不同边界约束条件的混凝土双向板抗火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾下,钢筋混凝土双向板受力复杂,且影响因素多,目前相关的试验及理论研究尚不完善。单个构件抗火试验可以为结构抗火设计提供初步的数据支持和理论指导,但是单个构件与真实整体结构中构件的受力情况、边界条件并不相同,整体结构中相邻构件间的相互作用以及其它部分对构件的约束作用可以对构件的火灾行为产生不同的影响。基于上述原因,本文开展了对足尺四边简支双向板、四边固支双向板以及足尺钢框架整体结构中钢筋混凝土双向板的抗火性能研究,主要研究内容如下:
     (1)开展了足尺四边简支双向板和足尺四边固支双向板在恒载升温条件下的抗火性能试验。试验测量了火灾作用下板的竖向挠度和平面内位移、沿板厚度混凝土温度场的分布及钢筋温度的变化、考察了固支板板边处约束反力的变化,分析了火灾下板的裂缝开展规律以及破坏特征。结果表明:火灾下四边简支双向板分别在板顶的长跨跨中和1/4跨度处出现三条与短跨方向平行的主裂缝,四边固支双向板在板顶沿板边形成椭圆型塑性铰线;四边固支双向板的抗火性能优于四边简支双向板。
     (2)利用传统塑性铰线理论对板的极限承载力计算时无法考虑受拉薄膜效应的影响,计算值偏保守。本文在传统塑性铰线理论的基础上,根据板块平衡法和能量法的计算原理,认为受拉薄膜效应是由塑性铰线截面处钢筋合力的竖向分量或钢筋伸长做功所引起,提出了考虑受拉薄膜效应的火灾下钢筋混凝土双向板极限承载力计算方法;基于试验结果,利用改进的板块平衡法和能量法对无水平约束的四边简支双向板和四边固支双向板在火灾下的极限承载力进行了计算,结果表明:本文所提出方法的计算结果与试验结果吻合很好。
     (3)利用自行研制的火灾试验炉,开展了1栋3层3×3跨足尺钢框架整体结构中的角区格板和中区格板的火灾试验,并对其火灾行为进行了研究。结果表明:火灾下整体结构中相邻构件间的相互作用以及周边相邻构件的约束对板的火灾行为影响显著;角区格板在板顶靠近内板边的1/4跨度处(板顶负弯矩钢筋截断处)出现对板的力学行为有较大影响的主裂缝,中区格板在板顶沿板边形成圆型塑性铰线;由于结构连续性及相邻构件间的互相约束,与受火板相邻的未受火板顶也出现了规则裂缝;整体结构中钢筋混凝土双向板具有较好的抗火性能。
     (4)开展了将声发射技术用于火灾下整体结构中钢筋混凝土双向板的破坏监测研究。考察了火灾作用下板的声发射事件数、能量率和b值的变化,分析了各参数与板的裂缝开展、炉温及竖向位移等的关系。结果表明:利用事件数、能量率、b值等参数可以准确区分火灾下钢筋混凝土双向板的裂缝早期开展阶段、裂缝集中出现阶段以及裂缝缓慢扩展阶段;火灾下板的声发射参数产生突变时,如能量率突然升高、b值突然下降等,表征结构可能出现破坏,应给予足够关注。
     (5)开展了火灾下整体结构中钢筋混凝土双向板的振动特性研究。通过快速Fourier转换,分析了火灾作用下板的频率变化。结果表明:火灾下整体结构中相邻构件对受火板的约束作用对板频率的影响较为显著;火灾下整体结构中中区格板的频率明显高于角区格板;火灾中角区格板和中区格板的频率均有不同程度下降,角区格板的频率下降幅度高于中区格板。
Two-way reinforced concrete (RC) slabs bear complicated forces under fireconditons, and there are many affecting factors. For now, however, the relevantexperimental and theoretical researches are imperfect and insufficient. Fire testsperformed on single isolated structural members are the necessary first step tosupport the structural fire resistance design. However, such tests do not reflect thereal behaviour of the elements in the whole structure under fire conditions.Interactions between different structural elements in a whole structure can alter theloading and support conditions of any structural element. This alteration can lead tocompletely different structural behaviour from that based on the initial set ofloading and boundary conditions. Based on the above consideration, thisdissertation studies the fire-resistance properties of full-scale two-way simplysupported RC slab, two-way RC slab with edges clamped and two-way RC slabs ina complete building. The main contents are summarized as follows:
     (1) Two fire tests were conducted on full-scale two-way simply supported RCslab and full-scale two-way RC slab with edges clamped respectively. The verticaldeflections and horizontal displacements of the slabs, temperature distributionalong the slab depth and temperature variation of the steel reinforcement weremeasured during the tests. The variation of constrained force at the edges of theslab with edges clamped is investigated. The cracking and failure characteristic ofthe slabs are analyzed. The test results indicate that three main cracks parallel to theshort span direction occurred on the top surface of the two-way simply supportedslab, and they were located at approximately the mid-span and1/4span of the longspan of slab. Plastic hinge lines of ellipse shape formed on the top of the slab withedges clamped. The fire resistance of the two-way RC slab with edges clamped wasbetter than that of the two-way simply supported RC slab.
