三甲基氯化锡对三种水生生物的毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三甲基氯化锡(Trimethyltin chloride,TMT)是一种重要的有机锡化合物,广泛应用于工业塑料热稳定剂、木材防腐剂、防腐涂料、农药和杀螺贝剂等方面,也曾用于化学消毒剂和杀菌灭虫剂,与工农业生产关系密切。特别是随着工业有机锡塑料及二手塑料再加工的迅速发展,TMT随生产废水、地表径流等途径进入水环境中,已在海洋、江河、水库、地下水、水生生物机体内等广泛存在。TMT具有较强的亲水性和亲脂性,极易通过消化和皮肤黏膜进入机体,对水生生物产生毒性并在体内富集,因此极有可能对水生生物造成潜在危害。然而目前对TMT的水生态毒性研究较少,正确了解TMT的水生生物毒性毒理效应及其对水生态系统的影响,为环境安全评价提供科学依据,研究结果具有现实意义。本研究选取水生态系统中的浮游植物、浮游动物和鱼类三个营养级上的代表生物,即蛋白核小球藻、大型溞和斑马鱼为试验生物,采用急性毒性试验方法,研究TMT对水生生物的毒性效应。结果如下:
     1.TMT对蛋白核小球藻的生长具有一定的抑制作用,并呈现出明显的剂量-效应相关关系。在整个生长试验过程中,0.1、0.38和1.14 mg/L处理下蛋白核小球藻虽然生长受到抑制但仍然在缓慢生长;5.31和20 mg/L处理细胞数目没有增长,表现为很强的抑制作用,从试验开始蛋白核小球藻生长就下降直至实验液逐渐透明,镜下观察藻细胞分解,大量藻细胞死亡。TMT浓度与叶绿素a含量表现出一定的剂量-效应关系,且随药物浓度的增大,藻体内叶绿素a含量增长速度减慢,其变化趋势与藻细胞密度的变化趋势基本吻合。TMT对蛋白核小球藻的96 h-EC_(50)为0.46 mg/L,属于极高毒物质。
     2.随着试验时间的延长和TMT浓度的增加,大型溞的死亡率和抑制率逐渐增加。TMT浓度为0.05 mg/L时,48 h对大型溞活动产生部分抑制,但无死亡现象;TMT浓度为0.185 mg/L时,24 h大型溞的死亡率为60%,抑制率为80%,48h大型溞的死亡率已升到100%。TMT对大型溞的24 h和48 h半数影响浓度LC_(50)分别为:0.15和0.087 mg/L,TMT对大型溞的毒性属极高毒性。
     3.TMT对斑马鱼的96 h-LC_(50)值为2.35 mg/L,TMT对斑马鱼的毒性属高毒。TMT对斑马鱼鳃Na~+,K~+-ATPase有明显的抑制作用:当TMT浓度≥0.78 mg/L时,酶活性被完全抑制,抑制率>32%;当TMT浓度为0.39 mg/L时,酶活性先表现为抑制,24 h后有恢复到对照组水平的趋势。TMT对斑马鱼头部AchE活性表现为抑制,暴露时间内随着时间的延长和药物浓度的增加,酶活性抑制增强,由于鱼脑AchE的高波动性,试验中只有最高浓度(1.17 mg/L)组受到明显的抑制(p<0.05)。TMT对斑马鱼肌肉SOD活性总体表现为先激活后下降趋势,TMT浓度越高酶活性激活越快,下降也越快,其中0.39、0.78和1.17 mg/L组活性分别在48 h、24 h和12 h激活达到最大,分别为对照组的153%、145%和153%。以上结果表明,TMT对斑马鱼属于高毒。斑马鱼鳃Na~+,K~+-ATPase是三甲基氯化锡的作用标靶,可以作为TMT对斑马鱼毒性效应的敏感指标。
     4.TMT对斑马鱼胚胎发育有较强的毒性效应,可导致胚胎孵化率显著下降,畸形率和死亡率显著升高,TMT浓度≥0.5 mg/L,96 h的孵化率﹤50%,畸形率>35%,死亡率>25%。表明TMT对鱼类发育存在威胁。
     5.根据TMT对藻类、溞类和鱼类的急性毒性实验结果(EC_(50)和LC_(50)),在评价因子为1000的条件下,采用商值法对TMT的生态影响进行风险评价,得出0.087μg/L作为TMT对水生生物的无影响浓度。
Trimethyltin chloride (TMT) is an important organictin compound. It is widely used as plastic stabilizers, wood preservatives, anti-corrosion coatings, pesticides, and kill snails, as well as applied by chemical disinfector and sterilization, which is closely related to industry and agriculture. TMT could be released to environment following the factory effluent and surface runoff. With the rapidly development of organictin plastic and plastics reprocessing, TMT existed widely in the ocean, river, reservoir, groundwater and aquatic organism. Because of the TMT having both hydrophilic and lipophilic, it could enter organism through digestion and skin easily, generate toxicity to aquatic organisms and be accumulated in the body. However, the effects of TMT on ecological toxicity of aquatic organisms are still not clear. The present study is to determine the toxicity of TMT to aquatic organisms and ecosystem and evaluated the environmental safety. Chlorella pyrenoidosa, Daphnia magna, Danio rerio are the typical organisms of plankton, zooplankton and fish in the aquatic ecosystem. The toxicity effects of TMT on Chlorella pyrenoidosa, Daphnia magna, Danio rerio were studied in this research. Moreover, the effects of TMT on physio-biochemical characteristics of Danio rerio were conducted in this present study. The main results were listed as following:
     1. The growth of Chlorella pyrenoidosa was inhibited by TMT, and showed a significantly dose-response relationships. During the experiment, the growth of Chlorella pyrenoidosa in 0.1, 0.38, and 1.14 mg/L was inhibited to some extent, but still had a slowly growth trend; in 5.31 mg/L, the growth was completely inhibited. In 20 mg/L, the growth had a strong inhibition, the algae cells became transparent gradually from the beginning of the experiment on, in which most of them were disintegrated under the microscope and lethal. The TMT concentration and chlorophyll a content had a dose-response relationship, and the chlorophyll a content decreased slowly with the increase of TMT concentration. The algae cell density showed similar tendency. TMT had the highest toxicity for Chlorela pyrenoidosa, the 96 h-LC_(50) concentration was 2.45 mg/L.
     2. The inhibition rate and mortality of Daphnia magna increased with the increase of TMT concentration and the test time. When the concentration of TMT was 0.05 mg/L, Daphnia magna activities were partly suppressed at 48h, but no dead; while the concentration of TMT was 0.185 mg/L, the mortality and inhibition rate was 60% and 80% respectively, and up to 100% at 48 h. The 24 h-LC_(50) and 48 h-LC_(50) concentration was 0.15 and 0.087 mg/L, respectively. TMT had the highest toxicity to Daphnia magna.
     3. TMT was high-toxic to Danio rerio, and the 96 h-LC_(50) was 2.35 mg/L. The activities of Na~+,K~+-ATPase in gill was inhibited significantly by TMT. When the concentration≥0.78 mg/L, the Na~+,K~+-ATPase activity was inhibited significantly, and the inhibition rate≥32%. The activities of the low concentration group (0.39 mg/L) was inhibited first and then recovered after 24 h. With the increase of TMT concentration and exposure time, the inhibition of AchE activity in head was increased . Due to the high instability, only the highest concentration group was inhibited significantly. The SOD activity in muscle of Danio rerio showed the trend of increasing at first, and then decreased. When the concentration of TMT was higher, the SOD activity was decreased and activated fasterly. The SOD activity of 0.39, 0.78 and 1.17 mg/L group activated to the maximum level at 48 h, 24 h and 12 h, the activation rate was 153%, 145% and 153% of control, respectively. The above results showed that TMT was high-toxic to Danio rerio, the gill Na~+,K~+-ATPase and muscle SOD are targets of TMT.
     4. The Danio rerio embryos were significantly affectted by TMT. The hatching decreased significantly, but the deformity and mortality increased obviously. When the concentration of TMT≥0.5 mg/L, the hatching rate at 96 h was less than 50%, the deformity and mortality were≥35% and 25%, respectively. It showed that TMT could obviously inhibit the embryo development of Danio rerio.
     5. According to the acute toxicity test results(EC_(50) and LC_(50)) of TMT on algae, daphnia and fish, when the evaluation factor was 1000, the quotient method was adopted to assess the ecological risk of TMT, which obtained that the concentration value 0.087μg/L of TMT was no-effect concentration to aquatic organisms.
引文
[1]高俊敏,郑泽根.环境系统中有机锡化合物的分布和归宿[J].上海环境科学增刊, 2003, 22(2):20-25.
    [2] Alzieu C, Michel P, Tolosa I, et al. Organotin compounds in the Mediterranean: A continuing cause for concern [J].Marine Environmental Research, 1991, 32(1-4): 261-270.
