钢框架梁翼缘削弱型节点的试验研究及理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢框架梁翼缘削弱型节点(RBS)是将塑性铰外移的一种典型节点形式,在距梁端一定距离将梁的上下翼缘进行削弱,迫使塑性铰的位置离开受力复杂且脆弱的焊缝外移至梁上,达到减少节点脆性破坏可能性、提高节点延性的目的。本文针对梁翼缘圆弧式削弱型节点开展了试验和数值分析两方面的研究工作。
     研究了圆弧式削弱型节点在循环荷载作用下的节点延性和滞回性能,共进行了6个大比例尺模型的拟静力加载试验,其中5个模型用于研究梁翼缘的削弱深度、削弱长度以及削弱起始点位置对RBS节点的破坏形态、极限荷载、最大塑性转角等特性。作为比较,还进行了一个普通全焊接节点的试验。试验结果表明,RBS节点与普通型梁柱节点相比较,具有良好的塑性变形能力和耗能性能。RBS节点试件的滞回曲线丰满,滞回环面积比较大;而普通型节点试件的滞回曲线显得扁长、不丰满。试验中5个节点的塑性转角都大于0.04rad,延性系数大于4.0,达到了抗弯钢框架连接塑性转角不小于0.03rad,延性系数不小于4.0的要求。分析结果表明:RBS节点比传统节点具有更强的耗能能力,可以在梁翼缘削弱区域形成塑性铰,避免梁根部应力发展导致梁柱连接焊缝出现脆性破坏,有利于实现抗震设计中“强节点弱构件”的思想。
     采用ANSYS有限元软件对全焊接翼缘削弱型(RBS)节点试件和普通焊接节点试件进行了循环荷载以及静力荷载作用下的有限元分析计算。循环荷载作用下有限元分析的主要内容为:对试验中测试的六个试件建立了计算模型,进行了循环荷载作用下的三维非线性有限元分析,系统分析了梁翼缘削弱参数对翼缘削弱型节点受力性能的影响。讨论了梁翼缘的削弱深度、削弱长度、削弱起始位置不同对试件破坏形态、极限荷载、最大塑性转角、滞回性能等影响,并与试验结果进行了对比分析。静力荷载作用下有限元分析的主要内容为:对17个RBS节点试件和1个普通节点试件进行了静力荷载作用下的三维非线性有限元分析。重点分析讨论了梁翼缘削弱后梁应力分布规律以及翼缘削弱对试件承载力的影响,探讨了梁端塑性铰外移的有效性,讨论了削弱起始位移、削弱长度、削弱深度三参数对塑性铰形成的影响,对设计中计算RBS节点的极限荷载公式中的承载力系数C_(pr)做了讨论分析,并给出建议值。
Reduced beam section (RBS) connection of steel frame is one of the typical forms to move plastic hinge outward from the beam and column interface. By trimming beam flanges, the plastic hinge will form away from the welds that have much fracture proneness due to stress concentration and welding sensitivity, reducing the possibility of brittle fracture of connections and improving the ductility of the structure with RBS connections. In this dissertation, experimental and theoretical research on RBS connections with radius cut has been done.
     Six specimens under cyclic load were tested to investigate their hysteretic behavior and ductility behavior. Five specimens with different trimming depths, trimming lengths and trimming distances from column surface were conducted to get the effect for failure mode, ultimate load, plastic rotation angles and ductility behavior. In addition, one specimen with full welded connection was tested to compare their cycle behaviors. The test results show that RBS connections have a better plastic deformation and capacity of consuming energy than common connections. Hysteretic curves of RBS connection were well-shaped with large-area hysteretic loops, however, Hysteretic curves of common connection were flat. The plastic rotation angles of the five RBS specimens exceeded 0.04rad and their ductility coefficient exceeded 4.0, meeting the requirement for plastic rotation angles of 0.03rad and ductility coefficient of 4.0. Analysis results show that specimens with RBS connection have better capacity of consuming energy, and they can produce plastic hinge in region of beam trimmed, alleviating the stress state greatly and reducing the possibility of brittle fracture from weld, so that the strong-joint and weak-member design philosophy can be realized.
