基于松香酸的金属—有机骨架化合物的合成尧结构与性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由金属离子和有机配体桥联构筑的金属-有机骨架(Metal-OrganicFrameworks,简称MOFs),由于其迷人、多样的拓扑结构及广泛的潜在应用(如催化、气体存储、气体选择性吸附和分离、光学及磁学材料等)而成为功能材料领域的研究热点。到目前为止,人们已获得了大量的MOFs配合物,研究表明,通过适当地选择金属离子和有机配体可以设计得到具有特定拓扑结构及性能的MOFs。
     芳香多羧酸类配体配位能力强,配位方式灵活,因而常被选作有机配体用于构筑MOFs。以往的配体大多由不可再生的石油原料经过化学合成而得到,而本课题选用天然产物松香为原料,对其进行接枝改性,设计并合成出具有多个羧基配位点的松香基配体。松香树脂酸三环菲骨架的引入,使得松香基配体具有半刚性特点,利用溶剂热法合成得到了三个新颖的MOFs配合物。本课题的研究对拓展松香这一丰富的可再生资源新的应用领域、开发新型精细化工产品、提高科技含量、增加松香深加工产品的出口创汇能力、振兴松脂产业具有重要意义。
     主要研究内容如下:
     (1)利用丙烯酸和富马酸对松香进行改性,采用钠盐法进行分离提纯,得到了含量达95%以上的丙烯海松酸和富马海松酸。并通过FT-IR、1H-NMR和熔点测定对丙烯海松酸和富马海松酸进行了结构表征。为制备松香基金属-有机骨架化合物合成了结构新颖的多羧酸配体。
     (2)以丙烯海松酸(H_2LA)(含有二个羧基)为配体和过渡金属盐通过溶剂热法,合成了两个新颖的MOFs配合物{[Cd_2(LA)_2(DMF)(H_2O)_(0.5)]·0.5H_2O}_n(1)和[Zn3(LA)_2(μ3-OH)_2]_n(2)。通过单晶XRD、粉末XRD、元素分析和红外光谱进行了结构表征。单晶结构分析表明,配合物1是由1D链通过氢键产生的2D层状结构。1D链是由八连接的蝴蝶状的四核Cd(次级构筑单元SBU)通过二连接的二齿羧酸形成的。与以往的四核单元不同,其四核Cd(次级构筑单元SBU)包含三种晶体学独立的Cd(Ⅱ)离子。在配合物1中配体显示出了两种不同的配位模式:(a)每个羧酸根与Cd(Ⅱ)均以螯合-桥式三齿模式配位;(b)一个羧酸根与Cd(Ⅱ)以顺,顺-桥式双齿模式配位,另一个与Cd(Ⅱ)以螯合-桥式三齿模式配位。配合物2是由1D链通过二连接的二齿羧酸产生的2D层状结构。1D链是由四连接的蝴蝶状的四核Zn(次级构筑单元SBU)形成的,具有独特的“Z”型结构。其中四核Zn(次级构筑单元SBU)包含三种晶体学不同的Zn离子。在配合物2中配体的每个羧酸根与Zn(Ⅱ)均以顺,顺-桥式双齿模式配位。热重分析表明,配合物1和2分别在温度达370和373oC骨架才开始坍塌,可见配合物1和2具有很好的热稳定性。固态荧光测试表明,配合物1和2具有中等强度的荧光。
     (3)以富马海松酸(H3LF)(含有三个羧基)为配体和过渡金属盐通过溶剂热法,得到了一个新颖的MOF配合物{[Cd(H_2LF)_2(H_2O)_2]·10H_2O}_n(3)。通过单晶XRD、粉末XRD、元素分析和红外光谱进行了结构表征。单晶结构分析表明,配合物3是由1D链通过氢键产生的2D层状结构。1D链是由M2(H_2LF~-)_2的大环(次级构筑单元SBU)沿b轴通过Cd(Ⅱ)连接形成的。这些1D链之间存在大量客体水分子,它们之间通过氢键相互作用沿b轴形成了一维水链。在配合物3中,配体的羧基未完全去质子化。其中叔碳所连的羧基未参与配位,另外两个羧基与Cd(Ⅱ)分别以单齿和螯合双齿模式配位。热重分析表明,配合物3在温度达355oC骨架才开始坍塌,可见配合物3具有良好的热稳定性。固态荧光测试表明,配合物3具有中等强度的荧光。
In recent years, the metal-organic frameworks (Metal-Organic Frameworks,referred to as MOFs) from metal ions and organic ligands became a hot researchfield of functional materials, because of their charming, variety of topology structure,and widely potential applications, such as catalysis, gas storage, selective gasadsorption and separation, optical and magnetic materials. So far, people haveprepared a lot of MOFs. The studies showed that MOFs with specific topologystructures and properties could be designed through choosing appropriate metal ionsand organic ligands.
     Multi-carboxylic ligands, with the strong coordination ability and flexiblecoordination mode, were often chosen as the organic ligands to build MOFs. Most ofprevious ligands were synthesized from non-renewable petroleum, however, ourrosin-based ligands with multiple carboxyl coordination sites were obtained fromnatural rosins by modification, which possessed semi-rigid structures with tricyclicphenanthrene skeleton. And three novel MOFs based on our rosin acid ligands weresynthesized using solvothermal method. The study may lead to expand rosin newapplication areas, and develop new fine chemical products.