     (2) The influence of tensile membrane action on the load-carrying capacity ofRC slabs is not incorporated in the conventional yield line theory, and thecalculated result of the load-carrying capacity of RC slab is conservative. In thisdissertation, based on the conventional yield line theory, the tensile membraneaction is assumed to be provided by the vertical component of the steel forces at the section of yield lines or the plastic energy dissipation due to the extension ofreinforcements along yield lines. Then, a new model is proposed to estimate theload-carrying capacity considering the influence of tensile membrane action underfire conditions. Based on the test results, the load-carrying capacity of the two-waysimply supported RC slab and two-way RC slab with edges clamped is estimated byimproved segment equilibrium and energy method. Comparison between thedeveloped model and test results shows good correlation.
     (3) The specially designed furnaces were used, and two full-scale fire testswere conducted on a corner and an interior panel in a three-storey steel-framedbuilding. The structural fire behaviour is studied. It is shown that interactionsbetween different structural elements and the restraint provided by the adjacentstructural members had significant effect on the structural fire behavior of the slabin a whole structure. For the corner panel, main cracks which had significantinfluence on the structural behaviour occurred on the top of the slab, and they werelocated at approximately the1/4span near the interior edges of the slab (theposition where the top reinforcing bars were broken). For the interior panel, plastichinge lines of circular shape appeared on the top surface of the slab. Because of thesstructural continuity and interaction between structural members, regular cracksalso occurred on the top of the adjacent unheated panels. The two-way concrete slabin a whole structure had good fire performance.
     (4) Acoustic emission technique was used for monitoring the failure of two-way RC slabs in a whole structure under fire conditions. The changes of parametersof event, energy rate and b value are investigated. The relationship between theseparameters and the cracking of slabs, furnace temperatures and the verticaldeflections are analyzed. The results indicate that the early stage of cracking, thestage of extensive cracks occurring and the stage of cracks propagating slowlycould be distinguished accurately by analyzing these parameters. When theseparameters change abruptly, such as the sudden rise of energy rate and suddendecrease of b value, some structural failure may occur, and these moments shoud behighly concerned in fire.
     (5) The vibration properties of two-way RC slabs in a whole structure underfire conditions are studied. By means of the fast Fourier transform (FFT) technique,the frequency of the RC slabs in fire is analyzed. The results indicate that therestraint provided by the adjacent structural members had significant effect on the frequency of the two-way RC slab in a whole structure. The frequency of theinterior panel was higher than that of the corner panel. The frequency of the slabsdecreased to various degrees under fire conditions, and the frequency decreaseamplitude of the corner panel was higher than that of the interior panel.
引文
[1]李耀庄,唐毓,曾志长.钢筋混凝土结构抗火研究进展与趋势[J].灾害学,2008,23(1):102-107.
    [2]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001:1-3.
    [3]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006:1-2.
    [4]东南大学,同济大学,天津大学.混凝土结构(中册):混凝土结构与砌体结构设计[M].北京:中国建筑工业出版社,2008:175-177.
    [5] Lamont S. Behavior of structures in fire and real design-a case study[J]. FireProtection Engineering,2006,16(1):5-35.
    [6] Wang Y C. Performance of steel-concrete composite structures in fire[J]. Progressin Structural Engineering and Materials,2005,7(2):86-102.