     Specimens with RBS connection and common connection under cyclic load and static load were analyzed respectively in the finite element software ANSYS. The main content of the finite element analysis under cyclic load was that the six specimens that had been used in the test were analyzed by 3D non-linear finite element method. Influence of beam flanges reducing parameters on mechanical behaviors of RBS connection was discussed systematically. Influence of trimming depth, trimming length and trimming distance on failure mode, ultimate load, plastic rotation angles and hysteretic behavior was discussed, and the results were contrasted with the test. The main content of finite element analysis under static load was that 17 specimens with RBS connection and 1 specimen with common connection were analyzed in ANSYS with 3D non-linear finite element. Stress distribution in the beam and bearing capacity of the specimens with RBS connection were mainly analyzed, and the effectiveness on the external motion of plastic hinge was discussed. And influence of trimming depth, trimming length and trimming distance on formation of plastic hinge was discussed, moreover, the bearing capacity coefficient C_(pr) in the equation of RBS connection design was discussed and the suggestion value was proposed.
引文
[1.1]国家建筑钢结构产业“十五”计划和2015年发展规划纲要(草案),2003
    [1.2]陈绍蕃.钢结构.中国建筑工业出版社,2005
    [1.3]沈祖炎.钢结构学.中国建筑工业出版社,2005
    [1.4]李国强.多高层建筑钢结构设计.中国建筑工业出版社,2004
    [1.5]钢结构之窗网,合纵连横打造钢结构的建筑时代,http://www.steelwin.com/snews/view content.php?id=18516,2005-10-09
    [1.6]中国联合钢铁网,中联钢:上半年我国钢铁工业运行特点 http://www.custeel.com/Scripts/viewArticle.jsp?articleID=1118599,2007-08-03
    [1.7]马宗晋.中国自然灾害和减灾对策(之三)——国的地震灾害及其应对.防灾科技学院学报,2007,9(1):1-5
    [1.8]孙士宏,彭克银.2001年震情评述.中国地震,2002,18(1):112-1160
    [1.9]F.S.and Chen.W.F.A design model for semi-rigid connections.Engineering Structure.1990,12(2):88-97
    [1.10]Reidar B.,Ander.C.,Jacques.B.Classification system forbeam-to-column connection.J. Struct.Engrg.1990,116(11):1292-1299
    [1.11]Eurocode 3:Design of Steel Structures.1995
    [1.12]李国强,孙飞飞,沈祖炎.强震下钢框架梁柱节点焊接连接的断裂行为.建筑结构学报,1998,19(4):19-28
    [1.13]UCB,Uniform Building Code.International Conference of Building Officials(ICBO),Whittler,Calif,1997
    [1.14]AISC,Seismic Provisions for Structural Steel Buildings.American Institute of Steel Construction,Chicago,2005
    [1.15]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001
    [1.16]中华人民共和国行业标准,高层民用建筑钢结构技术规程(JGJ 99-98).北京:中国建筑工业出版社,1998
    [1.17]FEMA-267.Interim guidelines:Evaluation repair modification and design of steel moment frames.Report No.SAC-95-02.SAC Joint Venture,Calif,1994
    [1.18]Miller D.K..Lessons learned from the Northridge earthquake.Engineering Structures,1998,20(4):249-260
    [1.19]Nakashima M,Inoue K,Yada M.Classification of Damage to Steel Building Observed in the 1995 Hyogoken-Nanbu Earth quake.Engineering Structures,1998,20(4):271-281
    [1.20]刘洪波,谢礼立,邵永松.钢框架结构的震害及其原因.世界地震工程,2006,22(4):47-51
    [1.21]石永久,杨文,王元清.栓焊混接梁柱刚性节点加固的设计与分析.四川建筑科学研究,2005.06
    [1.22]黄炳生.日本神户地震中建筑钢结构的震害及启示,建筑结构,2000,30(9)
    [1.23]Bertero,V.V.,etc.Performance of steel building structures during the Northridge earthquake.Rep.No.UCB/EERC-94/09,Earthquake Engineering Research Center,Univ.of California at Berkeley,Berkeley,Calif,1994
    [1.24]AISC,Special Task Committee on the Northridge Earthquake,American Institute of Steel Construction,Chicago,1994
    [1.25]AISC.Seismic provisions for structural steel buildings,AmericanInstitute of Steel Construction,Chicago,1997
    [1.26]Kim Taejin,Stojadinovic,B.et al.Seismic Performance of Pre-Northridge Welded Steel Moment Connections to Built-Up Box Columns.Journal of Structural Engineering,2008,134(2):289-299
    [1.27]Mosalam,Khalid M,Mahin Stephen A.Seismic Evaluation and Retrofit of Asymmetric Multi-Story Wood-Frame Building.Journal of Earthquake Engineering,2007,11(6):968-986
    [1.28]FEMA-350.Recommended Seismic design Criteria for New Steel Moment-frame Buildings. 2000, Washington, D.C.