     The main research contents were as follows:
     (1) In order to prepare rosin-based MOFs, the acrylpimaric acid andfumaropimaric acid were synthesized, and purified by sodium salt method. Thepurity was more than95%. Their structures were characterized by FT-IR,1H-NMRand melting point determination.
     (2) Two novel MOFs,{[Cd_2(LA)_2(DMF)(H_2O)_(0.5)]·0.5H_2O}_n(1) and[Zn3(LA)_2(μ3-OH)_2]_n(2), were successfully prepared by a solvothermal methodusing acrylpimaric acid (H_2LA)(containing two carboxyl groups) as the ligand andtransition metal salts. The complexes were characterized with single-crystal X-raycrystallography, powder X-ray diffraction, elemental analysis and FT-IR.Single-crystal structure analysis revealed that complex1was a2D layered structureresulting from intermolecular hydrogen bonding of1D chains.1D chains wereconstructed by the butterfly-shaped tetranuclear Cd(Ⅱ) unit (SUB)(with eightconnection) and the bidentate carboxylic acid (with two connection). Thetetranuclear Cd(Ⅱ) unit contained three crystallographic independent Cd(Ⅱ) ions,different from previously reported four nuclear units. The Ligands in complex1showed two different coordination modes:(a) two carboxylate groups were respectively coordinated to two Cd (Ⅱ) ions in a chelated-bridge tridentatecoordination mode;(b) one carboxylate group was coordinated to two Cd(Ⅱ) ions ina bridging bidentate (syn-syn) coordination mode, the other carboxylate grouplinked with two Cd (Ⅱ) ions in a chelated-bridge tridentate coordination mode.Complex2was a2D layered structure constructed by1D chain connecting with thebidentate carboxylic acid.1D chains were built by the butterfly-shaped tetranuclearZn(Ⅱ) unit (with four connection) with a unique ‘zig-zag’ structure. The tetranuclearZn(Ⅱ) unit contained three crystallographic independent Zn(Ⅱ) ions. In complex2,each carboxylate group in the ligand linked with two Zn(Ⅱ) ions by a bridgingbidentate (syn-syn) coordination mode. TGA showed that the frameworks ofcomplexes1and2began to collapse above the temperature370, and373oC,respectively, which exhibited that complexes1and2had good thermal stabilities.Solid-state fluorescence measurements revealed that complex1and2displayedmedium strong emission peaks.
     (3) A novel MOF,{[Cd(H_2LF)_2(H_2O)_2]·10H_2O}_n(3), was successfully preparedby a solvothermal method using fumaropimaric acid (H3LF)(containing threecarboxyl groups) as the ligand and transition metal salt. The complex wascharacterized with single-crystal X-ray crystallography, powder X-ray diffraction,elemental analysis and FT-IR. The Single-crystal structure analysis revealed thatcomplex3was a2D layered structure resulting from intermolecular hydrogenbonding of1D chains.1D chains were constructed by M2(H_2LF~-)_2macrocyclic (SUB)connected each other via Cd(Ⅱ) along the b axis. Specifically, there were a largenumber of water molecules between the1D chains. These water molecules formedone dimensional water chains along the b axis through hydrogen bonding. Incomplex3, the carboxyl groups of the ligand were not fully deprotonated. Thecarboxyl group connected with tertiary carbon atom was not coordinated with Cd(Ⅱ),the other two carboxyl groups coordinated to Cd(Ⅱ) ions in monodentate andchelating bidentate coordination modes, respectively. TGA showed that theframework of complex3began to collapse above the temperature of355oC, had goodthermal stability. The solid-state fluorescence measurements showed that thecomplex3displayed medium strong emission peak.
引文
[1] Stumpf H O, Pei Y, Kahn O, et al. A molecular-based magnet with a fully interlockedthree-dimensional structure [J]. Science,1993,261(5120),447-449.
    [2] Lloret F, Munno G D, Julve M, et al. Spin polarization and ferromagnetism intwo-dimensional sheetlike cobalt(II) polymers:[Co(L)2(NCS)2](L=pyramidine orpyrazine)[J]. Angew. Chem. Int. Ed. Engl,1998,37,135-138.
    [3] Real J A, Andres E, Munnoz M C, et al. Spin crossover in a catenane supramolccular system[J]. Science,1995,268,265-267.
    [4] Mallah T, Thiébaut M, Verdaguer M, et al. High-Tc Molecular-Based Magnets:Ferrimagnetic Mixed-Valence Chromium(III)-Chromium(II) Cyanides with Tc at240and190Kelvin [J]. Science,1993,262(5139),1554-1557.
    [5] Yang L Q, Yan S P, Wang G L, et al. Synthesis and crystal-structure of a novel dinuclearcomplex of Cobalt(II) with a new benzimidazole-containing azacycle ligand [J].Polyhedron,1995,14,2037-2040.
    [6] Patani G A, Lavoie E J. Bioisosterism: A Rational Approach in Drug Design [J]. Chem. Rev,1996,96(8),3147-3176.
    [7]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000.
    [8] Lehn J M. Supramolecular Chemistry-Concepts and Perspectives [M]. Germany: VCHWeinheim,1995.
    [9] Hoskins B F, Rabson R. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments [J]. J. Am. Chem. Soc,1989,111(15),5962-5964.