    [7]余志武,发兴.钢-混凝土组合结构抗火性能研究与应用[J].建筑结构学报,2010,31(6):96-109.
    [8] Usmani A S, Rotter J M, Lamont S. Fundamental principles of sturucturalbehaviour under thermal effects[J]. Fire Safety Journal,2001,36(8):721-744.
    [9] Lin T D, Zwiers R I, Shirley S T, et al. Fire test of concrete slab reinforced withepoxy-coated bars[J]. Structural Journal,1989,86(2):156-162.
    [10] Cooke G M E. Behaviour of precast concrete floor slabs exposed to standardisedfires[J]. Fire Safety Journal,2001,36(5):459-475.
    [11] Lim L, Wade C. Experimental fire tests of two-way concrete slabs[R]. FireEngineering Research Report02/12, Porirua city, New Zealand,2002:5-60.
    [12] Lim L, Buchanan A, Moss P. Numerical modeling of two-way reinforcedconcrete slabs in fire[J]. Engineering Structures,2004,26(8):1081-1091.
    [13] Foster S J, Bailey C G, Burgess I W, et al. Experimental behaviour of concrete floorslabs at large displacements[J]. Engineering Structures,2004,26(9):1231-1247.
    [14] Foster S J, Burgess I W, Plank R J. High-temperature experiments on model-scaleconcrete slabs at high displacement[C]. Ottawa: Third International workshop“Structures in Fire”,2004: S5-5.
    [15] Bailey C G, Toh W S. Behaviour of concrete floor slabs at ambient and elevatedtemperatures[J]. Fire Safety Journal,2007,42(7):425-436.
    [16] Bailey C G, Toh W S. Small-scale concrete slab tests at ambient and elevatedtemperatures[J]. Engineering Structures,2007,29(10):2775-2791.
    [17] Ellobody E, Bailey C G. Behaviour of unbonded post-tensioned one-way concreteslabs[J]. Advances in Structural Engineering,2008,11(1):107-112.
    [18] Bailey C G, Ellobody E. Fire tests on bonded post-tensioned concrete slabs[J].Engineering Structures,2009,31(3):686-696.
    [19] Ellobody E, Bailey C G. Modelling of unbonded post-tensioned concrete slabsunder fire conditions[J]. Fire Safety Journal,2009,44(2):159-167.
    [20]高立堂.无粘结预应力混凝土板火灾行为的试验研究及热弹塑性有限元分析[D].西安:西安建筑科技大学博士学位论文,2003:19-50.
    [21]高立堂,李晓东,陈礼刚,等.平面应力状态下混凝土的热弹塑性积分方案[J].重庆建筑大学学报,2008,52(3):41-44.
    [22]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边中两跨受火试验[J].哈尔滨工业大学学报,2009,56(8):179-182.
    [23]高立堂,陈礼刚,李晓东,等.无粘结预应力混凝土板火灾行为的非线性分析[J].应用力学学报,2007,23(3):490-493.
    [24]陈礼刚,高立堂,李晓东,董毓利.两邻跨受火RC三跨连续板抗火性能试验研究[J].西安建筑科技大学学报(自然科学版),2006,38(1):100-104.
    [25]陈礼刚.钢筋混凝土板受火性能的试验研究[D].西安:西安建筑科技大学博士学位论文,2004:28-62.
    [26]韩金生,程文瀼,董毓利,等.压型钢板-混凝土组合楼板火灾行为试验分析[J].工业建筑,2006,43(3):87-90.
    [27]韩金生,董毓利,徐赵东,等.简支组合楼板的火灾试验研究[J].特种结构,2007,12(2):70-73.
    [28]郑文忠,侯晓萌,许名鑫.两跨无粘结预应力混凝土连续板抗火性能试验与分析[J].建筑结构学报,2007,28(5):1-13.
    [29]侯晓萌,郑文忠.火灾后预应力混凝土连续板力学性能试验与分析[J].湖南大学学报(自然科学版),2010,37(2):6-13.
    [30]李国强,张娜思.组合楼板受火薄膜效应试验研究[J].土木工程学报,2010,43(3):24-31.
    [31] Wald F, Sim es da Silva L, Moore D B, Lennon T, ChladnáM, Santiago A, BeneM, Borges L. Experimental behaviour of a steel structure under natural fire[J].Fire Safety Journal,2006,41(7):509-522.