    [1.29] FEMA-353. Recommended specifications and quality assurance guidelines for steel moment -frame construction for seismic applications. 2000, Washington, D.C.
    [1.30] D.A. Nethercot. United classification system for beam-to-column connections. J. Construct. Steel Res., 1998,45(1):39-65
    [1.31] M.D. Engelhardt. Reinforcing of steel moment connections with cover plates benefits and limitations. Engineering Structures, 1997,20: 510-520
    [1.32] Zhang, X., Ricles, J.. Seismic Behavior of Reduced Beam Section Moment Connections to Deep Columns. J. Struct. Eng., 2006,132(3): 358-367
    [1.33] Englehardt, M. D. Design of reduced beam section moment connections. Proc, North American Steel Construction Conference, 1998, AISC, Chicago, 1-29
    [1.34] N. Iwankiw. Steel moment frames: resolution of recent seismic detailing and material shape issues. J. Construct. Steel. Res, 2002, 58(5): 495-510
    [1.35]Rodgers Janise E., Celebi Mehmet. Seismic Response and Damage Detection Analyses of an Instrumented Steel Moment-Framed Building. Journal of Structural Engineering, 2006, 132 (10): 1543-1552,
    [1.36] E.P. Popov. Bolted large seismic steel beam-to-column connections Part 1: experimental study. Engineering Structures, 2002,24(12): 1523-1534
    [1.37] E.P. Popov. Bolted large seismic steel beam-to-column connections Part 2: numerical nonlinear analysis. Engineering Structures, 2002,24(12): 1535-1545
    [1.38] K.C. Tsai. Cyclic performance of steel beam-column moment joints. Engineering Structures, 1995, 17(8): 596-602
    [1.39] Chi, W.-M., Kanvinde A. M., Deierlein G. G..Prediction of Ductile Fracture in Steel Connections Using SMCS Criterion. Journal of Structural Engineering, 2006,132(2):171-181
    [1.40] K.D. Kim. Monotonic and cyclic loading model for panel zones in steel moment frames. J. Construct. Steel. Res, 2002,58(5): 605-635
    [1.41] J.P. Jaspart. General report:session on connections. Journal of Constructional Research, 2000, 55(1): 69-89
    [1.42] Andre Plumier. General report on local ductility. J. of Constructional Steel Research, 2000, 55(1): 91-107
    [1.43] C.G. Matos. Probabilistic modeling of weld fracture in steel frame connections Part 1: quasi-static loading. Engineering Structures, 2001, 23(9): 1011-1030
    [1.44] C.G. Matos. Probabilistic modeling of weld fracture in steel frame connections Part 2: seismic loading. Engineering Structures, 2002,24(6): 687-705
    [1.45] Kevin S Moore James O Malley, Michael D Engelhardt. Design of Reduced Beam Section (RBS) Moment Frame Connections. AISC. Structural Steel Educational Council, 1999. 8
    [1.46] Shen J, Hao H. Inelastic Analysis of Steel Frames with Reduced Beam Sections Struct. Design Tall Building, 2001 (10):231-244
    [1.47] Seismic Provisions for Structural Steel Buildings. AISC ,1997
    [1.48] Goel, S. C, Stojadinovic, B., and Lee, K.-H. Truss analogy for steel moment connections. Eng. J., 1997, 37(2), 43-53