    [10] Abrahams B F, Batten S R, Grannas M J, et al. Ni(tpt)(NO3)2-A Three-DimensionalNetwork with the Exceptional (12,3) Topology: A Self-Entangled Single Net [J]. Angew.Chem. Int. Ed,1999,38(10),1475-1477.
    [11] Kondo M, Yoshitomi T, Seki K, et al. Three-Dimensional Framework with ChannelingCavities for Small Molecules:{[M2(4,4’-bpy)3(NO3)4]·xH2O}n(M=Co, Ni, Zn)[J]. Angew.Chem. Int. Ed,1997,36(16),1725-1727.
    [12] Bu X H, Chen W, Lu S L, et al. Flexible meso-Bis(sulfinyl) Ligands as Building Blocks forCopper(II) Coordination Polymers: Cavity Control by Varying the Chain Length ofLigands [J]. Angew. Chem. Int. Ed,2001,113(17),3301-3303.
    [13](a) Lopez S, Kahraman M, Harmata M, et al. Novel2-fold Interpenetrating DiamondoidCoordination Polymers:[Cu(3,3’-bipyridine)2]X (X=BF-4, PF-6)[J]. Inorg. Chem,1997,36(26),6138-6140.
    [14] Carlucci L, Ciani G, Macchi P, et al. Complex Interwoven Polymeric Frames from theSelf-Assembly of Silver(I) Cations and Sebaconitrile [J]. Chem. Eur. J,1999,5(1),237-243.
    [15] Pedireddi V R, Varughese S, Solvent-Dependent Coordination Polymers: CobaltComplexes of3,5-Dinitrobenzoic Acid and3,5-Dinitro-4-methylbenzoic Acid with4,4’-Bipyrdine [J]. Inorg.Chem,2004,43(2),450-457.
    [16] Withersby M A, Blake A J, Champness N R, et al. Solvent Control in the Synthesis of3,6-Bis(pyridin-3-yl)-1,2,4,5-tetrazine-Bridged Cadmium(II) and Zinc(II) CoordinationPolymers [J]. Inorg. Chem,1999,38(10),2259-2266.
    [17] Wu T, Li D. Solvent control in the hydrothermal synthesis of two copper(I) iodidebenzimidazole coordination polymers [J]. CrystEngComm,2005,7,514-518.
    [18] Yang J, Li G D, Cao J J, et al. Structural Variation from1D to3D: Effects of Ligands andSolvents on the Construction of Lead(II)–Organic Coordination Polymers [J]. Chem. Eur.J,2007,13(11),3248-3261.
    [19] Chen B L, Fronczek F R, Maverick A W. Solvent-dependent44square grid and64.82NbOframeworks formed by Cu(Pyac)2(bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II))[J].Chem. Commun,2003,17(1359-7345),2166-2167.
    [20] Sanchez C, Julian B, Belleville P, et al. Applications of hybrid organic-inorganicnanocomposites [J]. J. Mater. Chem,2005,15(35-36),3559-3592.
    [21] Ma L Q, Lin W B. Chirality-Controlled and Solvent-Templated Catenation Isomerism inMetal-Organic Frameworks [J]. J. Am. Chem. Soc,2008,130(42),13834-13835.
    [22] Lehn J M. Comprehensive Supramolecular Chemistry [M]. Pergamon: Oxford,1996.
    [23] Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry [J]. Angew.Chem. Int. Ed,1985,24(12),1026-1040.
    [24] Poulsen R D, Overgaard J, Schulman A, et al. Effects of Weak Intermolecular Interactionson the Molecular Isomerism of Tricobalt Metal Chains [J]. J. Am. Chem. Soc,2009,131(22),7580-7591.
    [25]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社,2003.
    [26] Aronica C, Pilet G, Chastanet G, et al. A Nonanuclear Dysprosium(III)–Copper(II)Complex Exhibiting Single-Molecule Magnet Behavior with Very Slow Zero-FieldRelaxation [J]. Angew. Chem. Int. Ed,2006,45(28),4659-4662.
    [27] Casey C P, Marder S R, Fagan P J. Rearrangement of bridging alkylidyneiron complexes tobridging alkenyliron complexes [J]. J. Am. Chem. Soc,1983,105(24),7197-7198.
    [28] Chao H, Li R H, Ji L N, et al. Syntheses, characterization and third order non-linearoptical properties of the ruthenium(II) complexes containing2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives [J]. J. Chem. Soc, DaltonTrans,1999,3711-3717.
    [29] Férey G. Hybrid porous solids: past, present, future [J]. Chem. Soc. Rev,2008,37(1),191-214.
    [30] Zheng Y Q, Lin J L, Kong Z P. Coordination polymers based on cobridging of rigid andflexible spacer ligands: syntheses, crystal structures, and magnetic properties of[Mn(bpy)(H2O)(C4H4O4)].0.5bpy, Mn(bpy)(C5H6O4), and Mn(bpy)(C6H8O4)[J]. Inorg.Chem,2004,43(8),2590-2596.
    [31] Wang J, Zhang Y H, Tong M L. Two new3D metal-organic frameworks of nanoscale cagesconstructed by Cd(II) and conformation-flexible cyclohexanehexacarboxylate [J]. Chem.Commun,2006,(30),3166-3168.
    [32] Dimos A, Tsaousis D, Michaelides A, et al. Microporous rare earth coordination polymers:Effect of lanthanide contraction on crystal architecture and porosity [J]. Chem. Mater,2002,14(6),2616-2622.
