built. The results indicated that the solid fat content, the crystalnetwork structure and the content of β form crystalline had an important fluence on themacroscopic physical properties of the model shortenings whether during constanttemperature storage or fluctuant temperature storage. Meanwhile, two artificial neuralnetwork models with a high precision between the crystal network structure and macroscopicphysical properties of the two model palm oil-based shortenings during storage wereestablished, and the models could be used to relate and predict the crystal network structureand macroscopic physical properties of the shortenings.
引文
[1] JB Lowe, JD Marth. A genetic approach to mammalian glycan function[J]. AnnualReview of Biochemistry,2003,72(1):643-691.
    [2] Zhang X, Li L, Xu Z, et al. Investigation of the Interaction of Naringin Palmitate withBovine Serum Albumin: Spectroscopic Analysis and Molecular Docking[J]. PloS one,2013,8(3): e59106.
    [3]赵文甲,司晶星,李彪.天然产物抗癌有效成分的研究进展[J].才智,2009,12:185.
    [4]毕艳兰.油脂化学[M].化学工业出版社,2005,42-49.
    [5] Wiedermann L H. Margarine and margarine oil, formulation and control[J]. Journal ofthe American Oil Chemists’ Society,1978,55(11):823-829.
    [6] Bessler T R, Orthoefer F T. Providing lubricity in food fat systems[J]. Journal of theAmerican Oil Chemists’ Society,1983,60(10):1765-1768.
    [7] Sato K. Crystallization behaviour of fats and lipids-a review[J]. Chemical EngineeringScience,2001,56(7):2255-2265.
    [8] Piska I, Zárubová M, Lou ecky T, et al. Properties and crystallization of fat blends[J].Journal of food engineering,2006,77(3):433-438.
    [9] Rye G G, Litwinenko J W, Marangoni A G. Fat crystal networks[M]. Sixth Edition.New Jersey: John Wiley&Sons, Inc.2005:121-160.
    [10] Breitschuh B, Windhab E J. Parameters influencing cocrystallization andpolymorphism in milk fat[J]. Journal of the American Oil Chemists’ Society,1998,75(8):897-904.
    [11] Ten Grotenhuis E, Van Aken G A, Van Malssen K F, et al. Polymorphism of milk fatstudied by differential scanning calorimetry and real-time X-ray powder diffraction[J].Journal of the American Oil Chemists’ Society,1999,76(9):1031-1039.
    [12] Fennema O R. Food Chemistry[M].3rd edition. New York: Marcel Dekker, Inc.1996:226-319.
    [13] Widlak R, Hartel S, Narine S. Crystallization and Solidification Properties ofLipids[M]. Champaign: AOCS Press.2001:225-235.
    [14] Jensen L H, Mabis A J. Refinement of the structure of β-tricaprin. ActaCrystallographica,1966,21:770-781.
    [15] Sato K, Ueno S, Yano J. Molecular interactions and kinetic properties of fats[J].Progress in lipid research,1999,38(1):91.
    [16] O’Brien R D. Bailey's industrial oil and fat products[M].5th edition. New York: JohnWiley&Sons,1996:161-192.
    [17] Haighton A J. Blending, chilling, and tempering of margarines and shortenings[J].Journal of the American Oil Chemists’ Society,1976,53(6):397-399.
    [18]金青哲,黄诗洪,周胜利.棕榈油在我国煎炸食品中应用[J].粮食与油脂,2007,3:15-16.
    [19] Ghotra B S, Dyal S D, Narine S S. Lipid shortenings: a review[J]. Food ResearchInternational,2002,35(10):1015-1048.
    [20]王德志,马传国,王高林.专用油脂在食品工业中的应用[J].中国油脂,2008,33(4):7-11.
    [21]李双双,刘晓见,李艳娜.中国人造奶油的现状及发展趋势[J].中国油脂,2004,29(5):14-16.
    [22]王德志,马传国,王高林,等.速冻食品专用油脂制备及其在汤圆中的应用评价[J].中国粮油学报,2010(012):71-74..
    [23]黄敏胜,李汴生,叶久东,等.影响冷冻面团质量的因素[J].食品工业科技,2006(3):188-191.
    [24] Carr L G, Tadini C C. Influence of yeast and vegetable shortening on physical andtextural parameters of frozen part baked French bread[J]. LWT-Food Science andTechnology,2003,36(6):609-614.
    [25] Baldwin R R, Baldry R P, Johansen R G. Fat systems for bakery products[J]. Journal ofthe American Oil Chemists’ Society,1972,49(8):473-477.
    [26]李鹏,王凤成,王刚.油脂对面粉烘焙制品的作用及影响[J].农产品加工,2006,4:017.
    [27]杨萍芳.油脂在焙烤食品中的作用[J].农产品加工,2008(8):12-12.
    [28]杨晓波,刘丹,王晓英,等.油脂对冰淇淋抗融性的影响[J].上海轻工业高等专科学校学报,1998(19):13-16.