    [3]王永芳.有机锡化合物的污染及其毒性[J].中国食品卫生杂志, 2003, 15(3): 244-247.
    [4] Masia A,Avery S V,Zoroddu M A,et al. Enrichment with a Polyunsaturated fatty acid enhances the survival of Saceharomyces cerevisiae in the Presence of tributyltin [J].FEMS Microbiology Letters, 1998, 167(2):321-327.
    [5] Waldock M J, Thain J E, Waite M E. The distribution and potential toxic effects of TBT in UK estuaries during 1986 [J]. Applied Organometallic Chemistry, 1987, 1(4): 287-301.
    [6] Cao D, Jiang G, Zhou Q, et al. Organotin pollution in China: an overview of the current state and potential health risk [J].Journal of Environmental Management, 2009(Supplement 1): S16-S24.
    [7]熊振湖,黄国兰.内分泌干扰物三丁基锡诱导的腹足纲动物性畸变现象[J].环境科学研究,2002, 15(3): 56-60.
    [8]赵冬梅,王新红,马建强,等.厦门海域水体中有机锡的存在形态与含量分布[J].热带海洋学报,2007, 26(4): 76-81.
    [9] Sadiki A L, Williams D T. A study in organotin levels in Canadian drinking water distributed through PVC pipes [J]. Chemosphere, 1999, 38(7): 1541-1548.
    [10]全燮,陈硕.有机锡污染物在海洋沉积物中的迁移和转化[J].海洋环境科学,1995, 14(4): 21-26.
    [11]邱士起,阮小林,胡小玲,等.珠海市饮用水源主要有毒工业化学物污染情况调查[J].现代预防医学, 2008, 35(14): 216-220.
    [12] Craig P J, Rapsomanikis S. Reaction of methylcobalamin with tin and lead compounds [J]. Inorganica Chimica Acta, 1985,107(1): 39-43.
    [13] Randall L, Weber J H. Adsorptive behavior of butyltin compounds under simulated estuarine conditions [J]. Science of the Total Environment, 1986, 57: 191-203.
    [14]陈志琼,张斌,黄国兰,等.三丁基锡在河口微宇宙中的环境行为研究[J].环境污染与防治,2001,23(5): 224-226.
    [15] Concetta D S,Claudia F, Antonio G,et al. Hydrolysis of (CH_3)_3Sn~+ in Various Salt Media [J]. Journal of Solution Chemistry,1999, 28(7): 959-972.
    [16]石孝洪,魏世强,李军.有机锡化合物的环境化学行为及效应[J].重庆大学学报,2003, 26(7): 104-107.
    [17] Hoch M.Organotin compounds in the environment:an overview [J].Applied Geochemistry.2001, 16(7-8): 719-743.
    [18]陈景文,王帅杰,全燮,等.应用PM3算法对部分有机锡化合物的QSPR和QSAR研究[J].大连理工大学学报,2000, 40(3): 305-308.
    [19] Basheer C, Tan K S, Lee H K. Organotin and Irgarol-1051 contamination in Singapore coastal waters [J]. Marine Pollution Bulletin, 2002, 44(7): 697-703.
    [20] Kubilay N, Yemenicioglu S, Tugrul S, et al. The distribution of organotin compounds in the north-eastern Mediterranean [J]. Marine Pollution Bulletin, 1996, 32(2): 238-240.
    [21] Ko M M C, Bradley G C, Neller A, et al. Tributyltin contamination of marine sediments of Hong Kong [J], Marine Pollution Bulletin, 1995, 31(4-12): 249-253.
    [22] Dowson P H, Bubb J M, Williams T P, et al. Degradation of tributyltin in sediment in freshwater and estuarine marina sediment [J]. Water Science and Technology, 1993, 28(8-9): 133-137.
    [23] Becker E C, Bringezu S. Contamination of surface water by organotin compounds-concentrations effects, quality objectives, use limitations [J]. Zeitschrift Water-Abwasser-Forsch, 1992, 25:40-46.
    [24] Maguire R J, Tkacz R J. Degradation of the trinbutyltin species in water and sediment from Toronto Harbour [J]. Journal of Agriculture and Food Chemistry, 1985, 33(5): 947-953.
    [25] Shim W J,Hong S H,Kim N S,et al. Assessment of butyl and phenyltin pollution in the coastal environment of Korea using mussels and oysters [J]. Marine Pollution Bulletin,2005, 51(8-12): 922-931.
    [26] Harino H, Fukushima M, Kawai S. Accumulation of butyltin and phenyltin compounds in variious fish species [J]. Archives of Environment Contamination and Toxicology, 2000, 39(1): 13-19.