    [1.49] Hajjar, J. F., Leon, R. T., Gustafson, M. A., and Shield, C. K. Seismic response of composite moment-resisting connections. II: Behavior. J. Struct. Eng., 1998,124(8), 877-885
    [1.50] Iwankiw, N. R., and Carter, C. The dogbone: a new idea to chew on. Modern Steel Constx, 1996,36(4), 18-23
    [1.51] Leon, R. T., Hajjar, J. F., and Gustafson, M. A. Seismic response of composite moment- resisting connections. I: Performance. J. Struct. Eng., 1998,124(8), 868-876
    [1.52] Suite, K., Tamura, T., Morita, S., Nakashima, M., and Engelhardt, M. D. Plastic rotation capacity of steel beam-to-column connections using a reduced beam section and no weld access hole design-full scale tests for improved steel beam-to-column subassemblies-Part 1. Struct. J., Architect. 1999, 526, 177-184
    [1.53] Chen S. J., Yeh C. H., etc.. Ductile steel beam-to column connections for seismic resistance. J. Struct. Eng., 1996, 122(11), 1292-1299
    [1.54] Chi, W.-M., Deierlein, G. G., and Ingraffea, A. R. Fracture toughness demands in welded beam-column moment connections. J. Struct. Eng., 2000,126(1), 88-97
    [1.55] Choi, J., Stojadinovic, B., and Goel, S. C. Parametric tests on the free flange connections. SAC/BD-00/02, SAC Joint Venture, Sacramento, Calif, 2000
    [1.56] Clark, P. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. Background Document No. 97/02, SAC Joint Venture, Sacramento, Calif, 1997
    [1.57] El-Tawil, S., Mikesell, T., Vidarsson, E., and Kunnath, S. Strength and ductility of FR welded-bolted connections. Background Document No. 98/01, SAC Joint Venture, Sacramento, Calif, 1998
    [1.58] Engelhardt, M. D. The 1999 T. R. Higgins Lecture: Design of reduced beam section moment connections. Proc, 1999
    [1.59] American Steel Construction Conf., American Institute of Steel Construction, Toronto, 1999
    [1.60] Engelhardt, M.D. Winneberger, T. Zekany, A. J., and Potyraj, T. J. Experimental investigation of dogbone moment connections. Eng. J., 1998,35(4), 128-139
    [1.61] Engelhardt, M. D., Fry, G. T., Jones, S., Venti, M., and Holliday S. Behavior and design of radius cut, reduced beam sectionconnections. SAC/BD-00/17, SAC Joint Venture, Sacramento, Calif, 2000
    [1.62] Frank, K. H., Barsom, J. M., and Hamburger, R. O. State of the Art Report on Base Metals and Fracture. Rep. No. FEMA-355A, Federal Emergency Management Agency, Washington, D.C., 2000
    [1.63] Gilton, C, Chi, B., and Uang, C. M. Cyclic testing of a free flange moment connection. SAC/BD-00/19, SAC Joint Venture, Sacramento, Calif, 2000
    [1.64] Gilton, C, Chi, B., and Uang, C. M.. Cyclic response of RBS moment connections: weak axis configuration and deep column effects." SAC/BD-00/23, SAC Joint Venture, Sacramento, Calif, 2000
    [1.65] Goel, S. C, Stojadinovic, B., and Lee, K.-H. Truss analogy for steel moment connections. Eng. J., 1997, 37(2), 43-53
    [1.66] Hajjar, J. F., Leon, R. T., Gustafson, M. A., and Shield, C. K. Seismic response of composite moment-resisting connections. II:Behavior. J. Struct. Eng., 1998,124(8), 877-885.