    [29]李艳王,刘立云.棕榈油发展现状及前景[J].中国油脂,2008,33(7):4-6.
    [30] Mattsson B, Cederberg C, Blix L. Agricultural land use in life cycle assessment (LCA):case studies of three vegetable oil crops[J]. Journal of cleaner production,2000,8(4):283-292.
    [31]杨光宇,王东.棕榈油的研究进展及在畜牧业中的应用[J].饲料博览,2010(008):33-36.
    [32]左青.棕榈油的现状及展望[J].中国油脂,2009,34(6):11-15.
    [33] Busfield W K, Proschogo P N. Thermal analysis of palm stearine by DSC[J]. Journalof the American Oil Chemists' Society,1990,67(3):171-175.
    [34] Che Man Y B, Haryati T, Ghazali H M, et al. Composition and thermal profile ofcrude palm oil and its products[J]. Journal of the American Oil Chemists' Society,1999,76(2):237-242.
    [35] Kellens M, Gibon V, Hendrix M, et al. Palm oil fractionation[J]. European Journal ofLipid Science and Technology,2007,109(4):336-349.
    [36]姚伯龙,蒋敏海.棕榈油和棕榈仁油的地位和现状[J].食品与机械,2001,6(4):5.
    [37] Deman J M. Functionality of palm oil in foods[J]. Journal of food lipids,1998,5(2):159-170.
    [38] Mamat H, Nor Aini I, Said M, et al. Physicochemical characteristics of palm oil andsunflower oil blends fractionated at different temperatures[J]. Food chemistry,2005,91(4):731-736.
    [39] Mensink R P, Zock P L, Katan M B, et al. Effect of dietary cis and trans fatty acids onserum lipoprotein [a] levels in humans[J]. Journal of Lipid Research,1992,33(10):1493-1501.
    [40] Clevidence B A, Judd J T, Schaefer E J, et al. Plasma lipoprotein (a) levels in men andwomen consuming diets enriched in saturated, cis-, or trans-monounsaturated fattyacids[J]. Arteriosclerosis, thrombosis, and vascular biology,1997,17(9):1657-1661.
    [41] Judd J T, Baer D J, Clevidence B A, et al. Dietary cis and trans monounsaturated andsaturated FA and plasma lipids and lipoproteins in men[J]. Lipids,2002,37(2):123-131.
    [42] Adhikari P, Shin J A, Lee J H, et al. Production of trans-free margarine stock byenzymatic interesterification of rice bran oil, palm stearin and coconut oil[J]. Journalof the Science of Food and Agriculture,2010,90(4):703-711.
    [43] Jennings B H, Akoh C C. Trans-free plastic shortenings prepared with palm stearinand rice bran oil structured lipid[J]. Journal of the American Oil Chemists' Society,2010,87(4):411-417.
    [44] Nor Aini I, Miskandar M S. Utilization of palm oil and palm products in shorteningsand margarines[J]. European journal of lipid science and technology,2007,109(4):422-432.
    [45]葛瑞宏,吴文民,王德志,等.专用油脂对冷冻面团焙烤品质的影响[J].食品科学,2010,13:029.
    [46]常桂芳.棕榈油及其相关油脂在食品工业中的应用[J].冷饮与速冻食品工业,2002,8(3):20-22.
    [47] Deman J M, Beers A M. Fat crystal networks: structure and rheological properties[J].Journal of Texture Studies,1987,18(4):303-318.
    [48] Heertje I. Microstructural studies in fat research[J]. Food structure,1993,12:77-94
    [49] Narine S S, Marangoni A G. Fractal nature of fat crystal networks[J]. Physical ReviewE,1999,59(2):1908-1920.
    [50] Marangoni A G, Narine S S. Identifying key structural indicators of mechanicalstrength in networks of fat crystals[J]. Food research international,2002,35(10):957-969.
    [51] Juriaanse A C, Heertje I. Microstructure of shortenings, margarine and butter: areview[J]. Food Microstructure,1988,7:181-188.
    [52] Wright A J, Scanlon M G, Hartel R W, et al. Rheological properties of milkfat andbutter[J]. Journal of food science,2001,66(8):1056-1071.
    [53] Himawan C, Starov V M, Stapley A G F. Thermodynamic and kinetic aspects of fatcrystallization[J]. Advances in colloid and interface science,2006,122(1):3-33.
    [54] Narine S S, Marangoni A G. Relating structure of fat crystal networks to mechanicalproperties: a review[J]. Food Research International,1999,32(4):227-248.
    [55] Narine S S, Marangoni A G. Mechanical and structural model of fractal networks of fatcrystals at low deformations[J]. Physical Review E,1999,60(6):6991-7000.
    [56] Narine S S, Marangoni A G. Microscopic and rheological studies of fat crystalnetworks[J]. Journal of crystal growth,1999,198:1315-1319.