    [33] Kumar D, Syamal A, Sharma L K. Synthesis and characterization of polystyrene-anchoredmonobasic bidentate Schiff base and its complexes with bi-, tri-, tetra-and hexavalentmetal ions [J]. J. Coord. Chem,2008,61(11),1788-1796.
    [34] Koh K, Wong-Foy A G, Matzger A J. A crystalline mesoporous coordination copolymerwith high microporosity [J]. Angew. Chem. Int. Ed,2008,47(4),677-680.
    [35] Deng H, Doonan C J, Furukawa H, etal. Multiple functional groups of varying ratios inmetal-organic frameworks [J]. Science,2010,327(5967),846-850.
    [36] Zhang J, Chen S, Valle H, et al. Manganese and Magnesium Homochiral Materials:Decoration of Honeycomb Channels with Homochiral Chains [J]. J. Am.Chem.Soc,2007,129,14168-14169.
    [37] Wang X Y, Scancella M, Sevov S C. Studies of the mechanism of asingle-crystal-to-single-crystal reversible dehydration of a copper-carboxylate framework[J]. Chem.Mater,2007,19,4506-4513.
    [38] Braga D, Desiraju G R, Miller J S, et al. Innovation in crystal engineering [J].CrystEngComm,2002,4(83),500-509.
    [39] Li Y W, Yang R T. Hydrogen Storage in Metal Organic Frameworks by Bridged HydrogenSpillover [J]. J. Am. Chem. Soc,2006,128(25),8136-8137.
    [40] Hulvey Z, Cheetham A K. Hybrid inorganic-organic frameworks containing magnesium:Synthesis and structures of magnesium squarate, diglycolate, and glutarate, and potassiummagnesium cyclobutanetetracarboxylate [J]. Solid State. Sci,2007,9(2),137143.
    [41] Cheng S J, Liu S B, Zhao Q, et al. Improved synthesis and hydrogen storage of amicroporous metal-organic framework material [J]. Energy. Convers. Manage,2009,50(5),1314-1317.
    [42] Li J P, Cheng S J, Zhao, Q, et al. Synthesis and hydrogen-storage behavior ofmetal-organic framework MOF-5[J]. Int. J. Hydrogen Energy,2009,34(3),1377-1382.
    [43] Opelt S, Türk S, Dietzsch E, et al. Preparation of palladium supported on MOF-5and itsuse as hydrogenation catalyst [J]. Catal. Commun,2008,9(6),1286-1290.
    [44] Qiu L G, Gu L N, Hu G, etal. Synthesis, structural characterization and selectivelycatalytic properties of metal-organic frameworks with nano-sized channels: A modulardesign strategy [J]. J. Solid State Chem,2009,182(3),502-508.
    [45] Gascon J, Aktay U, Hernandez-Alonso M. D, et al. Amino-based metal-organicframeworks as stable, highly active basic catalysts [J]. J. Catal,2009,261(1),75-78.
    [46] Zhou Y X, Song J L, Liang S G, ey al. Metal-organic frameworks as an acid catalyst for thesynthesis of ethyl methyl carbonate via transesterification [J]. J. Mol. Catal. A,2009,308(1-2),68-72.
    [47] Wang S Y, Yang Q Y, Zhong C L. Adsorption and separation of binary mixtures in ametal-organic framework Cu-BTC: A computational study [J]. Separ. Purif. Techn,2008,60(1),30-35.
    [48] Lamia N, Jorge M, Granato M A, et al. Adsorption of propane, propylene and isobutane ona metal–organic framework: Molecular simulation and experiment [J]. Chem. Eng. Sci,2009,64(14),3246-3259.
    [49] Zhao B, Chen X Y, Cheng P, et al. Coordination Polymers Containing1D Channels asSelective Luminescent Probes [J]. J. Am. Chem. Soc,2004,126(47),15394-15395.
    [50] Wang L, Yang M, Li G H, et al. Highly Stable Chiral Cadmium1,2,4-Benzenetricarboxylate: Synthesis, Structure, and NLO and Fluorescence Properties[J]. Inorg. Chem,2006,45(6),2474-2478.
    [51] Wang Y T, Fan H H, Wang H Z, et al. A Solvothermally in Situ Generated Mixed-ligandApproach for NLO-Active Metal Organic Framework Materials [J]. Inorg. Chem,2005,44(12),4148-4105.
    [52] Xiang S C, Wu X T, Zhang J J, et al. A3D Canted Antiferromagnetic PorousMetal Organic Framework with Anatase Topology through Assembly of an Analogue ofPolyoxometalate [J]. J. Am. Chem. Soc,2005,127(47),16352-16353.
    [53] Ray A, Hong C S, Mondal S, et al. Reversible water inclusion in a porous magneticmaterial synthesized from copper(II) incorporated metal-organic framework showingalternate ferro-and antiferromagnetic interactions [J]. Inorg. Chem. Commun,2007,10(5),527-530.
    [54] Maspero A, Galli S, Colombo V, et al. Metalorganic frameworks based on the1,4-bis(5-tetrazolyl) benzene ligand: The Ag and Cu derivatives [J]. Inorg. Chim. Acta,2009,362(12),4340-4346.