    [32] O’Connor M A, Kirby B R, Martin D M. Behaviour of a multi-storey compositesteel framed building in fire[J]. Structural Engineering,2003,81(30):27-36.
    [33] Foster S, Chladná M, Hsieh C, Burgess I, Planck R. Thermal and structuralbehaviour of a full-scale composite building subject to a severe compartmentfire[J]. Fire Safety Journal,2007,42(3):183-199.
    [34] Gillie M, Usmani A S, Rotter J M. A structural analysis of the Cardington Britishsteel corner test[J]. Journal of Constructional Steel Research,2002,58(4):427-442.
    [35] Bailey C G, White D S, Moore D B. The tensile membrane action of unrestrainedcomposite slabs simulated under fire conditions[J]. Engineering Structures,2000,22(12):1583-1595.
    [36] Bailey C G. Membrane action of slab/beam composite floor systems in fire[J].Engineering Structures,2004,26(12):1691-1703.
    [37] Park R. The lateral stiffness and strength required to ensure membrane action atthe ultimate load of a reinforced concrete slab-and-beam floor[J]. Magazine ofConcrete Research,1965,17(50):29-38.
    [38] Kemp K O. Yield of a square reinforced concrete slab on simple supportsallowing for membrane forces[J]. The Structural Engineer,1967,45(7):235-240.
    [39] Janas M. Large plastic deformations of reinforced concrete slabs[J]. InternationalJournal of Solids and Structures,1968,4(1):61-74.
    [40] Bailey C G. Efficient arrangement of reinforcement for membrane behaviour ofcomposite floor slabs in fire conditions[J]. Journal of Constructional SteelResearch,2003,59(7):931-949.
    [41] Toh W S, BernabèN. Tensile membrance action of composite slab panels in fire-simple vs advanced models. Journal of Structural Fire Engineering,2010,1(3):177-187.
    [42] Spyrou S, Davison B, Burgess L, et al. Experimental and analytical studies ofsteel joint components at elevated temperatures[J]. Fire and Material,2004,28(2):83-94.
    [43] Yu C M, Huang Z H, Burgess I W. Development and validation of3D compositestructural elements at elevated temperatures[J]. Journal of Structural Engineering,2010,136(8):275-284.
    [44]李国强,周昊圣,郭士雄.火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J].建筑结构学报,2007,28(5):40-47.
    [45]李国强,郭士雄,周昊圣.火灾下钢结构建筑楼板的薄膜效应模型验证及实用方法[J].建筑结构学报,2007,28(5):48-53.
    [46]张娜思,李国强.火灾下组合楼板薄膜效应分析的改进方法[J].土木工程学报,2009,42(3):29-35.
    [47]王振清,苏娟,王永军,等.火灾下钢筋混凝土楼板的薄膜效应分析[J].哈尔滨工程大学学报,2009,30(8):878-882.
    [48] Wang Y Z. An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests[J]. Engineering Structures,2000,22(9):401-412.
    [49] Elghazouli A Y, Izzuddin B A. Analytical assessment of the structuralperformance of composite floors subject to compartment fires[J]. Fire SafetyJournal,2001,36(3):769-793.
    [50] Usmani A S, Cameron N J K. Limit capacity of laterally restrained concrete floorslabs in fire[J]. Cement&Concrete Composites,2004,26(2):127-140.
    [51] Cameron N J K, Usmani A S. New design method to determine the membranecapacity of laterally restrained composite floor slabs in fire, Part I: Theory andmethod[J]. The Structural Engineer,2005,83(19):8-33.
    [52] Cashell K A, Elghazouli A Y, Izzuddin B A. Ultimate behavior of idealizedcomposite floor elements at ambient and elevated temperature[J]. FireTechnology,2010,46(2):67-89.
    [53] Omer E, Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concretefloor slabs with planar edge restraints under fire[J]. Journal of StructuralEngineering,2009,135(9):1068-1080.
    [54] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforcedconcrete slabs under fire, Part I: Analytical models[J]. Engineering Structures,2010,32(9):2631-2646.
    [55] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforcedconcrete slabs under fire, Part II: Verification and application[J]. EngineeringStructures,2010,32(4):2647-2657.
    [56]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007:146-158.