    [57] Awad T S, Rogers M A, Marangoni A G. Scaling behavior of the elastic modulus incolloidal networks of fat crystals[J]. The Journal of Physical Chemistry B,2004,108(1):171-179.
    [58] Kloek W, Van Vliet T, Walstra P. Large deformation behavior of fat crystal networks[J].Journal of texture studies,2005,36(5-6):516-543.
    [59] Tang D, Marangoni A G. Microstructure and fractal analysis of fat crystal networks[J].Journal of the American Oil Chemists' Society,2006,83(5):377-388.
    [60] Tang D, Marangoni A G. Computer simulation of fractal dimensions of fat crystalnetworks[J]. Journal of the American Oil Chemists' Society,2006,83(4):309-314.
    [61] Tang D, Marangoni A G. Modeling the rheological properties and structure of colloidalfat crystal networks[J]. Trends in Food Science&Technology,2007,18(9):474-483.
    [62] Acevedo N C, Marangoni A G. Characterization of the nanoscale in triacylglycerolcrystal networks[J]. Crystal Growth&Design,2010,10(8):3327-3333..
    [63] Adam-Berret M, Boulard M, Riaublanc A, et al. Evolution of fat crystal networkmicrostructure followed by NMR[J]. Journal of agricultural and food chemistry,2011,59(5):1767-1773.
    [64] Acevedo N C, Peyronel F, Marangoni A G. Nanoscale structure intercrystallineinteractions in fat crystal networks[J]. Current Opinion in Colloid&Interface Science,2011,16(5):374-383.
    [65] Tang D, Marangoni A G. Quantitative study on the microstructure of colloidal fatcrystal networks and fractal dimensions[J]. Advances in colloid and interface science,2006,128:257-265.
    [66] Falconer K.分形几何数学基础及其应用[M].曾文曲,刘世耀译.沈阳:东北大学出版社,1991:11-12.
    [67] Mandelbrot B B. The fractal geometry of nature. New York: Freeman,1982:187-217.
    [68] Vreeker R, Hoekstra L L, Den Boer D C, et al. The fractal nature of fat crystalnetworks[J]. Colloids and surfaces,1992,65(2):185-189.
    [69] Marangoni A G. The nature of fractality in fatcrystal networks[J]. Trends in FoodScience and Technology,2002,13:37-47.
    [70] Jullien R, Botet R. Aggregation and fractal aggregates[M]. Singapore: WorldScientific,1987:7.
    [71] Lin M Y, Klein R, Lindsay H M, et al. The structure of fractal colloidal aggregates offinite extent[J]. Journal of Colloid and Interface Science,1990,137(1):263-280.
    [72] Uriev N B, Kuchin I V. Modelling of the dynamic state of disperse systems[J]. RussianChemical Reviews,2006,75(1):31-55.
    [73] Marangoni A G, Rousseau D. Is plastic fat rheology governed by the fractal nature ofthe fat crystal network?[J]. Journal of the American Oil Chemists’ Society,1996,73(8):991-994.
    [74] Rousseau D, Forestière K, Hill A R, et al. Restructing butterfat through blending andchemical interesterification.1. Melting behavior and triacylglycerol modifications[J].Journal of the American Oil Chemists’ Society,1996,73(8):963-972.
    [75] Rousseau D, Marangoni A G. Tailoring the textural attributes of butter fat/canola oilblends via Rhizopus arrhizus lipase-catalyzed interesterification.2. Modifications ofphysical properties[J]. Journal of agricultural and food chemistry,1998,46(6):2375-2381.
    [76] Rousseau D, Marangoni A G, Jeffrey K R. The influence of chemical interesterificationon the physicochemical properties of complex fat systems.2. Morphology andpolymorphism[J]. Journal of the American Oil Chemists' Society,1998,75(12):1833-1839.
    [77] Marangoni A G, Rousseau D. The influence of chemical interesterification on thephysicochemical properties of complex fat systems.3. Rheology and fractality of thecrystal network[J]. Journal of the American Oil Chemists' Society,1998,75(11):1633-1636.
    [78] Heertje I, Blonk J C G, Hendrickx H, et al. Confocal scanning laser microscopy infood research: some observations[J]. Food Microstructure,1987,6:115-120.
    [79] Liang B, Sebright J L, Shi Y, et al. Approaches to quantification of microstructure formodel lipid systems[J]. Journal of the American Oil Chemists' Society,2006,83(5):389-399.
    [80] Liang B, Shi Y, Hartel R W. Correlation of rheological and microstructural propertiesin a model lipid system[J]. Journal of the American Oil Chemists' Society,2008,85(5):397-404.
    [81] Marangoni A G, Hartel R W. Visualization and fat structural analysis of fat crystalnetworks[J]. Food technology,1998,52(9):46-51.
    [82] Wang F, Liu Y, Shan L, et al. Blooming in cocoa butter substitutes based compoundchocolate: Investigations on composition, morphology and melting behavior[J].Journal of the American Oil Chemists' Society,2010,87(10):1137-1143.