    [27] Shawky S, Emons H. Distribution pattern of organotin compounds at differenttrophic levels of aquatic ecosystems [J] Chemosphere, 1998, 36(3):523-535.
    [28]江桂斌.国内外有机锡污染研究现状[J].卫生研究, 2001(1), 30:1-3.
    [29]黄长江,董巧香,雷瓒,等.我国东南沿海3港口有机锡污染的调查[J].海洋学报2005, 27(1):57-63.
    [30] Liu J M, Jiang G B, Liu J Y, et al. Evaluation of methyltin and butyltin pollution in Beijing Guanting reservoir and its downriver Yongding river [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 70(2): 219-225.
    [31] Seligman P F, Valkirs A O, Lee R R F. Degradation of tributyltin in San Diego Bay, California, waters[J]. Environmental Science & Techology, 1986, 20(12): 1229-1235.
    [32] Reader S, Pelletier E. Biosorption and degradation of butyltin compounds by the marine diatom Skeletonema costatum and the associated bacterial community at low temperature [J]. Bulletin of Environmental Contamination and Toxicology, 1992, 48(4): 599-607.
    [33]何锦丛,曹长青,顾丁红,等.206 nm紫外光降解水相中的氯化三苯基锡[J].环境化学,2008, 27(6): 712-715
    [34] Kannan K, Richard F L. Triphenyltin and its degradation products in foliage and soils from sprayed pecan orchards and in fish from adjacent ponds[J], Environmental Toxicology and Chemistry, 1996, 15(9): 1492-1499.
    [35]刘天宝,彭艳芬.一些有机锡化合物的QSPR和QSAR研究[J].计算机与应用化学,2008,25(1): 104-106.
    [36]李书霞,孙红文,王玉秋,等.三丁基锡的生物富集与分配行为[J].环境科学学报,2002, 22(6): 726-731.
    [37] Backer P H. Seabirds as monitor organisms of contaminations along the German North Sea coast [J].Helgolander Meersunter , 1989 ,43(3-4) :395-403.
    [38] Amodio-Cocchiwei R, Cirillo T, Cavaliere M, et al. Alkyltins in farmed fish and shellfish[J]. International Journal of Food Sciences & Nutrition, 2000, 51(3):147-151.
    [39] Gibbs P E, Bryan G W. Reproductive failure in populations of the dogwhelk , Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints[J]. Journal of the Marine Biological Association, 1986, 66(4):767-777.
    [40]周名江,李正炎,颜天,等.海洋环境中的有机锡及其对海洋生物的影响[J].环境科学进展,1994, 2(4): 67-75.
    [41] Yamada H, Takayanagi K, Tateishi M, et al. Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastal waters and openoceans[J]. Environmental Pollution, 1997, 96(2) :217-226.
    [42] Kannan K, Tanabe S, Iwata H, et al. Butyltins in muscle and liver of fish collected from certain Asian oceanian countries [J]. Environmental Pollution, 1995, 90(3): 279-290.
    [43] Harino H, Tannka M, Araki T, et al. Double-chain surfactants with two sulfonate groups as micelle-forming reagents in micellar electrokinetic chromatography of naphthalene derivatives [J]. Journal of Chromatography A, 1995, 715(1): 135-141.
    [44] Hadjispyrou S, Kungolos A, Anagnostopoulos A. Toxicity, Bioaccumulation, and Interactive Effects of Organotin, Cadmium, and Chromium on Artemia franciscana [J]. Ecotoxicology and Environmental Safety, 2001, 49(2): 179-186.
    [45] Tsu-Chang Huang. Determination of butyltins and phenyltins in oysters and fishes from Taiwan coastal waters [J]. Environmental Pollution, 1998, 102(2/3) :197-203.
    [46] Morcillo Y. Survey of organotin compounds in the western mediterramean using molluscs and fish as sentinel [J]. Archives of Environment Contam Toxicol, 1997, 32(2):198-203.
    [47] Laughlin R B. Bioaccumulation of TBT by aquatic organisms. In:Champ M A, Seligman P F(Eds.). Organotin-environmental fate and effects [J]. Chapman & Hall, London, 1996, pp: 331-357.
    [48] Kannan K, Senthilkumar K, Loganat han B G, et al. Elevated accumulation of tributyltin and its breakdown products in bottlenose dolphins (Tursiops truncates ) founded stranded along the U.S Atlantic and Gulf coasts [J]. Environmental Science & Technology, 1997, 31 (1): 296-301.