    [55] Zhang D J, Song T Y, Wang L, et al. Hydrothermal synthesis, structure and rareferromagnetic property of a3-D Nd(III) metal-organic framework based on mixedpyridine-2,5-dicarboxylic acid/nicotinic acid ligands [J]. Inorg. Chim. Acta,2009,362(1),299-302.
    [56]宋湛谦.中国松香松节油的研究概况[J].林产化学与工业,2004,24(B08),7-11.
    [57]程芝.天然树脂生产工艺学(2版)[M].北京:中国林业出版社,1996.
    [58] Wang L L, Yasuyuki I, Hajime O, et al. Characterization of Natural Resin Shellac byReactive Pyrolysis-Gas Chromatography in the Presence of Organic Alkali [J]. Anal. Sci,1999,71(7),1316-1322.
    [59]哈成勇,袁金伦,夏建汉.马来海松酸乙烯酯/丙烯酰胺共聚物及其制法[P].中国:1158863A,1997.
    [60] Boswell H G, Thomas G H, Houser R C. Modified rosin esters and their use in pringtinginks[P]. US:5164446,1992.
    [61] Hutter. Rosin ester-amide support resins for acrylic latex[P]. US:656679,1997.
    [62] Leblanc F, Paul J, Schiling A. Rosin and fatty acid based pigment grinding aids forwater-based ink formulations[P]. US:5182326,1993.
    [63] Atta A M, EI-Saeed S M, Farag R K. New vinyl ester resins based on rosin for coatingapplications [J]. React. Funct. Polym,2006,66(12),1596-1608.
    [64] Atta A M, Farag R K, EIsaeed A M, et al. Synthesis of unsaturated polyester resins basedon rosin acrylic acid adduct for coating applications [J]. React. Funct. Polym,2007,67(6),549-563.
    [65]徐徐,商士斌,宋湛谦.松香多元酸的制备及其应用研究进展[J].化工进展,2010,29(11),1102.
    [66] Kim H J, Hiroshi M. Miscibility and peel strength of acrylic pressure-sensitive adhesives:Acrylic copolymer–tackifier resin systems [J]. J. Appl. Polym. Sci,1995,56(2),201-209.
    [67] Kim H J, Hiroshi M. Miscibility between components of acrylic pressure-sensitiveadhesives: Phase diagrams of poly(butyl acrylate-co-acrylic acid) and esterified rosins [J].J. Appl. Polym. Sci,1995,57(2),175-185.
    [68]黄莉,陆冬燕,谢晖等.松香基丙烯酸酯核-壳共聚压敏胶带研制[J].中国胶粘剂,2006,15(2),21-24.
    [69]冯练享.改性松香共聚PVB树脂胶粘剂的研制[J].中国人造板,2007,(9),35-37.
    [70] Walter H S. Deritives of maleopimaric acid useful as nematocides[P]. US:3636215,1972.
    [71] Clinton R O. Maleimide adduct of levopimaric acid and derivatives[P]. US:3135749,1964.
    [72] Panda R, Panda H R. Ammonolysis of maleopimaric acid [J]. Paintindia,1987,3(11),25-27.
    [73] Hess S C, Farah M, Eguchib S Y. Synthetic studies with pinus elliottiis rosin derivativesoxidation of maleopimaric anhydride methyl ester and trimethyl fumaropimarate [J]. J.Braz. Chem. Soc,2000,11(1),59-63.
    [74]钟海涛.松香基聚氧乙烯醚琥珀酸单酯磺酸钠的合成及性能[J].南京工业大学学报,2003,25(1):46-50.
    [75]居明,李晓宣.松香改性表面活性剂的研究进展[J].化工进展,2002,21(4):247-249.
    [76]刘红军,周永红,宋兴.新型塑料热稳定剂马来海松酸盐的合成与应用研究[J].热固性树脂,2010,25(2):35-37.
    [77] Lee J S, Hong S. Synthesis of acrylic rosin derivatives and application as negativephotoresist [J]. Eur. Polym. J.,2002,38(2):387-392.
    [78]欧荣贤,王清文.马来松香对木粉/HDPE复合材料流变性质的影响[J].林业科学,2009,45(5):126-131.
    [1]韩秋燕.生物质化工产业现状、发展态势与我国生物质资源[J].化学工业,2008,26(9),6-10.
    [2]徐勇,欧阳平凯.用生物质资源替代化石资源是大势所趋[J].科学新闻,2006,(13),2.
    [3]宋湛谦.生物质资源与林产化工[J].林产化学与工业,2005,25,10-14.
    [4]宋湛谦.我国林产化工产业的现状与发展趋势[J].中国林业产业,2004,(6),17-19.
    [5]宋湛谦,商士斌.我国林产化工学科发展现状和趋势[J].精细与专用化学品,2009,(22),13-15.
    [6]宋湛谦.松香的精细化工利用(I)松香的组成与性质[J].林产化工通讯,2002,36(4),29-33.
    [7]谢晖,商士斌,王定选.水溶性丙烯海松酸聚酯的合成及性能研究[J].林产化学与工业,2001,21(1),51-55.
    [8]程芝.天然树脂生产工艺学(2版)[M].北京:中国林业出版社,1996.
    [9]商士斌,张跃冬,王定选.马来海松酸酐合成酯多元醇反应的研究[J].林产化学与工业,1995,15(2),1-6.
    [10] Chen Y B, Xing Y Z, Jia B D. A New UV Curable Waterborne Polyurethane: Effect of C=CContent on the Film Properties [J]. Prog. Org. Coat,2006,55,291-295.
