宁夏黄灌区稻田退水氮磷污染特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以农田为核心的灌区退水污染正在成为影响黄河水质的主要污染源,控制灌区农田退水污染对保障黄河水质安全与整个黄河流域社会经济的可持续发展,具有现实迫切性与长远的战略意义。针对黄河上游灌区农田退水中氮、磷等典型污染物对水质的影响,在宁夏黄灌区吴忠国家科技园区选择灌区典型作物-水稻开展田间试验,通过蒸渗仪测定蒸散量和垂直退水量,采用侧渗液收集仪收集侧向退水量,运用土壤溶液提取仪分层提取0-200cm处土壤溶液,利用田间定位通量法计算农田退水过程中氮磷的流失量,分析探讨了水稻生育过程中农田退水规律,揭示了不同水肥管理下退水过程中氮、磷的迁移和污染特征,结合灌区宏观调研资料,计算了宁夏黄灌区水稻生育期内农田退水的氮、磷负荷量。主要研究结果如下:
     (1)分析了农田退水量的组成及其影响因素,揭示了影响农田退水量的主要控制因素和作用变量,提出水稻抽穗开花前是调控农田退水量的主要时段。研究结果表明农田退水量主要受灌溉量和地下水位的影响,与二者的相关系数分别为0.88和-0.61,受降雨量和蒸散量的影响较小;在水稻生育期内控制灌溉量可以显著降低退水量,在常规灌溉(W3)、节水20%(W1)和节水40%(W2)三个灌溉量下退水量的差异达到极显著水平,退水量分别占相应灌溉量的38%、35%和30%;传统灌溉量下退水量分别是优化灌溉处理的1.46和2.19倍。在水稻的整个生育过程中,农田退水主要发生在抽穗开花前,此阶段的退水量占各处理全部退水量的80%左右,调控农田退水量应主要在一阶段进行;根据退水量和其影响因素之间相关关系比较明显的特点,利用统计方法建立了稻田退水量与其影响因素的多元回归模型。
     (2)分析了影响地表退水过程中氮磷的流失量的主要因素,发现田面水中氮磷浓度和退水量是影响地表退水过程中氮磷流失量和潜在污染风险的主控因子。通过对田面水中氮磷的相互转化和衰减情况等动态变化规律进行分析,结果表明:田面水中氮磷浓度与灌溉量和施肥量有关,同一施氮水平下,灌溉量大时田面水中氮磷的浓度相对低,同一灌溉水平下,施肥量大时田面水中氮磷浓度相对高。田面水中氮磷浓度随时间在总体上逐渐降低,受追肥的影响,追肥后有峰值出现,但出现时间不同,总氮和总磷在施肥当天浓度达到最大,铵态氮一般要到施肥后的1-2天,硝态氮要到3-4天。受施肥量和作物生长状况的影响,施基肥后田面水中氮磷的浓度最高。据此动态变化特征可知地表退水发生的时间直接关系到地表退水携带氮磷的状况,地表退水距离施肥时间越近,地表退水过程中氮磷的流失量越大,污染风险越高。
     (3)垂直退水过程中氮磷污染特征和直渗水中氮磷动态紧密相关,水稻抽穗前的水肥管理是降低农田退水污染的关键时期。定时对0-200cm的土壤溶液进行时空分析表明,在时间上,直渗液中三氮和总磷浓度随时间下降,追肥后有峰值出现。垂直退水污染发生的关键时期是插秧后80天内,即抽穗前,这一阶段由于大量的施肥和长时间的泡田,各层直渗液中氮磷浓度是整个生育期中同层土壤溶液中氮磷浓度最高的时候,也是垂直退水量最多的时候,导致农田退水携带的污染物量最大。常规灌溉量下这一阶段总氮、铵态氮、硝态氮和总磷在垂直退水中的流失量分别占水稻整个生育期垂直退水氮磷流失量的81.4%、73.6%、87.2%和70%,其他水肥处理下流失比例基本相同。水稻抽穗前的水肥管理是降低农田退水污染的关键时期。在深度上,三氮和总磷的浓度基本上都是随深度加深而浓度下降,但在80cm左右浓度回升,是一浓度转折界面,120cm以下浓度变化不大。直渗液中氮磷的浓度受灌溉量的影响,经相关分析,灌溉量和80cm处直渗液中总氮、铵态氮、硝态氮以及总磷平均浓度的相关系数分别为:0.76、0.48、0.74和0.37。农田退水作用的驱动下,铵态氮和总磷向下迁移的距离加长,污染风险加大。
     (4)垂直退水中氮磷流失量受灌溉量和施肥量的显著影响。传统施氮量下通过降低灌溉量可以明显降低稻田生育期内垂直退水过程中氮磷的流失量,传统灌溉量(W3)下农田退水带走的总氮、铵态氮、硝态氮和总磷分别比节水20%(W1)和节水40%(W2)高出1.29、1.20、1.35、0.79和1.70、1.59、1.73、1.14倍。降低灌溉量同样可以减少退水过程中氮磷的流失量,与N0、N1和N2相比,常规灌溉量下N3处理总氮高出14.11、5.42、2.35,铵态氮高出14.1、5.27、2.31,硝态氮高出16.34、5.74、2.45,总磷流失量高出0.82、0.50、0.65倍。所有处理中常规水肥条件(W3N3)下的流失量最大,其次是W1N3和W2N3,这表明农田退水污染负荷受灌溉量和施肥量的双重影响,二者的交互作用明显,但是起决定作用的是施肥量。
     (5)侧向退水间歇发生,最先出现在40cm和80cm的土层,以硝态氮的流失最为严重,受降雨量和灌溉量显著影响。4个施肥水平下侧渗液中总氮、铵态氮、硝态氮和总磷的浓度在时间上表现出相同的变化趋势,插秧后20天内各层土壤溶液中的浓度最高,随后下降,在追肥后有小幅回升;在深度上,三氮和总磷整体上随深度下降,水稻全生育期总氮、铵态氮、硝态氮和总磷的浓度变化范围分别是:0.84-17.99、0.03-1.28、0.3-13.21和0.001-0.14mg/L,侧渗液中三氮的浓度波动范围较大,总磷变幅很小,侧向退水过程中氮磷的流失量同样受施肥量的影响,常规灌溉条件N3处理下总氮、铵态氮和硝氮的流失量分别比N2、N1和N0高出1.08、1.34、2,1.17、1.46、2.11和1.21、1.40、2.43倍。
     (6)计算了不同水肥处理下农田退水中氮磷的比负荷量,结果发现:灌溉量和施氮量对农田退水中总氮和硝态氮的比负荷量有着显著的影响,二者之间存在显著的交互作用。农田退水中氮素的流失以硝态氮为主,占总氮的70%左右。在所有处理中常规灌溉和常规施氮(W3N3)情况下氮磷的比负荷量最大,地表退水中总氮的比负荷量为12.84kg/hm2,铵态氮、硝态氮和总磷的比负荷量分别为7.59、0.57和017 kg/hm2,垂直退水中总氮、铵态氮、硝态氮和总磷的比负荷量分别为84.66、13.54、61.80和0.73 kg/hm2,侧向退水中分别为17.95、2.55、12.65和0.047 kg/hm2。农田退水中总氮和总磷的比负荷量与灌溉量的相关系数分别为0.91和0.88。(7)2008年宁夏黄灌区稻田退水总氮负荷达到0.81万吨,铵态氮为0.16万吨,硝态氮为0.52万吨,总磷为0.0066万吨。