    [57]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004:240-249.
    [58] Zienkiewicz O C, Taylor R L.有限元方法(第5版),第2卷,固体力学,庄茁,岑松,译[M].北京:清华大学出版社,2006:52-76.
    [59] Bathe K J. ADINA-A finite element program for automatic dynamic incrementalnonlinear analysis[R]. Report AE81-1, ADINA Engineering,1981:156-163.
    [60] Huang Z, Platten A. Nonlinear finite element analysis of planar reinforcedmembers subjected to fires[J]. Structural Journal,1997,94(3):272-282.
    [61] Huang Z, Burgess I W, Plank R J. Nonlinear analysis of reinforced concrete slabssubjected to fire[J]. Structural Journal,1999,96(1):127-135.
    [62] Huang Z, Burgess I W, Plank R J. The influence of tensile membrane action inconcrete slabs on the behavior of composite steel-framed buildings in fire[J].Structures-A Structural Engineering Odyssey, Proceedings of Structures Congress,2001:45-52.
    [63] Huang Z, Burgess I W, Plank R J. Modeling membrane action of concrete slabs incomposite buildings in fire. Part I: Theoretical development[J]. Journal ofStructural Engineering,2003,129(8):1093-1102.
    [64] Huang Z, Burgess I W, Plank R J. Modeling membrane action of concrete slabs incomposite buildings in fire. Part II: Validations[J]. Journal of StructuralEngineering,2003,129(8):1103-1112.
    [65] Lim L. Membrane action in fire exposed concrete floor systems[D]. University ofCanterbury, Christchurch, New Zealand,2003:36-45.
    [66] Lim L, Buchanan A, Moss P, Franssen J. Numerical modelling of two-wayreinforced concrete slabs in fire[J]. Engineering Structures,2004,26(8):1081-1091.
    [67] Lim L, Buchanan A, Moss P, Franssen J. Computer modeling of restrainedreinforced concrete slabs in fire conditions[J]. Journal of Structural Engineering,2004,130(12):1964-1971.
    [68] Gillie M, Usmani A, Rotter M. Bending and membrane action in concrete slabs[J].Fire and Materials,2004,28(6):139-157.
    [69] Izzuddin B A, Tao X Y, Elghazouli A Y. Realistic modeling of composite andreinforced concrete floor slabs under extreme loading. Part I: Analyticalmethod[J]. Journal of Structural Engineering,2004,130(12):1972-1984.
    [70] Izzuddin B A, Tao X Y, Elghazouli A Y. Realistic modeling of composite andreinforced concrete floor slabs under extreme loading. Part II: Verification andapplication[J]. Journal of Structural Engineering,2004,130(12):1985-1996.
    [71] Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concrete membersunder fire. Part I: Analytical modeling[J]. Journal of Structural Engineering,2004,130(1):3-17.
    [72] Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concrete membersunder fire. Part II: Parametric studies and design considerations[J]. Journal ofStructural Engineering,2004,130(1):18-31.
    [73] Anderheggen E, Fontana M, Tesar C. Numerical Modeling of composite floorslabs in fires[J]. Computing in Civil Engineering,2005,56(3):23-31.
    [74] Wang G. Performance of reinforced concrete flat slabs exposed to fire[D]. Athesis for the degree of master of engineering, University of Canterbury,Christchurch, New Zealand,2006:76-88.
    [75] Zhang Y X, Bradford M A. Nonlinear analysis of moderately thick reinforced concreteslabs at elevated temperatures using a rectangular layered plate element withTimoshenko beam functions[J]. Engineering Structures,2007,29(10):2751-2761.
    [76] Yu X, Huang Z. An embedded FE model for modeling reinforced concrete slabsin fire[J]. Engineering Structures,2008,30(11):3228-3238.
    [77] Moss P J, Dhakal R P, Wang G, Buchanan A H. The fire behavior of muti-bay,two-way reinforced concrete slabs[J]. Engineering Structures,2008,30(12):3566-3573.
    [78] Yu X, Huang Z, Burgess I, Plank R. Nonlinear analysis of orthotropic compositeslabs in fire[J]. Engineering Structures,2008,30(6):67-80.
    [79]苏娟.火灾作用下钢筋混凝土结构非线性分析[D].哈尔滨:哈尔滨工程大学博士学位论文,2008:45-58.