    [49] Walsh G E, Mclaughlan L L, Lores E M, et al. Effects of organotiins on growth and survival of two marine diatoms, Skeletonma costatum and Thalassiosira pseudonana [J]. Chemosphere, 1985, 14(3-4): 383-392.
    [50] Huang G, Dai S, Sun H. Toxic effects of organotin species on algae [J].Applied Organometallic Chemistry, 1996, 10(5): 377-387.
    [51]高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应——三苯基锡和三丁基锡对光和色素含量的影响[J].海洋与湖沼,1994, 25(3): 259-265.
    [52] Bushong S J, Hall L M, Hall W S, et al. Acute toxicity of tributyltin to selected Chesapeake Bay fish and invertebrates [J]. Water Research, 1988, 22(8): 1027-1032.
    [53] Kusk K O, Petersen S. Acute and chronic toxicity of tributyltin and liner alkylbenzene sulfonate to the marine copepod acartia tonsa [J].EnvironmentalToxicology and Chemistry, 1997, 16(8):1629-1633.
    [54] Thain J E. The Acute Toxicity of Bis(tributyltin) Oxide to the Adults and Larvae of Some Marine Organisms [R]. International Council for the Exploration of the Sea, Mariculture Committee, 1983.
    [55]李正炎,李钧,颜天,等.三苯基氯化锡对海洋微藻群落结构的影响[J].海洋科学集刊,1996, 37(10): 125-130.
    [56]赵丽英,陆贤昆,孙秉一.有机锡对海洋微藻的毒性效应[J].青岛海洋大学学报, 1990, 20(4): 125-131.
    [57]韩照祥,李佳颖,孙涛.氯化三苯基锡对鲫的急性和亚急性毒性研究[J].水生态学杂志,2008, 1(2): 62-66.
    [58] Nagase H, Hamsaki T, Sato T, et al. Structure activity relationships for organotin compounds on the red killfish Oryzias latipes [J]. Applied Organometallic Chemistry, 1991,5(2): 91-97.
    [59] Vighi M, Calamari D. QSARs for organotin compounds on Daphnia magna [J]. Chemosphere, 1985, 14(11-12): 1925-1932.
    [60] Wong P T S, Chau Y K, Kramar O, et al. Structure toxicity relationship of tin compounds on aglae [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982. 39(3): 483-488.
    [61]穆景利,王莹,王菊英.我国海水水质基准的构建:以三丁基锡为例[J].生态毒理学报, 2010, 5(6): 776-786.
    [62] Brooke L T, Call D J, Poirier S H, et al. Acute Toxicity and Chronic Effects of Bis(trinbutyltin) Oxide to Several Species of Freshwater Organisms [R]. Center for Lake Superior Environmental Studies, University of Wisconsin-superior, Superior, 1986.
    [63]朱玮阁,郭瑞昕,杨家新.内分泌干扰物氰戊菊酯和有机锡对萼花臂尾轮虫生殖的影响[J].生态学报, 2009, 29(7): 3605-3612.
    [64] Alfred W J, Danny K T, Edward R K, et al. Acute and chronic toxicity of triphenyltin hydroxide to fathead minnows (Pimephales promelas) following brief or continuous exposure [J]. Environmental pollution, 1988, 52(4):289-301.
    [65]孙红文,黄国兰,李书霞,等.三苯基锡和三丁基锡对大型溞(Daphnia magna)的毒性作用研究[J].环境化学, 2000, 19(3): 235-239.
    [66] McAllister B G, Kime D E. Early life exposure to environmental levels of t he aromatase inhibitor t ributyltin causes masculinisation and irreversible sperm damage inZebrafish (Danio rerio) [J]. Aquatic Toxicology, 2003, 65(3): 309-316.
    [67]宋美芳,李杰.有机锡的污染及其生殖毒性[J].环境与职业医学, 2005, 22(6): 549-551.
    [68] Akihiko H, At suya T, Tet suji N, et al. Review of reproductiveand developmental toxicity induced by organotins in aquatic organisms and experimental animals [J]. Reprodutctive & Developmental Toxicity, 2004, 66 :3042-3047.
    [69] Bryan G M, Bright D A, Hummerstone L G, et al. Uptake tissue distribution and metabolism of 14C-labelled tributyltin(TBT) in the dogwhelk,Nucella lapillus [J]. Journal of the Marine Biological Association of the UK, 1993, 73(4): 889-912.
    [70] Wang X L,Cai J L,Zhang J L, et al. Acute trmethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus [J].Aquatic Toxicology, 2008, 90(1): 58-64.