    [11]李绍军,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002.
    [12]肖剑国.松香马来酰胺基乙醇表面活性剂的合成[J].邵阳学院学报(自然科学版),2003,2(5),81-82.
    [13]哈成勇,袁金伦,夏建汉.马来海松酸乙烯酯/丙烯酰胺共聚物及其制法[P].中国:1158863A,1997.
    [14]夏建陵,商士斌,谢晖等.丙烯酸改性松香基环氧/聚氨酯IPN的研究[J].林产化学与工业,2002,22(3),15-18.
    [15]林明涛.松香-丙烯酸酯复合高分子乳液的制备、结构与性能的研究[D].北京:中国林业科学研究院,2007.
    [16]王宏晓.松香改性水性聚氨酯的合成研究[D].北京:中国林业科学研究院,2009.
    [17]商士斌,王宏晓,宋湛谦等.丙烯海松酸的制备方法[P]中国:200910033427,2009.
    [18]徐徐,宋湛谦,商士斌等.富马海松酸的制备及纯化[J].林产化学与工业,2009,29,69-72.
    [19]宋湛谦,徐徐,商士斌等.富马海松酸的制备方法[P].中国:200910033428,2009.
    [20]王振洪,宋湛谦,商士斌等.气相色谱用马尾松松香标准样品的研制[J].生物质化学工程,2007,41(6),1-5.
    [1] Dimos A, Tsaousis D, Michaelides A, et al. Microporous rare earth coordination polymers:Effect of lanthanide contraction on crystal architecture and porosity [J]. Chem. Mater,2002,14(6),2616-2622.
    [2] Kiritsis V, Michaclides A, Skoulika S, et al. Assembly of a Porous Three-DimensionalCoordination Polymer: Crystal Structure of {[La2(adipate)3(H2O)4]6H2O}n[J]. Inorg.Chem,1998,37(13),3407-3410.
    [3](a) Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-OrganicFrameworks [J]. Science,2003,300(5622),1127-1129.(b)Chen B, Liang C, Yang J, et al.A Microporous Metal-Organic Framework for Gas-Chromatographic Separation ofAlkanes [J]. Angew. Chem. Int. Ed,2006,45(9),1390-1393.(c) Wang X, Liu L, JacobsonA J. Intercalation of Organic Molecules into Vanadium(IV) Benzenedicarboxylate:Adsorbate Structure and Selective Absorption of Organosulfur Compounds [J]. Angew.Chem. Int. Ed,2006,45(39),6499-6503.(d) Wang X L, Qin C, Wang E B, et al. Anunprecedented eight-connected self-penetrating network based on pentanuclear zinccluster building blocks [J]. Chem. Commun,2005,(38),4789-4791.
    [4](a) Fang Q, Zhu G, Xue M, et al. Structure, Luminescence, and Adsorption Properties ofTwo Chiral Microporous Metal-Organic Frameworks [J]. Inorg. Chem,2006,45(9),3582-3587.(b) Férey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with GiantPores Prepared by a Combination of Targeted Chemistry, Simulation, and PowderDiffraction [J]. Angew. Chem. Int. Ed,2004,43(46),6296-6301.(c) Lin Z, Jiang F, Chen L,et al. New3-D Chiral Framework of Indium with1,3,5-Benzenetricarboxylate [J]. Inorg.Chem,2004,44(1),73-76.(d) Prior T J, Rosseinsky M J. Chiral Direction andInterconnection of Helical Three-Connected Networks in Metal-Organic Frameworks [J].Inorg. Chem,2003,42(5),1564-1575.
    [5](a) Cao R, Shi Q, Sun D, et al. Syntheses and Characterizations of Copper(II) PolymericComplexes Constructed from1,2,4,5-Benzenetetracarboxylic Acid [J]. Inorg. Chem,2002,41(23),6161-6168.(b) Kumagai H, Kepert C J, Kurmoo M. Construction ofHydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate:Synthesis, Structures, and Magnetic Properties [J]. Inorg. Chem,2002,41(13),3410-3422.(c) Snejko N, Gutiérrez-Puebla E, Martnez J L, et al. The Complexity of the Complexes. ATwelve-fold Anchored Ligand in a Co(II) Hybrid Polymeric Material with FerromagneticOrder [J]. Chem. Mater,2002,14(4),1879-1883.
    [6] Luo F, Zheng J M, Long G J. Unique Anionic Eight-Connected Net with36418536TopologyDerived from a Rare Co6(μ3-OH)2(μ-H2O)(CO2)12Building Block [J]. Cryst. Growth. Des,2009,9(3),1271-1274.
    [7] Zheng Y Q, Lin J L, Kong Z P. Coordination Polymers Based on Cobridging of Rigid andFlexible Spacer Ligands: Syntheses, Crystal Structures, and Magnetic Properties of[Mn(bpy)(H2O)(C4H4O4)]·0.5bpy, Mn(bpy)(C5H6O4), and Mn(bpy)(C6H8O4)[J]. Inorg.Chem,2004,43(8),2590-2596.
    [8] Zhang J, Chen S, Valle H, et al. Manganese and Magnesium Homochiral Materials:Decoration of Honeycomb Channels with Homochiral Chains [J]. J. Am. Chem. Soc,2007,129(46),14168-14169.