    [80]陈适才,任爱珠,王静峰,陆新征.钢筋混凝土楼板火灾反应数值计算模型[J].工程力学,2008,25(3):107-112.
    [81]王刚,王清湘,刘士润.钢筋混凝土板的压力膜效应承载力计算方法[J].吉林大学学报(工学版),2010,40(3):699-704.
    [82]陈洋.声发射技术在混凝土结构检测中的应用[J].中国水运(学术版)2007,7(8):74-75.
    [83] Ruseh A H. Physical problems in the testing of concrete[J]. Cement and ConcreteAssociation,1959,12(1):83-91.
    [84] Wells D. An acoustie apparatus to record emissions from concrete under strain[J].Nuclear Engineering and Design,1970,12(1):80-88.
    [85] Green A T. Stress wave emission and fracture of prestressed concrete reactorvessel material[J]. Materials Technology,1970,22(1):635-649.
    [86] Ohtsu M, Okamoto T, Yuyama S. Moment tensor analysis of acoustic emissionfor cracking mechanisms in concrete[J]. Structural Journal,1998,95(2):87-95.
    [87] Ouyang C S, Landis E, Shah S P. Damage assessment in concrete usingquantitative acoustic emission[J]. Journal of Engineering Mechanics,1991,117(11):1011-1029.
    [88] Grosse C, Reinhardt H, Dahm T. Localization and classification of fracture typesin concrete with quantitative acoustic emission measurement techniques[J]. NDT&E International,1997,30(4):223-230.
    [89] Landis E N, Baillon L. Experiments to relate acoustic emission energy to fractureenergy of concrete[J]. Journal of Engineering Mechanics,2002,128(6):698-703.
    [90] Ohtsu M, Watanabe H. Quantitative damage estimation of concrete by acousticemission[J]. Construction and Building Materials,2001,15(6):217-224.
    [91] Hossain A B, Pease B, Weiss J. Quantifying early-age stress development andcracking in low water-to-cement concrete: restrained-ring test with acousticemission[J]. Materials and Construction,2007,18(6):24-32.
    [92] Grosse C U, Reinhardt H W, Finck F. Signal-based acoustic emission techniquesin civil engineering[J]. Journal of Materials in Civil Engineering,2003,15(3):274-280.
    [93] Grosse C U, Finck F. Quantitative evaluation of fracture processes in concreteusing signal-based acoustic emission techniques[J]. Cement and ConcreteComposites,2006,28(4):330-336.
    [94] Li Z, Li F, Zdunek A, et al. Application of acoustic emission technique todetection of rebar corrosion in concrete[J]. Materials Journal,1998,95(1):68-81.
    [95] Carpinteri A, Lacidogna G, Pugno N. Structural damage diagnosis and life-timeassessment by acoustic emission monitoring[J]. Engineering FractureMechanics,2007,74(2):273-289.
    [96] Colombo I S, Main I G, Forde M C. Assessing damage of reinforced concretebeam using “b-value” analysis of acoustic emission signals[J]. Journal ofMaterials in Civil Engineering,2003,15(3):280-287.
    [97] Soulioti D, Barkoula N M, Paipetis A, et al. Acoustic emission behavior of steelfibre reinforced concrete under bending[J]. Construction and Building Materials,2009,23(12):3532-3536.
    [98] Schechinger B, Vogel T. Acoustic emission for monitoring a reinforced concretebeam subject to four-point-bending[J]. Construction and Building Materials,2007,21(3):483-490.
    [99] Lim M K, Koo T K. Acoustic emission from reinforced concrete beams[J].Magazine of Concrete Research,1989,41(149):229-234.
    [100]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004:15-37.
    [101] Mote C D. Theory of thermal natural frequency variations in disks[J].International Journal of Mechanical Sciences,1966,8(8):547-557.
    [102] Kodur V K R, Phan L. Critical factors governing the fire performance of highstrength concrete systems[J]. Fire Safety Journal,2007,42(7):482-488.
    [103] Duron Z H. Early warning capability for firefighters: testing of collapseprediction techniques[M]. National Institute of Standards and Technology Report,2005:43-60.
    [104] GB/T9978-2008建筑构件耐火试验方法[S].北京:中国标准出版社,2009:5-8.