    [83] Meng Z, Liu Y F, Jin Q Z, et al. Characterization of graininess formed in all beeftallow-based shortening[J]. Journal of agricultural and food chemistry,2010,58(21):11463-11470.
    [84] Jin Q, Gao H, Shan L, et al. Study on grainy crystals in edible beef tallowshortening[J]. Food research international,2007,40(7):909-914.
    [85] Meng Z, Liu Y F, Jin Q Z, et al. Comparative Analysis of Lipid Composition andThermal, Polymorphic, and Crystallization Behaviors of Granular Crystals Formed inBeef Tallow and Palm Oil[J]. Journal of agricultural and food chemistry,2011,59(4):1432-1441.
    [86] Meng Z, Liu Y, Shan L, et al. Reduction of graininess formation in beef tallow-basedplastic fats by chemical interesterification of beef tallow and canola oil[J]. Journal ofthe American Oil Chemists' Society,2010,87(12):1435-1442.
    [87] Liu Y, Meng Z, Zhang F, et al. Influence of lipid composition, crystallization behaviorand microstructure on hardness of palm oil-based margarines[J]. European FoodResearch and Technology,2010,230(5):759-767.
    [88] Ribeiro A P B, Basso R C, Grimaldi R, et al. Instrumental methods for the evaluationof interesterified fats[J]. Food Analytical Methods,2009,2(4):282-302.
    [89] Marangoni A G. Fat crystal networks. New York: Marcel Dekker,2005:267
    [90] Dixon B D, Parekh J V. Use of the cone penetrometer for testing the firmness ofbutter[J]. Journal of Texture Studies,1980,10(4):421-434.
    [91] Hayakawa M, Deman J M. Interpretation of cone penetrometer consistencymeasurements of fats[J]. Journal of Texture Studies,1982,13(2):201-210.
    [92] Rousseau D, Marangoni A G. The effects of interesterification on physical and sensoryattributes of butterfat and butterfat–canola oil spreads[J]. Food Research International,1998,31(5):381-388.
    [93] Foubert I. Modelling isothermal cocoa butter crystallization: Influence of temperatureand chemical composition[D]. Belgium: Ghent University,2003.
    [94] Narine S S, Marangoni A G. Elastic Modulus as an Indicator of Macroscopic Hardnessof Fat Crystal Networks. Food Science and Technology,2001,43,33-40.
    [95] Kamphuis H, Jongschaap R J J. The rheological behaviour of suspensions of fatparticles in oil interpreted in terms of a transient-network model[J]. Colloid andPolymer Science,1985,263(12):1008-1024.
    [96] Nederveen C J. Dynamic mechanical behavior of suspensions of fat particles in oil[J].Journal of Colloid Science,1963,18(3):276-291.
    [97] Van Den T M. Rheology of concentrated suspensions[J]. Journal of Colloid andInterface Science,1979,71(1):18-20.
    [98] Woignier T, Despetis F, Alaoui A, et al. Mechanical properties of gel-derivedmaterials[J]. Journal of Sol-Gel Science and Technology,2000,19(1-3):163-169.
    [99] Edwards S F, Oakeshott R B S. The transmission of stress in an aggregate[J]. PhysicaD: Nonlinear Phenomena,1989,38(1):88-92.
    [100] Marangoni A G, Rogers M A. Structural basis for the yield stress in plastic dispersesystems[J]. Applied physics letters,2003,82(19):3239-3241.
    [101] Shih W H, Shih W Y, Kim S I, et al. Scaling behavior of the elastic properties ofcolloidal gels[J]. Physical Review A,1990,42(8):4772-4779.
    [102] Tang D, Marangoni A G. Fractal dimensions of simulated and real fat crystal networksin3D space[J]. Journal of the American Oil Chemists' Society,2008,85(6):495-499.
    [103] Tang D, Marangoni A G. Modified fractal model and rheological properties ofcolloidal networks[J]. Journal of colloid and interface science,2008,318(2):202-209.
    [104] Lam R, Rogers M A, Marangoni A G. Thermo-mechanical method for thedetermination of the fractal dimension of fat crystal networks[J]. Journal of thermalanalysis and calorimetry,2009,98(1):7-12.
    [105] Bremer L G B, van Vliet T, Walstra P. Theoretical and experimental study of the fractalnature of the structure of casein gels[J]. Journal of the Chemical Society, FaradayTransactions1: Physical Chemistry in Condensed Phases,1989,85(10):3359-3372.
    [106] Ishikawa H, Mizuguchi T, Kondo S. Studies on granular crystals growing in palmoil[J]. Journal of the Janpan Oil Chemists' Society,1980,29:235-242.
    [107] Garti N, Sato K. Crystallization and polymorphism of fats and fatty acids[M]. NewYork: M. Dekker,1988,305.