    [1.67] Iwankiw, N. R., and Carter, C. The dogbone: a new idea to chew on. Modern Steel Constr., 1996,36(4), 18-23
    [1.68] Jones, S. L., and Fry, G. T. Tests of reduced beam section connections with composite floor diaphragms. Composite and Hybrid Structures: Proc, 6th ASCCS Int. Conf. on Steel-Concrete Composite Structures, ASCCS-6 Secretariat, Dept. of Civil Engineering, Univ. of Southern California, Los Angeles, 2000, Vol. 2,713-719
    [1.69] Kim, T., Whittaker, A. S., Bertero, V. V., and Gilani, A. S. J. Steel moment resisting connections reinforced with cover and flange plates. SAC/BD-00/27, SAC Joint Venture, Sacramento, Calif, 2000
    [1.70] Lee, K.-H., Stojadinovic, B., Goel, S. C, Margarian, A. G., Choi, J., Wongkaew, A., Reyher, B. P.,and Lee, D.-Y. Parametric tests on unreinforced connections. SAC/BD-00/01, SAC Joint Venture, Sacramento, Calif, 2000
    [1.71] Leon, R. T., Hajjar, J. F., and Gustafson, M. A.. Seismic response of composite moment-resisting connections. I: Performance. J. Struct. Eng., 1998,124(8), 868-876
    [1.72] Plumier, A.. The dogbone: back to the future. Eng. J., 1997,34(2), 61-67
    [1.73] Ricles, J. M., Mao, C, Lu, L. W., and Fisher, J. Development and evaluation of improved details for ductile welded unreinforced flange connections. SAC/BD-00/24, SAC Joint Venture, Sacramento, Calif, 2000
    [1.74] Suita, K., Tamura, T., Morita, S., Nakashima, M., and Engelhardt, M. D. Plastic rotation capacity of steel beam-to-column connections using a reduced beam section and no weld access holendesign-full scale tests for improved steel beam-to-column subassemblies-Part 1. Struct. J., Architect, 1999, pp 177-184
    [1.75]Tremblay,R.,Tchebotarev,N.,and Filiatrault,A..Seismic performance of RBS connections for steel moment resisting frames:Influence of loading rate and floor slab.Proc.,Stessa '97,Kyoto,Japan,1997,pp664-671
    [1.76]Tsai,K.C.,Chen,W.Z.,and Lin,K.C.Experimental responses of steel reduced beam section to weak panel zone moment connections.Proc.,Workshop on Design Technologies of Earthquake-Resistant Moment-Resisting Connections in Steel Buildings,National Taiwan Univ.,Taipei,Taiwan,1999
    [1.77]Uang,C.,and Fan,C..Cyclic instability of steel moment connections with reduced beam section.SAC/BD-99/19,SAC Joint Venture,Sacramento,Calif,1999
    [1.78]Popov,E.P.,Yang,T.S.,and Chang,S.P.Design of steel MRF connections before and after the 1994 Northridge Earthquake.Eng.Struct.,1998,20(12):1030-1038
    [1.79]蔡益燕.考虑塑性铰外移的钢框架梁柱连接设计.建筑结构,2004,34(2):3-9