    [105] GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002:42-79.
    [106] GB50152-1992混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992:15-18.
    [107] Hung T Y, Nawy E G. Limit strength and serviceability factors in uniformlyloaded isotropically reinforced two-way slabs[M]. Cracking, deflection andultimate load of concrete slab systems. ACI, Detroit:1971(SP.30):301-311.
    [108]刘永军.火灾下建筑构件内温度场数值模拟基础[M].北京:科学出版社,2006:16-45.
    [109]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:7-65.
    [110]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,8(1):37-43.
    [111]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,35(3):287-297.
    [112]李国强,陈凯,蒋守超,等.高温下Q345钢的材料性能试验研究[J].建筑结构,2001,31(1):53-55.
    [113]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力-应变关系[J].工程力学,1997,14(2):28-35.
    [114]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,40(5):58-69.
    [115]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [116]过镇海.常温和高温下混凝土材料和构件[M].北京:清华大学出版社,2006:45-128.
    [117]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003:8-96.
    [118]吴天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估[D].大连:大连理工大学博士学位论文,2002:26-53.
    [119] BSEN1992-1-2, Eurocode2, Design of concrete structures. Part1.2. General rules.Structural fire design[S]. London: British Standards Institution,2004:19-33.
    [120] BSEN1994-1-2, Eurocode4, Design of composite steel and concrete structures.Part1.2. General rules. Structural fire design[S]. London: British StandardsInstitution,2006:19-33.
    [121] Lie T T. A procedure to calculate fire resistance of structural members[J]. Fireand Materials,1984,8(1):40-48.
    [122]段文玺.建筑结构的火灾分析和处理(四)-混凝土和钢筋的高温特性[J].工业建筑,1985,15(11):50-54.
    [123] Marechal J C. Variations in the modulus of elasticity and poisson’s ratio withtemperature[J]. Fire Technology,1972,1(30):40-43.
    [124] Kaplan M F, Roux F J P. Effects of elevated temperature on the properties ofconcrete for the containment and shielding of nuclear reactors[J]. Concrete forNuclear Reactors,1972,34(6):437-442.
    [125]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报(自然版),1997,6(2):89-92.
    [126]米洛瓦诺夫.耐热钢筋混凝土结构计算,周永铨,译[M].北京:冶金工业出版社,1978:146-151.
    [127]建筑物综合防火设计,孙金香,高伟,译[M].天津:天津科学技术出版公司,1994:127-138.
    [128] GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003:28-29.
    [129] Lie T T. Fire resistance of circular steel columns filled with bar-reinforcedconcrete[J]. Structural Engineering,1994,120(5):1489-1509.
    [130]李卫.高温下混凝土强度与变形的试验研究[D].北京:清华大学硕士学位论文,1996:40-53.
    [131]王学谦.火灾高温下钢筋混凝土梁截面极限弯矩的计算[J].建筑结构,1996,26(7):38-42.
    [132] Smith E E, Harmathy T Z. Design of building for fire safety[M]. AmericanSociety for Testing and Materials,1979:27-36.
    [133]吕彤光,时旭东,过镇海.高温下I-V级钢筋的强度和变形试验研究[J].福州大学学报(自然科学版),1996:13-19.
    [134] Park R, Gambe W L.钢筋混凝土板,黄国桢,成源华,译[M].上海:同济大学出版社,1992:212-230.
    [135]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1991:317-320.
    [136] Dong Y L, Fang Y Y. Determination of tensile membrane effects by segmentequilibrium[J]. Magazine of Concrete Research,2009,61(12):1-7.
    [137] Bailey C G. Membrane action of unrestrained lightly reinforced concrete slabs atlarge displacement[J]. Engineering Structures,2001,23(5):470-483.
    [138]董毓利.用变形和分解原理求混凝土板的受拉薄膜效应[J].力学学报,2010,27(6):1180-1187.
    [139] GB50009-2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002:25-26.
    [140]董毓利.两种组合钢框架火灾变形性能的试验研究[J].工程力学,2008,25(2):197-203.
    [141] Guo S, Bailey C G. Experimental behaviour of composite slabs during the heatingand cooling fire stages[J]. Engineering Structures,2011,33(2):563-571.