    [108] Minato A, Ueno S, Smith K, et al. Thermodynamic and kinetic study on phasebehavior of binary mixtures of POP and PPO forming molecular compound systems[J].The Journal of Physical Chemistry B,1997,101(18):3498-3505.
    [109]华聘聘.人造奶油、起酥油品质劣化原因的探讨[J].中国油脂,2003,28,4:30-32.
    [110] Watanabe A, Tashima I, Matsuzaki N, et al. On the formation of granular crystals infat blends containing palm oil[J]. Journal of the American Oil Chemists’ Society,1992,69(11):1077-1080.
    [111] Gills L A, Resurreccion A V A. Sensory and physical properties of peanut buttertreated with palm oil and hydrogenated vegetable oil to prevent oil separation[J].Journal of food science,2000,65(1):173-180.
    [112] Idris N A, Dian N. Interesterified palm products as alternatives to hydrogenation[J].Asia Pacific journal of clinical nutrition,2005,14(4):396.
    [113] Garbolino C, Bartoccini M, Fl ter E. The influence of emulsifiers on the crystallisationbehaviour of a palm oil‐based blend[J]. European Journal of Lipid Science andTechnology,2005,107(9):616-626.
    [114] Tanaka L, Miura S, Yoshioka T. Formation of granular crystals in margarine withexcess amount of palm oil[J]. Journal of the American Oil Chemists' Society,2007,84(5):421-426.
    [115] Sassen C L, De Jong J P J, De Vries I, et al. Edible plastic spread[P]. European: EP0831711,1999-12-22.
    [116] Giménez A, Ares G, Gámbaro A. Consumer perception of sandiness in dulce deleche[J]. Journal of Sensory Studies,2008,23(2):171-185.
    [117]唐年初,王兴国.人造奶油常见缺陷及对策[J].西部粮油科技,2000,25(5):37-39.
    [118] Miura S, Konishi H. Crystallization behavior of1,3-dipalmitoyl-2-oleoyl-glycerol and1-palmitoyl-2,3-dioleoylglycerol[J]. European Journal of Lipid Science andTechnology,2001,103:804-809.
    [119] Miura S, Yamamoto A, Konishi H. Effect of agglomeration of triacylglycerols on thestabilization of a model cream[J]. European journal of lipid science and technology,2002,104(4):222-227.
    [120] Tanaka L, Isogai T, Miura S, et al. Effect of triacylglycerol species on the crystallizingbehavior of a model water/oil emulsion[J]. European Journal of Lipid Science andTechnology,2010,112(3):304-309.
    [121] Tanaka L, Tanaka K, Yamato S, et al. Microbeam X-ray diffraction study of granularcrystals formed in water-in-oil emulsion[J]. Food Biophysics,2009,4(4):331-339.
    [122] Chawla P, Deman J M. Effect of temperature cycling on the crystalline form, size andtextural properties of shortening fats[J]. Journal of texture studies,1994,25(2):151-162.
    [123] Chawla P, Deman J M. Effect of temperature cycling on the crystalline form, size andtextural properties of margarine fats[J]. Journal of Food Lipids,1994,1(4):313-324.
    [124] Shiota M, Iwasawa A, Kotera M, et al. Effect of fatty acid composition ofmonoglycerides and shear on the polymorph behavior in water-in-palm oil-basedblend[J]. Journal of the American Oil Chemists' Society,2011,88(8):1103-1111.
    [125] Van den Tempel M. Mechanical properties of plastic-disperse systems at very smalldeformations[J]. Journal of Colloid Science,1961,16(3):284-296.
    [126] Marangoni A G, Acevedo N, Maleky F, et al. Structure and functionality of ediblefats[J]. Soft Matter,2012,8(5):1275-1300.
    [127]魏翠平,王瑛瑶,栾霞.人造奶油研究现状及其制备技术[J].中国食物与营养,2011,17(6):32-35.
    [128]孟宗,刘胡.牛油基起酥油动力学的研究Ⅱ[J].中国粮油学报,2009,3(3):61-65
    [129] Fredrick E, Van de Walle D, Walstra P, et al. Isothermal crystallization behaviour ofmilk fat in bulk and emulsified state[J]. International Dairy Journal,2011,21(9):685-695.
    [130] Van Putte K, Van Den Enden J. Fully automated determination of solid fat content bypulsed NMR[J]. Journal of the American Oil Chemists Society,1974,51(7):316-320.
    [131] Lee J H, Akoh C C, Lee K T. Physical properties of trans-free bakery shorteningproduced by lipase-catalyzed interesterification[J]. Journal of the American OilChemists' Society,2008,85(1):1-11.
    [132]张阜青,王兴国.不同硬度棕榈油基人造奶油组成及结晶行为研究[J].中国油脂,2009,34(9):30-34.
    [133] Chen C W, Chong C L, Ghazali H M, et al. Interpretation of triacylglycerol profiles ofpalm oil, palm kernel oil and their binary blends[J]. Food Chemistry,2007,100(1):178-191.