The return flow widely existing in many irrigation regions is becoming a major pollutant deteriorating the quality of the Yellow River; agricultural return flow plays a contributory role. To ensure the water quality of the Yellow River as well as the social and economic sustainability of the Yellow River region, controlling agricultural return flow is urgent and strategically meaningful. Focusing on the effect on water quality of such typical pollutants like nitrogen (N) and phosphorusus (P) from the irrigated areas in the upper reaches of the Yellow River, a study was carried out at WuZhong National Science and Technology Park in Ningxia irrigation region, with rice being selected as a typical crop. Through the determination of the amounts of evapotranspiration and vertical leachate using lysimeter, the collection of lateral return flow and soil solution of 0-200 cm soil profile and lateral leachate of 0-80 cm profile, and the calculation of N and P loss during the process of agricultural return flow, this study has investigated the patterns of agricultural return flow during rice growing season as well as the pollution characteristics of nitrogen and phosphorusus during the process of drainage, and revealed the movement and polluting characteristics of N and P under the effect of different irrigation and fertilizer regimes. At last, the research calculated the load of N and P in the agricultural return flow. The major findings are as follows:
     (1) The composition of agricultural return flow and its factors were analyzed. Results indicated that the quantities of agricultural return flow are mainly affected by the amount of irrigation and groundwater level, with the corresponding correlation coefficient being 0.88 and -0.61, respectively. The impact of the amounts of precipitation and evapotranspiration was relatively little. Reducing irrigation during rice growth period obviously decreased agricultural return flow quantity. The volume of return flow was significantly different among the three irrigation levels, accounting for38%, 35% and 30% of the irrigation amount, respectively. The volume of return flow of traditional irrigation treatment was 1.46 times and 2.19 times of the W1 and W2. Return flow mainly occurred before tassel during the whole growth period of rice accounting for 80% of the total return flow volume. This is the appropriate time to modulate the agricultural return flow. Based on the rather obvious relation between the return flow volume and its factors, a multivariate regression model was built.