    [71] Giwercman A, Carlsen E, Keiding N, et al. Evidence for increasing incidence of abnormalities of the human testis: a review [J]. Environmental Health Perspectives, 1993, 101(suPP12): 65-71.
    [72] IARC. IARC (International Agency for Research on Cancer) Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans : Pentachloro-phenol [M]. Lyon: IARC Press, 1991, 53: 371-402.
    [73] Hamasaki T, Sato T, Nagase H, et al. The mutagenicity of organotin compounds as environmental pollutants [J]. Mutation Research, 1993, 300(3) :265-271.
    [74]徐小妹,许孙曲.丁基锡化合物的物种形成和遗传毒性[J].国外锡工业, 1995, 23(4) :52-57.
    [75] Liu HG, Wang Y, Lian L. Tributyltin induces DNA damage as well as oxidative damage in rats [J]. Environment Toxicology, 2006 ,21(2): 166-171.
    [76] Luca T, Donatella F, Massimo M. DNA damage induced by organotins on trout-nucleated erythrocytes [J]. Applied Organometallic Chemistry, 2001, 15(7): 575-580.
    [77] Chao J S, Wei L Y, Huang MC, et al. Genotoxic effects of triphenyltin acetate and triphenyltin hydroxide on mammalian cells in vitro and in vivo [J]. Mutation Research, 1999, 444(1): 167-174.
    [78]唐小江,李来玉.三甲基锡毒性的研究进展[J].中国职业医学, 1999, 26(6): 46-48.
    [79] Agency for Toxic Substances and Disease Registry , USA. Toxicological Profile forTin and Tin Compounds [R], 2005.
    [80] USEPA. Ambient water quality criteria[Z]. Washington DC: Office of Regulation Standard, 1980.
    [81]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究, 2006, 19(3): 1-6.
    [82] U.S.EPA. Guideline for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organism and Their Uses [R], National Technical Information Service Accession Number PB85-227049. Washington, DC: U.S.Environmental Protection Agency, 1985.
    [83] Stephan C E, Mount D I, Hansen D J, et al. Guidelines for deriving numerical nationalwater quality criteria for the protection of aquatic organisms and their uses [R]. PB85-227049. Washington DC:U.S. Environmental Protection Agency, 1985.
    [84] Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributednoec toxicity data [J], Ecotoxicology and Environmental Safety, 1993, 25(1): 48-63.
    [85] U.S.EPA. Environmental Ambient Aquatic Life Water Quality Criteria for TBT-Final[R], Washington,DC: U.S. Environmental Protection Agency, 2003.
    [86] Ohno H, Suzuki M, Nakashima S, et al. Determination of organotin compounds in Plastic Produets by GC/MS after ethyl derivatization with sodium tetraethylborate [J]. Shokuhin Eiseigaku Zasshi, 2002. 43(4):208-214.
    [87] Cameron J A, Kodavanti P R, Pentyala SN, et al. Triorganotin inhibition of rat cardiac adenosine triphosphatases and catecholamine binding [J]. Journal of Applied Toxicology, 1991, 11(6): 403-409.
    [88] Kumgolos A, Hadjispyrou S, Petala M,et al. Toxic properties of metals and organotin compounds and their interactions on Daphnia Magna and Vibrio Fischeri [J], Water, Air, and Soil Pollution, 2004, 4(4-5): 101-110.
    [89] Pettibone G W, Cooney J J. Oxicity of methyltins to microbial populations in estuarines ediments [J]. Journal of Industrial Microbiology, 1988, 2: 373-378.
    [90]景欣悦,康维钧.环境污染物的生物测试方法[J]. 2005, 32(3): 167-171.
    [91]华汝成.二单细胞藻类的培养与利用[M].北京:农业出版社, 1986.
    [92]周永欣,章宗涉.水生生物毒性试验方法[M].北京:农业出版社, 1989.
    [93]聂湘平,王翔,陈菊芳,等.三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J].环境科学学报,2007, 27(10): 1694-1701.
    [94]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [95]国家环保局《水生生物监测手册》编委会.水生生物监测手册[M].南京:东南大学出版社, 1993.
    [96]江敏,李咏梅,顾国维.含氮杂环化合物对水生生物的毒性作用研究[J].环境科学学报,2005, 25(9): 1253-1258.
    [97] Shim W J, Hong S H, Agafonova I G, et al. Comparative Toxicities of Organotin Compounds on Fertilization and Development of Sea Urchin (Anthocidaris crassispina) [J]. Bulletin of Environmental contamination and Toxicology, 2006, 77(5): 755-762.
