翼缘板加强型节点低周反复荷载试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在1994年美国北岭(Northridge)地震和1995年日本阪神(HanshinAwaji)地震中,常规的钢框架梁柱节点产生了大量的脆性破坏。震后世界各国专家进行了大量的试验研究和理论分析,并提出了多种新型延性节点,包括加强型延性节点和削弱型延性节点。本文研究的翼缘板加强型节点属于加强型延性节点。翼缘板加强型节点的工作原理是:通过在梁端焊接加强板以提高梁端的截面塑性抵抗矩,使梁端塑性铰的位置外移,远离受力复杂且脆弱的梁柱翼缘连接焊缝,达到提高节点延性,避免节点脆性破坏的目的。
     本文依据美国规范FEMA-350和国内相关规范的设计方法与构造要求,设计了4个缩尺比例为1/2的钢框架翼缘板加强型节点试件,进行翼缘板加强型节点在低周往复循环荷载作用下的试验研究,分析加强板长度和厚度的变化对节点抗震性能的影响。试验现象表明:4个翼缘板加强型节点试件均在加强板外侧约1/3倍梁高位置形成塑性铰,远离柱翼缘,保护了梁柱节点连接焊缝,属于延性破坏。
     通过对4个试件的试验数据分析得出:(1)4个试件均具有良好的抗震性能。滞回曲线丰满,滞回面积比较大,节点的塑性转角均大于3%rad,总转角均大于5%rad,延性系数大于3.0,达到抗弯钢框架抗震性能良好的最低标准。(2)在加强板一定长度范围内,随着加强板长度的增加,试件的极限承载力会有明显的提高,但延性和耗能性能减弱。(3)加强板长度越短,节点承载力越小,耗能能力越强,但长度过短时,塑性铰不能有效地外移,因此建议加强板长度取值范围为(0.5~0.8)倍梁高。(4)在加强板一定厚度范围内,随着加强板厚度的增加,试件的极限承载力无明显变化,但延性和耗能性能减弱。(5)随着加强板厚度的增加,节点承载力无明显变化,延性和耗能能力却有所减弱,所以加强板厚度不宜过大。因此建议加强板厚度取值范围为(1.0~1.3)倍梁翼缘厚度。
The conventional steel frame beam-column joints had a lot of brittle failure,which wasin the Northridge earthquake in United States at 1994 and Hanshin Awaji earthquake inJapan at 1995. After the earthquake,National experts have had a large number ofexperimental studies and theoretical analysis, and proposed a variety of new ductile joints, including reduced ductility joints and reinforced ductility joints. In this paper, theflange-plate reinforced joints is reinforced ductility joints.The works of flange-platereinforced joints is: through welding a reinforced plate at the beam-end to improve themoment of the beam-end section, the plastic hinge has been taken away from thecolumn-flange weld which is brittle and suffered complex stress to achieve the purpose ofimproving the ductility of joint to prevent brittle fracture.
     According to the FEMA-350 and the relative standards of design and constructionrequirements,four Steel frame flange-plate reinforced joints were designed at 1/2 reducedscale in this paper,and flange-plate reinforced joints were experimental studied undercyclic loading, the influence for seismic performance form he strengthen and thickness ofreinforce-plate were ansysed. Experimental phenomena that he plastic hinges of the fourreinforced joints specimens all formed at the position where away from the end ofreinforced plate about 1/3 beam depth,which is awy from the column flange,beam-column joints to connect the protection of the weld, are ductile failure.
     The Data Analysis show that:1) 4 specimens showed good seismic performance. Fullhysteresis curve, the hysteresis area is relatively large, Plastic rotation of joints greaterthan 3% rad, the total angle is greater than 5% rad, ductility factor greater than 3.0, whichachieved good seismic performance of steel frame bending the minimum standards.2)When the length of reinforce-plate within a reasonable size, with the length ofreinforce-plate increases, the ultimate bearing capacity of specimen will be significantlyincreased, but decreased ductility and energy dissipation. 3)the length of reinforce-plate isshorter, the ultimate bearing capacity is lower, the capacity of energy dissipation is higher,but the short length, the relocation of the plastic hinge can not effectively, thereforeproposed to strengthen the board length range (0.5 to 0.8) times as high beam.4) When the thickness of reinforce-plate within a reasonable size, with the thickness ofreinforce-plate increases, the ultimate bearing capacity of no significant change, butdecreased ductility and energy dissipation. 5) With the thickness of reinforce-plateincreases, the ultimate bearing capacity of no significant change, so the thickness ofreinforce-plate should not be too large. Therefore proposed to strengthen the range ofthickness values (1.0 to 1.3) times the beam flange thickness.