     (2) The main factors that impact the loss of N and P in surface return flow was examined; the concentrations of N and P as well as the return flow volume were found to be two major factors. The dynamic curve showed the concentration of N and P in surface water were affected by the quantities of irrigation and fertilizer applied. Under the same N treatment, the concentrations of N and P were much lower at a high irrigation level. Under the same irrigation level, the concentrations of N and P were much higher at a high application rate of fertilizer. The concentrations of N and P in surface water decreased with time. When fertilizer was further applied, a peak was observed, but the occurrence time was different. The amount of total N (TN) and total P(TP) peaked on the first day after fertilizer application, but 1-2 days and 3-4 days for ammonium (NH4+-N) and nitrate (NO3--N), respectively. Under the impact of fertilization amount and crop growth conditions, the concentrations of N and P were highest after the application of basal fertilizer. The characteristics of such dynamics reflected that the occurrence time of surface return flow was directly related to the amount of N and P carried in the flow. The nearer the surface flow was to the time of fertilizer application, the greater the loss of N and P.
     (3) The vertical return flow and the concentrations of N and P in the vertical leachate were closely related. The critical period to reduce agricultural return flow pollution is before the heading stage of rice. The regular analysis of the soil solution in 0-200 cm showed that the concentrations of N and P decreased with time and peaked after further application of fertilizer. The critical occurrence time of vertical flow pollution is within 80 days after sowing, i.e. before heading. At this period, the concentrations of N and P were the highest within the growing period as a result of the high fertilizer application rate and continual flooding condition. Under traditional irrigation level, the losses of TN, NH4+-N, NO3--N and TP in return flow accounted for 81.4%, 73.6%, 87.2% and 70% of the total amount of loss, respectively, and the corresponding percentages were basically the same under other irrigation treatments. The concentrations of TN、NH4+-N、NO3--N and TP decreased with depth, but there was a turning point at the interface at 80 cm, after which their concentrations increased. The concentrations of TN, NH4+-N, NO3--N and TP did not alter much below 120 cm. The concentrations of N and P in vertical leachate were affected by the amount of irrigation. The correlation coefficient between irrigation volume and the mean concentration of TN, NH4+-N, NO3--N and TP was 0.76, 0.48, 0.74, and 0.37, respectively. The further the travel distance of NH4+-N and TP driven by agricultural return flow,. the higher the risk of pollution.