    [98]刘青,张晓芳,李太武,等.光照对4种单细胞藻生长速率、叶绿素含量及细胞周期的影响[J].大连水产学院学报, 2006, 21(1): 24-30.
    [99]严雪,杨永清,李永科,等.不同营养条件下原始小球藻对总的富集和降解研究[J].应用生态学报, 2002,13(2):145-150.
    [100]王艳华,袁峻峰,丁峰兀,等.苯乙烯对4种藻类的毒性效应[J].上海师范大学学报(自然科学版), 2004,33(1):97-l01.
    [101]欧晓明,雷满香,黄明智,等.新除草剂HNPC-C9908对小球藻生长的影响研究[J].农药学学报, 2003, 5(3): 16-23.
    [102]聂湘平,蓝崇钰,林里,等.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究[J].中山大学学报(自然科学版), 2002, 41(1): 68-71.
    [103]岳霞丽,张新萍,胡先文,等.苄嘧磺隆对蛋白核小球藻的生长效应研究[J].中国农业科学, 2006, 39(9): 1823-1827.
    [104] Li X Q, Xu L G, Ma J Y. Combination toxicity of prometryne and permeating agent on Chlorella pyrenoidosa [J]. China Environmental Science, 2005, 25(4): 432-436.
    [105] Viehover A: JA Pharm acol 1928, 100: 718~745.
    [106] Anderson B G. The toxicity thresholds of various substances found in industrial wastes as determined by the use of Daphnia magna [J]. Sew Work Journal, 1944, 16: 1156-1165.
    [107]修瑞琴.大型水蚤生物测定技术研究进展[J].国外医学:卫生手册,1990, 17(6): 335-338.
    [108] Mikio Kikuchi,Yuko Sasaki,et al. Screening if Organophosphate Insecticide Pollution in water by Using Daphnia magna [J]. Ecotoxicology and Enveronmental Safety, 2000, 47: 239-245.
    [109] Doson S I, Hanazato T. Commentary on effects of anthropogenic and naturalorganic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems [J]. Environ Health Perspect, 1995, 103(4): 7-11.
    [110] Bodar C M, Van Leeuwen C, Voogt P, et al. Cadmium resistance in Daphnia magna [J]. Aquatic Toxicology, 1998, 16(1): 301-310.
    [111]国家环保局规划标准处.国际环境标准[M].北京:中国标准出版社, 1986, 421-422.
    [112] APHA, AWWA, WPCF. Standard methods for the examination of water and wastewater [M]. 15th APHA, Washington D.C.USA, 1980, 685.
    [113] Amadeo R, Loin H, Gema D, et al. Toxicity of pesticides in wastewater: a a comparative assessment of rapid bioassay [J]. Analytica Chimica Acta, 2001, 426: 289-301.
    [114]叶伟红,刘维屏.大型溞毒理试验应用与研究进展[J].环境污染治理技术与设备, 2005, 5(4): 4-7.
    [115] GB/T 16125-1995大型水溞测试标准方法[S].
    [116] Koichi T, Miyuki S, Yoshinari T, et a1. Trimethyltin intoxication in-duces marked changes in neumpeptide expression in the rat hippo-campus [J].Synapse,1998,29(44): 333-342.
    [117]骆焕荣,张雪静,徐少玲.有机锡化合物急性中毒51例[J].中华劳动卫生职业病杂志,2005, 23(4): 309-311.
    [118] DeMeester L,Cousyn C. The change in phototactic behavior of a Daphnia magna clone in the presence of fish kairomones: The effect of exposure time [J]. Hydrobiologia, 1997, 360(1-3): 169-175.
    [119] Guilhermino L, Diamantiono T. Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity [J]. Ecotoxicology and Environmental Safety, 2000, 46(3): 357-362.
    [120]汪涛锋,叶焙,江世履,等.三甲基氯化锡(TMT)的毒性及对甲基硫醇锡开发工作的几点建议[J].塑料助剂, 2003, 39:23-29.
    [121] Pettibone G W, Cooney J J. Oxicity of methyltins to microbial populations in estuarinesediments [J].Journal of Industrial Microbiology, 1988, 2(6): 373-378.
    [122] Messing R B, Devauges V,Sara S J. Limbic forebrain toxin trimethyltin reduceds behavioral suppression by clonidine [J]. Pharmacology Biochemistry and Behavior, 1992, 42(2): 213-316.
    [123] Lipe G W, Ali S F, Newport G D. Effect of trimethyltin on amino acidconcentrations in different regions of the mouse brain [J]. Pharmacology & Toxicology, 1991, 68(6): 450.