    [1.80]王燕.钢框架塑性铰外移新型延性节点的研究与进展.青岛理工大学学报,2006,27(3):1-6
    [1.81]陈生金.高韧性钢骨梁柱接头.建筑钢结构进展,2005,7(5):18-25
    [1.82]张莉.钢结构刚性梁柱节点抗震性能的研究.天津大学博士论文,2004
    [1.83]Chi W.-M.,Kanvinde,A.M.,Deierlein G.G..Prediction of Ductile Fracture in Steel Connections Using SMCS Criterion.Journal of Structural Engineering,2006,132(2):171-181
    [1.84]Lee K-h,Foutch Douglas A..Seismic Performance Evaluation of Pre-Northridge Steel Frame Buildings with Brittle Connections.Journal of Structural Engineering,2002,128(4):546-555
    [1.85]T.Kim,A.S.Whittaker et al.Cover-plate and flange-plate reinforced steel momentresisting connections.Rep.No.PEER 2000/07,Pacific Earthquake Engineering Research Center,Univ.of California at Berkeley,Berkeley,Calif.,2000
    [1.86]T.Kim,A.S.Whittaker,et al..Experimental Evaluation of Plate-Reinforced Steel Moment-Resisting Connections[J].Jounral of Stureture Engineering,2002,128(4):483-491
    [1.87]T.Kim,A.S.Whittaker et al.Cover-Plate and Flange-Plate SteelMoment-Resisting Connections[J],Jounral of Structural Engineering,2002,128(4):474-482
    [1.88]杨强跃,郑悦.钢框架梁柱节点连接方式的介绍与分析.建筑结构.2004,34(6):44-48
    [1.89]日本建筑学会.钢构造结合部设计指针(Reeommendation for Designof Conneetions in Steel Sturclures),2001
    [1.90]Chen,Cheng Chih,Lin,Chun Chou et al.Ductile moment connections used in steel columntree moment-resisting frames.Journal of Constructional Steel Research,2006,62(8):793-801
    [1.91]陈诚直,李智民.钢构造梁扩翼接头之耐震行为.建筑钢结构进展,2007,9(5):35-41
    [1.92]Subhash C.Goel,Sutat Leelataviwat et al.Steel Moment Frames with Ductile Girder Web Opening.Engineering Journal,1997
    [1.93]Jong Won Park,In Kyu Hwang.Experimental Investigation Section Connections of Reduced Beam Section by Use of Web Openings.Engineering Journal,2003
    [1.94]Ralph M.Richard,C.Jay Ailen,James E.Partridge.Proprietary slotted beam connection design,Modem steel construction.1997(3):28-33
    [1.95]Jones,S.L.,Fry,G.Y.,and Engelhardt,M.D.Experimental evaluation of cyclically loaded reduced beam section moment connections.J.Struct.Eng.,2002,128(4):441-451
    [1.96]Chen S.J.,Chen S.T.,et al.Fracture of steel beam-to-column connections under severe earthquake and development of ductile connections.Struct.Engrg.,1996,11(4):19-37
    [1.97]Chen,S.J.,Yeh,C.H.,et al.Ductile steel beam-tocolumnconnections for seismic resistance.J.Struct.Engrg.,1996,122(11):1292-1299
    [1.98]Chen S.J.,and Yeh C.H..Enhancement of ductility of steel beam-to-column connections for seismic resistance.SSRC 1994 Tech.Session,Lehigh University,Bethlehem,327-338.