    [134] Norizzah A R, Chong C L, Cheow C S, et al. Effects of chemical interesterification onphysicochemical properties of palm stearin and palm kernel olein blends[J]. Foodchemistry,2004,86(2):229-235.
    [135] Mottram H R, Evershed R P. Structure analysis of triacylglycerol positional isomersusing atmospheric pressure chemical ionisation mass spectrometry[J]. Tetrahedronletters,1996,37(47):8593-8596.
    [136] Rajah K K. Fats in food technology[M]. Boca Raton: The Chemical Rubber CompanyPress,2002:32-37.
    [137] Lumor S E, Kim B H, Akoh C C. Optimization of solid fat content and crystalproperties of a trans-free structured lipid by blending with palm midfraction[J]. Journalof agricultural and food chemistry,2008,56(19):9294-9298.
    [138] Method Cd16b-93, Official methods and recommended practices of the American oilChemists' Society[S]. Champaign: American Oil Chemists' Society,2004.
    [139] Braipson-Danthine S, Deroanne C. Influence of SFC, microstructure andpolymorphism on texture (hardness) of binary blends of fats involved in thepreparation of industrial shortenings[J]. Food research international,2004,37(10):941-948.
    [140] Zhang H, Smith P, Adler-Nissen J. Effects of degree of enzymatic interesterification onthe physical properties of margarine fats: solid fat content, crystallization behavior,crystal morphology, and crystal network[J]. Journal of agricultural and food chemistry,2004,52(14):4423-4431.
    [141] Noor Lida H M D, Sundram K, Siew W L, et al. TAG composition and solid fatcontent of palm oil, sunflower oil, and palm kernel olein belends before and afterchemical interesterification[J]. Journal of the American Oil Chemists' Society,2002,79(11):1137-1144.
    [142] Davenel A, Riaublanc A, Marchal P, et al. Quality of pig adipose tissue: relationshipbetween solid fat content and lipid composition[J]. Meat Science,1999,51(1):73-79.
    [143] Rousseau D, Hill A R, Marangoni A G. Restructuring Butterfat through blending andchemical interesterification:3. Rheologh and fractality of the crystal network[J].Journal of the American Oil Chemists' Society,1996,73:983-989.
    [144] Herrera M, Falabella C, Melgarejo M, et al. Isothermal crystallization of hydrogenatedsunflower oil: I-ucleation[J]. Journal of the American Oil Chemists' Society,1998,75,1273-1280.
    [145] Coupland J N. Crystallization in emulsions[J]. Current opinion in colloid and interfacescience,2002,7(5):445-450.
    [146] Piorkowska E, Galeski A, Haudin J M. Critical assessment of overall crystallizationkinetics theories and predictions[J]. Progress in polymer science,2006,31(6):549-575.
    [147] Cebe P, Hong S D. Crystallization behaviour of poly (ether-ether-ketone)[J]. Polymer,1986,27(8):1183-1192.
    [148] Christian J W. The Theory of Transformations in Metals and Alloys: Part I+II[M].USA: Elsevier,2002,16-35.
    [149] D'Souza V. Short spacings and polymorphic forms of natural and commercial solid fats:a review[J]. Journal of the American Oil Chemists’ Society,1990,67(11):835-843.
    [150] Kalnin D, Lesieur P, Artzner F, et al. Systematic investigation of lard polymorphismusing combined DSC and time-resolved synchrotron X-ray diffraction[J]. EuropeanJournal of Lipid Science and Technology,2005,107(9):594-606.
    [151] Braipson-Danthine S, Gibon V. Comparative analysis of triacylglycerol composition,melting properties and polymorphic behavior of palm oil and fractions[J]. EuropeanJournal of Lipid Science and Technology,2007,109(4):359-372.
    [152] Neil. Physical Properties of Fats, Oils, and Emulsifiers[M]. Champaign: American OilChemists’ Society Press,1999:5-6.
    [153] Toro-Vazquez J F, Brice o-Montelongo M, Dibildox-Alvarado E, et al. Crystallizationkinetics of palm stearin in blends with sesame seed oil[J]. Journal of the American OilChemists' Society,2000,77(3):297-310.
    [154] Aguilera J M, Lillford P J. Food Materials Science: Principles and Practice. New York:Springer,2007:229-254.
    [155] Nogala-Kalucka M, Gogolewski M. Sensorial and physic-chemical changes duringstorage of a magarine at different temperatures[J]. Nahrung,1999,43:48-50.
    [156] Zeb A. Triacylglycerols composition, oxidation and oxidation compounds in Camelliaoil using liquid chromatography mass spectrometry [J]. Chemistry and Physics ofLipids,2012,165,5:608-614
    [157] Isbell T A. Oxidatie stability index of vegetable oils in binary mixture with meadowfoam oil [J]. Industrial Crops and Products,1999,(9):115-123.
    [158] Kamal-Eldin A. Lipid Oxidation Pathways[M]. Champaign: AOCS Press,2003:1-35.