引文
[1]李国强.我国高层建筑钢结构发展的主要问题.建筑结构学报.1998,19(1):24~32
    [2]ShengJinChen,YC.Tsao,nadYC.Chao:ehnnaeementofduetilityofexisting seismie steelmoment eoneetions[J];JoumalofStureturalEngineering,2001,127(5):538—545
    [3]Nakashima M, Inoue K, Tada M. Classification of Damage to Steel Building Observedin the 1995 Hyogoken-Nanbu Earthquake. Engineering Structures, 1998, 20 (4) :271-281
    [4]AISC, Special Task Committee on the Northridge Earthquake. American Institute ofSteel Construction ,Chicago, 1994
    [5]William E Gates, Manuel Modern. Professional Structural Engineering ExperienceRelated to Welded Steel Moment Frames Following the Northridge Earthquake.Engineering Structures, 1998, 20 (4-6) : 249-260
    [6]陈付生,高层建筑钢结构设计.北京:中国建筑工业出版社, 2000
    [7]FEMA-267, Interim guidelines: Evaluation repair modification and design of steelmoment frames. Report No. SAC-95-02. SAC Joint Venture, Calif, 1994
    [8]李国强等,强震下钢框架梁柱焊接连接的断裂行为.建筑结构学报, 1998, 19 (4) :19-27
    [9]FEMA-355D. Post-Northridge Welded Flange Connections. J. construct. Steel Res,1997, 42 (1) : 49-70
    [10]黄炳生,日本神户地震中建筑钢结构的震害及启示.建筑结构, 2000, 30 (9) :24-25
    [11]周炳章,日本阪神地震的震害及教训.工程抗震, 1996 (3) : 23-26
    [12]SAC joint Venture. Recommended seismic design criteria for new steelmoment-frame buildings. FEMA-350, 2000
    [13]FEMA-267. nterim guidelines: Evaluation repair modification and design of steelmoment frames. Report No.SAC-95-02. SAC Joint Venture, Calif, 1994
    [14]杨强跃,郑悦,钢框架梁柱节点连接方式的介绍与分析.建筑结构, 2004. 6 (34) :44-48
    [15]黄南冀,张锡云,张萝香,日本阪神大地震震害分析与加固技术.北京:地震出版社, 2000
    [16]候宝隆(编译).国外几种钢结构连接的新工法.钢结构,2001,16(4):62
    [17]阳勇波.两种钢框架节点抗震工法比较.山西建筑,2005,31(12):41~42
    [18]日本建筑学会,钢结构结合部指针(Recommendation for Design of Connection inSteel Structures), 2001
    [19]FEMA-350, Recommended Seismic design Criteria for New Steel Moment-frameBuildings. 2000, Washington, D.C.
    [20]梁军,黎永,曾常阳.框架加腋梁-柱刚性结点的非线性分析.广东土木与建筑,2003,12(12):14~16
    [21]郁有升,王燕,钢框架梁翼缘削弱型节点力学性能的试验研究.工程力学, 2009,26 (2) : 168-175
    [22]王燕.钢框架塑性铰外移新型节点的研究与进展.青岛理工大学学报, 2006, 27(3) : 1-6
    [23]王秀丽,殷占忠等,新型钢框架梁柱节点抗震性能试验研究.建筑钢结构进展,2005. 7(4): p. 18-25.
    [24]Ralph M. Richard, C.J.A., James E. Partridge., Proprietary slotted beam connectiondesign. Modern steel construction, 1997, 3: 28-33
    [25]T.Kim, A.S.W., Cover-Plate and Flange-Plate SteelMoment-Resisting Connections.Structural Engineering, 2002. 128(4): p. 474-482.
    [26]T.Kim, A.S.W., Experimental Evaluation of Plate-Reinforced Steel Moment-Resisting Connections. Stureture Engineering, 2002. 128(4)(483-491).
    [27] StePhen.PScmleide,r.PE.,M.ASCE,nadltthinunTeerpaarbwong:InelastieBehvaiorofBlotFlnagePlateCoeetions,jounralofstureturalengineering,aPril
    [28] Farzard Naeim,Kan Patel and Kai-Chen Tu, et al. A New Rigid Connection forHeavy Beam and Column in steel Moment Resisting Frames [R],Proceedings of the2001 Convention of the Structural Engineers Association of California
    [29] S. Willibald; J. A. Packer,; and R. S. Puthli ,Cover-plate and flange-plate steelmoment-resisting Connections[J],Journal of Structural engineering , 2002,128(3):328-336
    [30]陈杰,苏明周,钢结构焊接翼缘板加强式梁柱刚性连接滞回性能试验研究.建筑结构学报, 2007. 28(3): p. 1-7
    [31]王燕.钢框架塑性铰外移新型节点的研究与进展.青岛理工大学学报,2006,27(3):1-6
    [32]王燕.钢框架梁翼缘加强型节点低周反复荷载试验研究.建筑结构学报增刊
    [33]姚谦峰等,土木工程结构试验.北京:中国建筑工业出版社, 2008
    [34]中国人民共和国建设部,高层民用建筑钢结构技术规程. 1998,中国建筑工业出版社:
    [35]中华人民共和国建设部,建筑抗震设计规范. 2001,中国建筑工业出版社.
    [36]Tsai, K.C., Steel Beam-Column Joints in Seismic Moment Resisting Frames, inCiv.Eng. 1988, Calif. Berkeley: Calif
    [37]Engelhardt, M.D.a.H., A.S. , Cyclic-Loading Performance of Welded Flange-BoltedWeb Connections. Struc. Eng., 1993. 119(12): p. 3537-3550
    [38]Chen, W.F.and Lui, E.M. Static Flange Moment Conneetions. Construet SteelReseareh, 1988. 10
    [39]Standardization, E.C.f., Eurocode 3, Design of Steel Structures. in Part 1.8: Design ofJoints, 2005
    [40]顾强,钢结构滞回性能及抗震设计. 2009:中国建筑工业出版社
    [41]《钢及钢产品力学性能试验取样位置及试样制备》(GB/T2975-1998)
    [42]《金属材料室温拉伸试验方法》(GB 228-2002)
    [43] AISC, Seismic Provisions for Structural Steel Buildings. 2005.
    [44] Mille,rD.K:LessonslemaedrfomhteNohrtridgeearthqukae,EngineeringStureutre、b1.20,Nos4一6,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700