    [9] Wang X Y, Scancella M, Sevov S C. Studies of the Mechanism of aSingle-Crystal-to-Single-Crystal Reversible Dehydration of a Copper CarboxylateFramework [J]. Chem. Mater,2007,19(18),4506-4513.
    [10] Sheldrick G M. A short history of SHELX [J]. Acta. Crystallogr. Sect. A.2008,64(1),112-122.
    [11] Ke X J, Li D S, Zhao J, et al. In situ attained CdII-coordination polymer with(3,4,9)-connected topology based on trinuclear CdIIclusters [J]. Inorg. Chem. Commun,2010,13(4),484-487.
    [12] Lu R Y, Wang X F, Zhang W, et al. A3D Cd(II) coordination polymer with (41263)topology: Synthesis, crystal structure and photoluminescent properties [J]. Inorg. Chem.Commun,2011,14,1170-1173.
    [13] Cheng L, Wang J Q, Gou S H. A new three-dimensional uninodal six-connectedcoordination polymer constructed from butterfly-like [Cd4(μ3-OH)2] secondary buildingunits: Pcu net topology and luminescence [J]. Inorg. Chem. Commun,2011,14,1201-1203.
    [14] Zhai Q G, Li S N, Ji W J, et al. A Cd/triazolate/carboxylate metal–organic framework withunprecedented (3,10)-connected topology based on tetranuclear clusters [J]. Inorg. Chem.Commun,2010,13,891-894.
    [15] Gao W, Xing F F, Zhou D, et al. Novel MOFs with tetrahedral cavity assembled from4,4′,4″-s-triazine-2,4,6-triyltribenzoic acid (H3TATB)[J]. Inorg. Chem. Commun,2011,14,601-605.
    [16] Cheng L, Hu H Y, Zhang L M, et al. A multifunctional three-dimensional uninodaleight-connected metal–organic framework based on pentanuclear cadmium subunits: Newtopology, fluorescent and NLO properties [J]. Inorg. Chem. Commun,2012,15,202-207.
    [17] Zhao N N, Li W J, Sun C Y, et al. Zn(II) and Cd(II) metal-organic frameworks (MOFs)constructed from a symmetric triangular semirigid multicarboxylate ligand: Synthesis,structures and luminescent properties [J]. Solid State Sci,2012,149(3),317-323.
    [18] Guo S Q, Tian D, Zheng X, et al. A (3,4,10)-connected3D sandwich-type metal-organicframework with trinuclear zinc(II) cluster and two kinds of discrete zinc(II) ions [J]. Inorg.Chem. Commun,2011,14,1876-1879.
    [19] Xu Y, Luo F, Che Y X, et al. A rare (3,6,10)-connected net containing both Zn2(COO)4and Zn4(COO)8units [J]. Inorg. Chem. Commun,2010,13,1489-1492.
    [20] Wei J J, Liu Q Y, Wang Y L, et al. Ionothermal synthesis of a3D zinc(II)-carboxylatecoordination polymer with bcu topology based on heptanuclear [Zn7(μ4-O)2] cluster [J].Inorg. Chem. Commun,2012,15,61-64.
    [21] Li H, Eddaoudi M, O′Keeffe M, Yaghi M, Design and synthesis of an exceptionally stableand highly porous metal-organic framework [J]. Nature,1999,402(6759),276-279.
    [22] Zhu X F, Zhang H, Luo Y H, et al. A novel eight-connected metal–organic replica of CsClbased on heptanuclear zinc clusters [J]. Inorg. Chem. Commun,2011,14,562-565.
    [23] Zhang H J, Wang X Z, Zhu D R, et al. Novel3D lanthanide-organic frameworks with anunusual infinite nanosized ribbon [Ln3(μ3–OH)2(–CO2)6]+n(Ln=Eu, Gd, Dy): syntheses,structures, luminescence, and magnetic properties [J]. CrystEngComm,2011,13(7),2586-2592.
    [24](a) Seward C, Jian W L, Wang R Y, et al. Luminescent2D macrocyclic networks based onstar-burst molecules:[{Ag(CF3SO3)}1.5(tdapb)] and [{Ag(NO3)}3(tdapb)][J]. Angrew.Chem. Int. Ed,2004,43(22),2933-2936.(b) Yam V W, Lo K K. Luminescent polynucleard10metal complexes [J]. Chem. Soc. Rev,1999,28,323-334.(c) Wang R, Han L, Jiang F,et al. Three Novel Cadmium(II) Complexes from Different Conformational1,1′-Biphenyl-3,3′-dicarboxylate [J]. Cryst. Growth Des,2005,5(1),129-135.
    [25] Fang R Q, Zhang X M. Diversity of coordination architecture of metal4,5-dicarboxyimidazole [J]. Inorg. Chem,2006,45(12),4801-4810.
    [26] Wang X L, Qin C, Wang E B, et al. Interlocked and Interdigitated Architectures fromSelf-Assembly of Long Flexible Ligands and Cadmium Salts [J]. Angrew. Chem. Int. Ed,2004,43,5036-5040.
    [27] Zheng S L, Yang J H, Yu X L, et al. Syntheses, structures, photoluminescence, andtheoretical studies of d(10) metal complexes of2,2'-dihydroxy-1,1'binaphthalenyl-3,3'-dicarboxylate [J]. Inorg. Chem,2004,43(2),830-838.
    [28] Valeur B. Molecular Fluorescence:Pronciples and Applications [M]. New York:Wiley-VCH,2001.