    [1.99]Chen S.J.,Yu C.T..Experimental Study of Jumbo Size Reduced Beam Section Connections Using High-Strength Steel.Journal of Structural Engineering,2004,130(4):82-587
    [1.100]Brandon Chi,Chia-Ming Uang.Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns.J.Struct.Eng.,2002,128(4):464-473
    [1.101]Cheol-Ho Lee,Sang-Woo Jeon.et al.Effects of Panel Zone Strength and Beam Web Connection Method on Seismic Performance of Reduced Beam Section Steel Moment Connections.Journal of Structural Engineering,2005,131(12):1854-1865
    [1.102]Xiaofeng Zhang,James M.Ricles.Experimental Evaluation of Reduced Beam Section Connections to Deep Columns.Journal of Structural Engineering,2006,132(3):346-357
    [1.103]Masayoshi Nakashima,Iori Kanao,Dawei Liu.Lateral Instability and Lateral Bracing of Steel Beams Subjected to Cyclic Loading.the Journal of Structural Engineering,2002,128(10):1308-1316
    [1.104]陈杰,苏明周等.钢结构焊接翼缘板加强式梁柱刚性连接滞回性能试验研究.建筑结构学报,2007,28(3):1-7
    [1.105]刘占科,苏明周.钢结构梁端翼缘腋形扩大式刚性梁柱连接试验研究.建筑结构学报,2007,28(3):8-14
    [1.106]李波,杨庆山,茹继平.腹板开孔型钢框架梁柱节点抗震性能试验.哈尔滨工业大学学报,2006,38(8):1303-1305
    [1.107]王秀丽,殷占忠等.新型钢框架梁柱节点抗震性能试验研究.建筑钢结构进展,2005,7(4):18-25
    [1.108]王秀丽,沈世钊等.钢框架梁腹板开孔型连接节点力学性能试验研究.工程力学,200623(6):65-76
    [1.109]茹继平,杨娜.翼缘削弱型钢框架梁柱节点的性能研究综述.工程力学,2004,2(1):61-66
    [1.110]陈宏,石永久等.钢框架梁柱节点受力性能的非线性分析.工业建筑,2001,31(5):56-58
    [1.111]戴绍斌,刘文吉.狗骨式刚性连接节点的受力性能试验研究.武汉理工大学学报,2004,26(12):56-58
    [1.112]谢晓栋,杨娜,杨庆山.钢结构翼缘削弱型节点的参数分析.钢结构,2004,19(4):50-52
    [1.113]王新武,王莹等.狗骨式刚性连接钢框架有限元分析.河南科技大学学报,2004,25(2):67-70
    [1.114]吴芸,张其林,王旭峰.钢框架抗震性能试验研究和数值分析.西安建筑科技大学学报,2006,3 8(4):486-490
    [1.115]刘曙.钢框架滞回性能试验研究.华中科技大学学报,2004,32(10):43-45
    [1.116]岳润慧,李军,郁有升.狗骨式钢梁侧向支撑合理位置分析.钢结构,2007,22(8):56-59
    [1.117]周群 王燕.狗骨式节点梁翼缘削弱深度的取值研究.钢结构,2007,22(8):14-16
    [2.1]中华人民共和国国家标准,钢及钢产品力学性能试验取样位置及试样制备(GB/T 2975-1998)北京:中国标准出版社,1998
    [2.2]中华人民共和国国家标准,金属拉伸试验试样(GB 6397-88)北京:中国标准出版社,1988
    [2.3]蔡益燕.考虑塑性铰外移的钢框架梁柱连接设计.建筑结构,2004,34(2):3-9
    [2.4]FEMA-350.Recommended Seismic design Criteria for New Steel Moment-frame Buildings.2000,Washington,D.C.
    [2.5]Brandon Chi,Chia-Ming Uang.Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns.Journal of Structure Engineering,2002,128(4):464-473
    [2.6]Zhang,X.,and Ricles,Seismic Behavior of Reduced Beam Section Moment Connections to Deep Columns.Journal of Structure Engineering,2006,132(3):358-367
    [2.7]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001
    [2.8]彭福明.钢结构框架梁柱节点性能研究.青岛建筑工程学院硕士学位论文,青岛,2001.