    [159] Jurek D, Udilova N, Jozkowicz A, et al. Dietary lipid hydroperoxides induceexpression of vascular endothelial growth factor (VEGF) in human colorectal tumorcells[J]. The FASEB journal,2005,19(1):97-99.
    [160] Guillen M D, Goicoechea E. Oxidation of corn oil at room temperature: Primary andsecondary oxidation products and determination of their concentration in the oil liquidmatrix from1H nuclear magnetic resonance data[J]. Food Chemistry,2009,116(1):183-192.
    [161] Gomes T, Delcuratolo D, Paradiso V M. Pro-oxidant action of polar triglycerideoligopolymers in edible vegetable oils[J]. European Food Research and Technology,2008,226(6):1409-1414.
    [162]王宪青,余善鸣,刘妍妍.油脂的氧化稳定性与抗氧化剂[J].肉类研究,2003,3(18):18-21
    [163] Si W, Liang Y, Ma K Y, et al. Antioxidant activity of capsaicinoid in canola oil[J].Journal of agricultural and food chemistry,2012,60(24):6230-6234.
    [164] Santos N A, Cordeiro A M T M, Damasceno S S, et al. Commercial antioxidants andthermal stability evaluations[J]. Fuel,2012,97:638-643.
    [165] Brunello N, McGauley S E, Marangoni A. Mechanical properties of cocoa butter inrelation to its crystallization behavior and microstructure[J]. LWT-Food Science andTechnology,2003,36(5):525-532.
    [166] Campos R, Narine S S, Marangoni A G. Effect of cooling rate on the structure andmechanical properties of milk fat and lard[J]. Food Research International,2002,35(10):971-981.
    [167] Litwinenko J W, Rojas A M, Gerschenson L N, et al. Relationship betweencrystallization behavior, microstructure, and mechanical properties in a palm oil-basedshortening[J]. Journal of the American Oil Chemists' Society,2002,79(7):647-654.
    [168] Dixon B D, Parekh J V. Use of the cone penetrometer for testing the firmness ofbutter[J]. Journal of Texture Studies,1980,10(4):421-434.
    [169] Goli S A H, Sahri M M, Kadivar M, et al. The production of an experimental tablemargarine enriched with conjugated linoleic acid (CLA): physical properties[J].Journal of the American Oil Chemists' Society,2009,86(5):453-458.
    [170] Zhang H, Jacobsen C, Pedersen L S, et al. Storage stability of margarines producedfrom enzymatically interesterified fats compared to those prepared by conventionalmethods–chemical properties[J]. European Journal of Lipid Science and Technology,2006,108(3):227-238.
    [171] Laia O M, Ghazalia H M, Cho F, et al. Physical and textural properties of anexperimental table margarine prepared from lipase-catalysed transesterified palmstearin: palm kernel olein mixture during storage[J]. Food chemistry,2000,71(2):173-179.
    [172] Ojijo N K O, Kesselman E, Shuster V, et al. Changes in microstructural, thermal, andrheological properties of olive oil/monoglyceride networks during storage[J]. Foodresearch international,2004,37(4):385-393.
    [173] Sein A, Verheij J A, Agterof W G M. Rheological characterization, crystallization, andgelation behavior of monoglyceride gels[J]. Journal of colloid and interface science,2002,249(2):412-422.
    [174] Evans D F, Wennerstrom H. The colloidal domain: Where physics, chemistry, biology,and technology meet.2nd edition. NY: Wiley-VCH,1999:33-37.
    [175] De Graef V, Dewettinck K, Verbeken D, et al. Rheological behavior of crystallizingpalm oil[J]. European journal of lipid science and technology,2006,108(10):864-870.
    [176]张俐娜,薛奇,莫志深.高分子物理近代研究方法[M].武汉大学出版社,2003.
    [177] Mazzanti G, Guthrie S E, Sirota E B, et al. Orientation and phase transitions of fatcrystals under shear[J]. Crystal growth&design,2003,3(5):721-725.
    [178] Stapley A G F, Tewkesbury H, Fryer P J. The effects of shear and temperature historyon the crystallization of chocolate[J]. Journal of the American Oil Chemists' Society,1999,76(6):677-685.
    [179] Cisneros A, Mazzanti G, Campos R, et al. Polymorphic transformation in mixtures ofhigh-and low-melting fractions of milk fat[J]. Journal of agricultural and foodchemistry,2006,54(16):6030-6033.
    [180] Szyd owska-Czerniak A, Karlovits G, Lach M, et al. X-ray diffraction and differentialscanning calorimetry studies of β′→β transitions in fat mixtures[J]. Food chemistry,2005,92(1):133-141.
    [181] Mazzanti G, Guthrie S E, Sirota E B, et al. Effect of minor components andtemperature profiles on polymorphism in milk fat[J]. Crystal growth&design,2004,4(6):1303-1309.