    [124] Viviani B,Corsini E,Galli C L. Glia increase degenera of hippocampal neurons through release of tumor necrosis factor-alpha [J].Toxicology and Applied Pharmacology, 1998, 150(2): 271-276.
    [125] Harkins A B, Armstrong D L. Trimethyltin alters membrane properties of CA1 hippocampal neurons [J].Neurotoxicology, 1992, 13(3): 569-581.
    [126] Toggas S M, Krady J K, Billingsley M L. Molecular neurotoxicology of trimethyltin: identification of stannin, a novel protein expressed in trimethyltin-sensitive cells [J]. Molecular Pharmacology, 1992, 42(1): 44-56.
    [127]唐小江,黄建勋,李来玉,等.三甲基氯化锡引发低血钾症的机探讨[J].中华劳动卫生职业病杂志, 2001, 19(2): 98-101.
    [128] Tang X J, Song J, Gao C F, et al. Renal mechanism of hypokalemia induce by trimethyltin chloride [J]. Chinese Occupational Medicine, 2006, 33(1): 11-13.
    [129]韦进宝,吴峰,钱沙华,吴新国.环境监测手册[M].北京:化学工业出版社, 2006, 246-250.
    [130] Schulte C, Nagel R. Test acute toxicity in the embryo of Zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results [J]. ATLA, 1994, 22: 12-19.
    [131]邹国林,桂兴芬,钏晓凌,等.一种SOD的测活方法-邻苯三酚自氧化法的改进[J].生物化学与生物物理研究进展, 1986, 13(4): 71-73.
    [132]孔志明.环境毒理学[M].南京大学出版社, 2008, 242.
    [133]黄周英,陈奕欣,赵扬,等.三丁基锡对文蛤鳃酸性磷酸酶、碱性磷酸酶和Na~+,K~+-ATP酶活性的影响[J].海洋环境科学, 2005, 24(3): 56-59.
    [134]韩济生.神经科学原理北京[M].北京医科大学出版杜, 1999, 917-935.
    [135] Ekauta J E, Hikal A H, Matthews J S. Toxicokinetics of trimethyltin in four inbred strains of mice [J].Toxicology Letters, 1998, 95(1): 41-46.
    [136]刘洁生,肖丹,叶丛容,等.敌百虫对鲤鱼组织乙酰胆碱酯酶和腺三磷酶活力的影响[J].环境科学研究, 1997, 10(3): 21-25.
    [137]刘信勇,朱琳,黄碧捷,等.多壁碳纳米管对斑马鱼体组织内酶活性的影响[J].环境科学研究, 2009, 22(7): 838-842.
    [138]徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报, 1995, 19(2): 171-185.
    [139]唐学玺,张培玉.蒽对黑鲪超氧化物歧化酶的影响[J].水产学报, 2000, 24(3): 217-220.
    [140] US Environmental Protection Agency.Framework for ecological risk assessment EPA/630/R-92/001 [R].Washington DC:US EPA,1992.
    [141]张永春,林玉锁,孙勤劳,等.有害废物生态风险评价[M].北京:中国环境科学出版社, 2002.
    [142]智昕,朱军峰,唐振武,等.长江水系武汉段典型有机氯农药的生态风险评价[J].环境科学学报, 2008, 28(1): 168-173.
    [143]王宏,杨霓云,沈英娃,等.海河流域几种典型有机污染物环境安全性评价[J].环境科学研究, 2003, 16(6): 35-37.
    [144] EU.Technical Guidance Document (TGD) on risk assessment of chemical substances following European regulations and directives [M].2nd ed.Italy: EU, 2003.
    [145] Xu J M, Tang C, Chen Z L. The role of plant residues in pH change of acid soils differing in initial pH [J]. Soil Biology and Biochemistry, 2006, 38(4): 709-719.
    [146] Wang X L, Tao S, Dawson R W,et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater irrigated area [J]. Environmental Research, 2002, 90(3): 201-206.
    [147] Leeuwen C J, Vermerire T G. Risk assessment of chemicals an introduction [M]. Boston: Kluwer Academic Publishers, 1995.
    [148]王珊珊,冯流.有机锡化合物的毒性效应及其影响因素[J].安全与环境学报, 2005, 5(3): 12-15.
    [149]朱国念,楼正云,孙锦荷.草甘膦对水生生物的毒性效应及环境安全性研究[J].浙江大学学报(农业与生命科学版), 2000, 26(3): 309-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700