     (4) The loss of N and P were affected by the amount of irrigation and fertilizer applied. Under the traditional N application rate, reducing irrigation during paddy growth period obviously reduced the loss of N and P. The amount of loss of TN, NH4+-N, NO3--N and TP under W3 is respectively 1.29, 1.20, 1.35 and 0.79 times, and 1.70, 1.59,1.73 and 1.14 times higher than under W1 and W2. Decreasing the amount of N-fertilizer applied can substantially reduce the loss of N and P. While the loss of TN in N3 was 14.11, 5.42 and 2.35 times higher than N0, N1 and N2, respectively, that of NH4+-N was 14.1, 5.27 and 2.31 times, NO3--N was 16.34, 5.74 and 2.45, and TP was 0.82, 0.50 and 0.65 times, respectively. The greatest loss of N and P among all treatments was observed under W3N3, followed by W1N3 and W2N3. This suggests that the pollution load of N and P was impacted by both the amount of irrigation and fertilizer applied with a significant interaction. Nonetheless, the amount of fertilizer played a more important role.
     (5) The lateral return flow occurred intermittently and first appeared in the 40 cm and 80 cm of soil profile, with the loss of NO3--N being the most serious. Lateral return flow is impacted by the quantities of irrigation and rainfall. The concentrations of TN, NH4+-N, NO3--N and TP in lateral return flow followed the same trend with time, and were the highest in soil solution 20 days after sowing. The concentrations declined subsequently and increased slightly again when fertilizer was further applied. The concentrations of TN, NH4+-N, NO3--N and TP decreased with depth. The concentrations TN, NH4+-N, NO3--N and TP during the growth period of paddy averaged 0.84-17.99, 0.03-1.28, 0.3-13.21 and 0.001-0.14mg/L, respectively. The concentrations of TN, NH4+-N and NO3--N covered a wider range than TP. The amounts of N and P in lateral return flow were impacted by the irrigation volume and fertilizer application rate. Under the traditional irrigation level in N3, the loss amount of TN, NH4+-N, NO3--N and TP was higher than in N2, N1 and N0 by 1.08, 1.34 and2 times,1.17, 1.46 and 2.11 times, and 1.21, 1.40 and2.43 times.
     (6) The load of N and P was estimated in different water and fertilizer treatments. Results indicated that the effect of irrigation and N application levels on the amount of TN and NO3--N in agricultural return flow was remarkable. There was a significant interaction between irrigation norm and N application level. Nitrate N, which accounted for about 70% of the TN, was mainly drained in the agricultural return flow. Among all treatments, the load of N and P per unit area was the greatest under traditional irrigation and N application. The load of TN per unit area was 12.84kg/hm2 in surface return water, while that of TN, NH4+-N, NO3--N and TP per unit area was respectively 7.59, 0.57 and 0.17 kg/hm2. The load of TN, NH4+-N, NO3--N and TP in vertical return water and lateral return water was respectively 84.66, 13.54, 61.80 and 0.73 kg/hm2,and 17.95, 2.55, 12.65 and 0.047 kg/hm2 .The correlation coefficient between irrigation and the load of TN in agriculture return water and that with TP was 0.91 and 0.88, respectively.
     (7) The load of TN in rice return water from rice paddy reached 8100 tons in 2008 in Ningxia irrigation region, while that of NH4+-N, NO3--N and TP was1600, 5200 and 66 tones, respectively.
引文
1.鲍全盛,王华东,毛显强.我国水环境非点源污染研究进展[J].环境科学进展,1995,3(3) :31~36.
    2.边金钟,王建华.于桥水库富营养化防治前置库对策可行性研究[J].城市环境与城市生态,1994,7(3):5~10.
    3.仓恒瑾,许炼峰,李志安等.农田氮流失与农业非点源污染[J].热带地理,2004,24(4): 332~336.
    4.柴成果,姚党生.黄河流域水环境现状与水资源可持续利用[J].人民黄河,2005,27(3):38~39.
    5.陈静生,于涛.黄河流域氮素流失模数研究[J].农业环境科学学报, 2004,23(5): 834~83.
    6.陈利顶.农田生态系统管理与非点源污染控制[J].环境科学,2000,21(2).
    7.陈建耀,刘昌明,昊凯.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散[J].应用生态学报,1999, 10: 45~48.