    [29] Fun H K, Raj S S, Xiong R G, et al. A three-dimensional network coordination polymer,(terephthalato)(pyridine)cadmium, with blue fluorescent emission [J]. Dalton Trans,1999,(12),1915-1916.
    [1] Zhang H, Chen N S. Coordination Chemistry Principles and Applications [M]. BeiJing:Chemical Industry Press,2009.
    [2] Sun W Y. Coordination Chemistry [M]. BeiJing: Chemical Industry Press,2004.
    [3] Zou R Q, Sakurai H, Xu Q. Preparation, Adsorption Properties, and Catalytic Activity of3DPorous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-MetalIons [J]. Angew. Chem. Int. Ed,2006,45(16),2542-2546.
    [4] Cheng A L, Liu N, Zhang J Y, et al. Assembling the cage-based metal-organic network froma cubic metalloligand [J]. Inorg. Chem,2007,46(4),1034-1305.
    [5] Xu Q, Zou R Q, Zhong R Q, et al. Cubic metal organic polyhedrons of Nickel(II) imidazoledicarboxylate depositing protons or alkali metal ions [J]. Cryst. Growth Des,2008,8,2458-2463.
    [6] Lu W G, Su C Y, Lu T B, et al. Two stable3D met-al-organic frameworks constructed bynanoscale cages via sharing the single-layer walls [J]. J. Am. Chem. Soc,2006,128,34-35.
    [7] Liu Y, Kravtsov C, Larsen R, et al. Molecular building blocks approach to the assembly ofzeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities [J]. Chem.Commun,2006,(14),1488-1490.
    [8] Liu Y, Kravtsov C, Eddaoudi M. Template-directed assembly of zeolite-like metal-organicframeworks (ZMOFs): a usf-ZMOF with an unprecedented zeolite topology [J]. Angew.Chem. Int. Ed,2008,47(44),8446-8449.
    [9] Alkordi M H, Liu Y, Larsen R W, et al. Zeolite-like metal-organic frameworks as platformsfor applications: on metalloporphyrin-based catalysts [J]. J. Am. Chem. Soc,2008,130(38),12639-12641.
    [10] Sarma J A R P, Desiraju G R. The Supramolecular Synthon Approach to Crystal StructurePrediction [J]. Cryst. Growth Des,2002,2(2),93-100.
    [11] Moorthy J N, Natarajan R, Venugopalan P, et al. Helical Self-Assembly of SubstitutedBenzoic Acids: Influence of Weaker X···X and C H···X Interactions [J]. J. Am. Chem. Soc,2002,124(23),6530-6531.
    [12] Maeda H, Osuka A, Furuta H. Trans Doubly N-Confused Porphyrins: Cu(III)Complexation and Formation of Rodlike Hydrogen-Bonding Networks [J]. J. Am. Chem.Soc,2003,125(51),15690-15691.
    [13] Thomas S. The Hydrogen Bond in the Solid State [J]. Angew. Chem. Int. Ed,2002,41(1),48-76.
    [14] Calhorda M J. Weak hydrogen bonds: theoretical studies [J]. Chem. Commun,2000,(10),801-809.
    [15] Hunter C A. Arene-Arene Interactions: Electrostatic or Charge Transfer [J]. Angew. Chem.Int. Ed. Engl,1993,32(11),1584-1586.
    [16] Hunter C A. Meldola Lecture. The role of aromatic interactions in molecular recognition[J]. Chem. Soc. Rev,1994,23(2),101-109.
    [17] Biswas C, Drew M G B, Ghosh A. Stabilization of a Helical Water Chain in aMetal-Organic Host of a Trinuclear Schiff Base Complex [J]. Inorg. Chem,2008,47(11),4513-4519.
    [18] Ghosh S K, Bharadwaj P K. Decameric Water Clusters Shaped as Two Parallel CyclicPentamers with Staggered Conformation Stabilize Supramolecularly Bonded InfiniteChains of H2PO–4Ions [J]. Inorg. Chem,2006,2006(7),1341-1344.
    [19] Ghosh S K, Bharadwaj P K. A Dodecameric Water Cluster Built around a CyclicQuasiplanar Hexameric Core in an Organic Supramolecular Complex of a Cryptand [J].Angew.Chem. Int. Ed,2004,43(27),3577-3580.
    [20] Mukherjee A, Saha M K, Nethaji M, et al. Helical supramolecular host with aquaporesanchoring alternate molecules of helical water chains [J]. Chem. Commun,2004,(6),716-717.
    [21] Prasad T K, Rajasekharan M V. A Novel Water Octamer in Ce(dipic)2(H2O)3·4H2O:Crystallographic, Thermal, and Theoretical Studies [J]. Cryst. Growth. Des,2006,6(2),488-491.
    [22] Wang X Z, Zhu D R, Xu Y, et al. Three Novel Metal-Organic Frameworks with DifferentTopologies Based on3,3’-Dimethoxy-4,4’-biphenyldicarboxylic Acid: Syntheses,Structures, and Properties [J]. Cryst. Growth. Des,2010,10(2),887-894.
    [23] Sheng Y W, Wang Y, Okamura T A, et al. Synthesis, crystal structure and nonlinear opticalproperty of cadmium(II) and copper(II) complexes with novel chiral ligand [J]. Inorg.Chem. Commun,2007,10(4),432-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700