    [2.9]龚思礼.建筑抗震设计手册(第二版).中国建筑工业出版.2003:903-929
    [2.10]赵秀丽.多层钢框架梁柱连接节点抗震性能研究.哈尔滨工业大学博士学位论文,哈尔滨,2004
    [2.11]中华人民共和国行业标准,建筑抗震试验方法规程(JGJ101-96).北京:中国建筑工业出版社,1996
    [2.12]沈祖炎,陈杨骥,陈以一.钢结构基本原理.北京:中国建筑工业出版社,2002
    [3.1]Zhang,X.,Ricles,J..Seismic Behavior of Reduced Beam Section Moment Connections to Deep Columns.Journal of Structural Engineering,2006,132(3):358-367
    [3.2]Lee K-h,Foutch Douglas A..Seismic Performance Evaluation of Pre-Northridge Steel Frame Buildings with Brittle Connections.Journal of Structural Engineering,2002,128(4):546-555
    [3.3]Brandon Chi,Chia-Ming Uang.Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns.Journal of Structural Engineering,2002,128(4):464-473
    [3.4]王万祯.钢框架梁柱栓焊刚性连接的滞回性能、破坏机理及抗震设计建议.西安建筑科技大学博士学位论文,西安,2002
    [3.5]施刚.钢框架半刚性端板连接的静力和抗震性能研究.清华大学博士论文,北京,2004
    [3.6]颜云辉.结构分析中的有限单元法及其应用.东北大学出版社,2003
    [3.7]陈惠发.土木工程材料的本构方程.华中科技大学出版社,2001
    [3.8]ANSYS结构分析指南——非线性.ANSYS中国,2006
    [3.9]李启才.带悬臂梁拼接的梁柱连接在循环荷载作用下的破坏机理及抗震对策.西安建筑科技大学博士学位论文,西安,2002
    [3.10]苏明周 箱形截面钢构件在地震作用下的相关屈曲破坏机理及抗震设计对策.西安建筑科技大学博士学位论文,西安,1999
    [3.11]蒋有谅.非线性有限元法,北京:北京工业出版社,1988
    [3.12]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,2004
    [3.13]谭建国.使用ANSYS 6.0进行有限元分析.北京:北京大学出版社,2002
    [3.14]张朝晖.ANSYS 11.0结构分析工程应用实例解析(第2版).北京:机械工业出版社,2008
    [3.15]王新敏.ANSYS工程结构数值分析.北京:人民交通出版社,2007
    [4.1]钢结构设计手册编辑委员会.钢结构设计手册(第三版).北京:中国建筑工业出版社,2005
    [4.2]El-Tawil,S.,et al.Strength and Ductility of FR Weld-Bolted Connections.Rep.No.SACBD/98/01,SAC Joint Venture,Sacramento,Cal,1998
    [4.3]谭建国.使用ANSYS 6.0进行有限元分析.北京:北京大学出版社,2002
    [4.4]Brandon Chi,Chia-Ming Uang.Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns.J.Struct.Eng.,2002,128(4):464-473
    [4.5]Xiaofeng Zhang,Ricels J..Experiment Evaluation of Reduced Beam Section Connection to Deep Column.J.Struct.Eng.,2006,132(3):346-357
    [4.6]ANSYS结构分析指南——非线性
    [4.7]郭秉山.钢框架梁柱腹板连接在循环荷载作用下的滞回性能及抗震设计对策.西安建筑科技大学博士学位论文,西安,2004
    [4.8]赵秀丽.多层钢框架梁柱连接节点抗震性能研究.哈尔滨工业大学博士学位论文,哈尔滨,2004
    [4.9]施刚.钢框架半刚性端板连接的静力和抗震性能研究.清华大学博士学位论文,北京,2004
    [4.10]李杰.地震循环载荷下钢结构梁柱焊接节点耗能与损伤行为的研究.天津大学博士学位论文,天津,2002
    [4.11]张莉.钢结构刚性梁柱节点抗震性能的研究.天津大学博士学位论文,天津,2002
    [4.12]FEMA-350.Recommended Seismic design Criteria for New Steel Moment-frame Buildings.2000,Washington,D.C.
    [5.1]李俊华,王新堂,薛建阳,赵鸿铁.低周反复荷载下型钢高强混凝土柱受力性能试验研究.土木工程学报,2007,40(7):11-18
    [5.2]聂建国,秦凯,肖岩.方钢管混凝土柱节点的试验研究及非线性有限元分析.工程力学,2006,23(11):99-109
    [5.3]郭秉山.钢框架梁柱腹板连接在循环荷载作用下的滞回性能及抗震设计对策.西安建筑科技大学博士学位论文,西安,2004
    [5.4]王万祯.钢框架梁柱栓焊刚性连接的滞回性能破坏机理及抗震设计建议.西安建筑科技大学博士学位论文,西安,2002
    [5.5]周群.钢框架RBS新型延性节点的理论分析与研究.青岛理工大学硕士论文,青岛,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700