    [182] Rousseau D, Hodge S M, Nickerson M T, et al. Regulating the β′→β polymorphictransition in food fats[J]. Journal of the American Oil Chemists' Society,2005,82(1):7-12.
    [183] Breitschuh B, Windhab E J. Direct measurement of thermal fat crystal properties formilk-fat fractionation[J]. Journal of the American Oil Chemists’ Society,1996,73(11):1603-1610.
    [184] Tan C P, Man Y B C. Differential scanning calorimetric analysis of edible oils:comparison of thermal properties and chemical composition[J]. Journal of theAmerican Oil Chemists' Society,2000,77(2):143-155.
    [185] Zhang L, Ueno S, Sato K, et al. Thermal and structural properties of binary mixtures of1,3-distearoyl-2-oleoyl-glycerol (SOS) and1,2-dioleoyl-3-stearoyl-sn-glycerol(sn-OOS)[J]. Journal of thermal analysis and calorimetry,2009,98(1):105-111.
    [186] Chong C L, Kamarudin Z, Lesieur P, et al. Thermal and structural behaviour of crudepalm oil: crystallisation at very slow cooling rate[J]. European Journal of LipidScience and Technology,2007,109(4):410-421.
    [187] Tan C P, Man Y B. Comparative differential scanning calorimetric analysis ofvegetable oils: I. Effects of heating rate variation[J]. Phytochemical Analysis,2002,13(3):129-141.
    [188] Dian N L H M, Sundram K, Idris N A. DSC study on the melting properties of palm oil,sunflower oil, and palm kernel olein blends before and after chemicalinteresterification[J]. Journal of the American Oil Chemists' Society,2006,83(8):739-745.
    [189] Akoh C C, Min D B. Food lipids: chemistry, nutrition, and biotechnology[M].3rdedition. New York: CRC Press,2008:245-266.
    [190] Zhang H, Jacobsen C, Adler‐Nissen J. Storage stability study of margarines producedfrom enzymatically interesterified fats compared to margarines produced byconventional methods. I. Physical properties[J]. European journal of lipid science andtechnology,2005,107(7‐8):530-539.
    [191] Miskandar M S, Man Y B C, Yusoff M S A, et al. Effect of scraped-surface tube coolertemperatures on the physical properties of palm oil margarine[J]. Journal of theAmerican Oil Chemists' Society,2002,79(9):931-936.
    [192] Afoakwa E O, Paterson A, Fowler M, et al. Influence of tempering and fatcrystallization behaviours on microstructural and melting properties in dark chocolatesystems[J]. Food Research International,2009,42(1):200-209.
    [193] Man Y B C, Swe P Z. Thermal analysis of failed-batch palm oil by differentialscanning calorimetry[J]. Journal of the American Oil Chemists' Society,1995,72(12):1529-1532.
    [194]孟宗.牛油基塑性脂肪起砂机制及抑制机理[D].无锡:江南大学,2011
    [195] Marangoni A G. Elasticity of high-volume-fraction fractal aggregate networks: Athermodynamic approach[J]. Physical Review B,2000,62(21):13951
    [196]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:1-2,161
    [197] Fang B S, Chen H W, Xie X L, et al. Using genetic algorithms coupling neuralnetworks in a study of xylitol production: medium optimization[J]. Process Biochem,2003,38(7):979-985.
    [198]郑惠娜,章超桦,秦小明,等.人工神经网络在食品生物工程中的应用[J].食品工程,2012,1:006.
    [199] Ba D, Dudak F C, Boyac H. Modeling and optimization IV: Investigation ofreaction kinetics and kinetic constants using a program in which artificial neuralnetwork (ANN) was integrated[J]. Journal of Food Engineering,2007,79(4):1152-1158.
    [200] Buciński A, Zieliński H, Koz owska H. Artificial neural networks for prediction ofantioxidant capacity of cruciferous sprouts[J]. Trends in Food Science&Technology,2004,15(3):161-169.
    [201] Cimpoiu C, Cristea V M, Hosu A, et al. Antioxidant activity prediction andclassification of some teas using artificial neural networks[J]. Food Chemistry,2011,127(3):1323-1328.
    [202] Huang R B, Du Q S, Wei Y T, et al. Physics and chemistry-driven artificial neuralnetwork for predicting bioactivity of peptides and proteins and their design[J]. Journalof theoretical biology,2009,256(3):428-435.
    [203] Li B, Li L. Artificial neural network based software sensor for yeast biomassconcentration during industrial production[C]. Computational Intelligence and Security,2006International Conference on. IEEE,2006,2:955-958.
    [204] Zhang Y, Wu L. Weights optimization of neural network via improved BCOapproach[J]. Progress in Electromagnetics Research,2008,83:185-198.
    [205]孙佰清,潘启树,冯英浚,等.提高BP网络训练速度的研究[J].哈尔滨工业大学学报,2001,33(4):439-441.
    [206]张德丰. MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:191-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700