    [142] Ohtsu M, Uchida M, Okamoto T, et al. Damage assessment of reinforcedconcrete beams qualified by acoustic emission[J]. Structural Journal,2002,99(4):411-417.
    [143] Carpinteri1A, Lacidogna1G, Niccolini G. Damage analysis of reinforcedconcrete buildings by the acoustic emission technique[J]. Structural Control andHealth Monitoring,2011,18(6):660-673.
    [144]刘茂军.钢筋混凝土梁受载过程的声发射特性试验研究[D].广西:广西大学硕士学位论文,2008:25-76.
    [145]宗金霞.基于声发射技术的钢筋混凝土梁损伤识别研究及数值分析[D].武汉:武汉理工大学硕士学位论文,2010:36-55.
    [146] Chen B, Yu J. Investigation of effetes of aggregate size on the fracture behaviorof high performance concrete by acoustic emission[J]. Construction and BuildingMaterials,2007,21(5):1696-1170.
    [147]陈兵,姚武.声发射技术在混凝土研究中的应用[J].无损检测,2000,22(9):387-390.
    [148]纪洪广,蔡美峰.混凝土材料声发射与应力-应变参量耦合关系及应用[J].岩石力学与工程学报,2003,22(2):227-231.
    [149] Sagaid A I, Elizarov S V. Acoustic emission parameters correlated with fractureand deformation processes of concrete members[J]. Construction and BuildingMaterials,2007,21(3):477-482.
    [150]纪洪广,王基才.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,2001,20(6):801-804.
    [151] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission[J].Construction and Building Materials,2010,13(12):2339-2346.
    [152] Shiotani T, Shigeishi M, Ohtsu M. Acoustic emission characteristics of concrete-piles[J]. Construction and Building Materials,1999,13(2):73-85.
    [153]王彬,顾建祖,骆英,李忠芳.预应力钢筋混凝土梁破坏过程的声发射特性实验研究[J].防灾减灾工程学报,2006,13(4):453-457.
    [154]朱宏平,徐文胜,陈晓强,夏勇.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,24(1):186-191.
    [155] Shield C K. Comparison of acoustic of emission activity in reinforced andprestressed concrete beams under bending[J]. Construction and BuildingMaterials,1997,11(3):189-194.
    [156] Watanabe T, Nishibata S, Hashimoto C, et al. Compressive failure in concrete ofrecycled aggregate by acoustic emission[J]. Construetion and Building Materials,2007,21(3):470-476.
    [157]吴胜兴,张顺祥,沈德建.混凝土轴心受拉声发射Kaiser效应试验研究[J].土木工程学报,2008,54(4):31-39.
    [158]张克强,杨波.混凝土的无损检测方法及其新发展[J].混凝土,2007,28(5):99-101.
    [159]纪洪广,李造鼎.混凝土材料凯塞效应与Felicity效应关系的试验研究[J].应用声学,1997,8(6):30-33.
    [160]袁振明.数字式声发射仪的发展[J].无损探伤,1997,11(2):1-5.
    [161] Li Z J, Shah S P. Localization of microcracking in concrete under uniaxialtension[J]. Material Journal,1994,91(4):372-381.
    [162]沈功田,刘时风,戴光.声发射检测[M].北京:中国计量出版社,2004:42-51.
    [163]赵兴东,李元辉,刘建坡.基于声发射及其定位技术的岩石破裂过程研究[J].岩石力学与工程学报,2008,27(5):990-995.
    [164]尹祥础,李世愚,李红.从断裂力学观点探讨b值的物理实质[J].地震学报,1987,9(4):364-374.
    [165]董毓利,谢和平,李玉寿.砼受压全过程声发射特性及其损伤本构模型[J].力学与实践,1995,9(4):25-28.
    [166]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989:257-259.
    [167]贾子文,周绪红.冷弯薄壁型钢-混凝土组合楼盖振动性能试验研究[J].土木工程学报,2011,58(4):42-51.
    [168] Baghiee N, Esfahani M R, Moslem K. Studies on damage and FRP strengtheningof reinforced concrete beams by vibration monitoring[J]. Engineering Structures,2009,31(4):875-893.
    [169] Clément A, Laurens S. Vibration-based damage detection in a concrete beamunder temperature variations using AR models and state-space approaches[C].Journal of Physics: Conference Series,2011,305(1):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700