    8.陈志雄.农田水量平衡[J].土壤学进展,1985 ,1: 1~8.
    9.杜榜清,李欣,杨岗民.宁蒙灌区退水规律研究方法[J].人民黄河,2004,26(12).
    10.冯广龙,徐凤先,王坚.土壤水分和养分的有效利用[M].北京:北京农业大学出版社,1994, 91~98.
    11.冯绍元.排水条件下饱和土壤中氮肥转化与运移模拟[J].水利学报,1995, 221(6):29~33.
    12.高超,张桃林.太湖地区农田土壤磷素动态及流失风险分析[J].农村生态环境,2000,16(4):24~27.
    13.高超,张桃林,吴蔚东.太湖地区农田土壤养分动态及其启示[J].地理科学,2001,
    21(5):428~432.
    14.龚元石.冬小麦和夏玉米农田土壤分层水分平衡模型[J].北京农业大学学报,1995,21(1): 61~67.
    15.中华人民共和国水利部. SL 13—2004.灌溉试验规范.北京,中华人民共和国水利部,2004,10,13.
    16.郭胜利,余存祖,戴呜钧.有机肥对土壤剖面硝态氮淋失影响的模拟研究[J].水土保持研究,2000,7(4):123~126.
    17.郭相平,张展羽,殷国玺.稻田控制排水对减少氮磷损失的影响[J].上海交通大学学报:农业科学版,2006,24(3):307~310.
    18.韩清.塔里木河流域农垦后水质变化及其控制途径[J].地理学报,1980,35(3):219~231.
    19.河南省农业科学院.河南小麦栽培学[M].郑州:河南省科学技术出版社.1988.
    20.“华北平原作物水分胁迫与干旱研究”课题组.作物水分胁迫与干旱研究[M].郑州:河南科技出版社,1991, 80~106, 135~153, 155~172.
    21.胡焕斌,王桂珍.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,3:17~18.
    22.黄益宗,冯宗炜,张福珠.农田氮损失及其阻控对策研究[J].中国院研究生院学报,2000, 17(2): 49~54.
    23.李韵珠,黄元仿,陆锦文.田间条件下土壤氮素运移的模拟模型[J].水利学报,1996(6):9~14.
    24.李韵珠,黄元仿等.区域农田土壤水和氮素行为的模拟[J].水利学报,2001,(11):87~92.
    25.黄云风,张洛平,洪华生等.不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报,2004, 23 (4): 735~739.
    26.黄运祥,江道琪,何建坤.新疆焉春盆地盐碱土综合治理与博斯腾湖生态保护优化模型[J].中国农业科学,1985,4:1~8.
    27.黄运祥,何建坤.新疆塔里木盆地盐碱土综合治理与水资源合理分配规划模型研究[J].中国农业科学,1990,23(5):60~66.
    28.霍庭秀,张亚彤,杨峰.黄河宁蒙灌区引退水及其水质概况[J].内蒙古水利, 2004,1:77~79.
    29.加孜拉·阿布都拉扎克.黑河流域中游灌区水平衡模型研究[硕士学位论文].南京:河海大学,2006.
    30.金洁,杨京平.从水环境角度探析农田氮素流失及控制对策[J].应用生态学报,2005,16 (3): 579~582.
    31.金相灿,朱萱.我国主要湖泊和水库水体的营养特征及其变化[J].环境科学研究,1991,4(1):11~20.
    32.康绍忠.土壤水分动态的随机模拟研究[J].土壤学报,1990,27(1):17~24.
    33.康绍忠.土壤-植物-大气连续体水分传输理论及其应用[M],北京:水利电力出版社,1994.
    34.康绍忠.干早缺水条件下麦田蒸散量的计算方法研究[J].地理学报,1990, 45(4): 475~483.
    35.雷志栋,杨诗秀,谢森传.田间土壤水量平衡与定位通量法的应用[J].水利学报, 1988, (5):
    1~7.
    36.雷志栋,杨诗秀,胡和平等.对塔里木河流域绿洲四水转化关系的认识.塔里木河流域水资源、环境与管理[M].北京:中国环境科学出版社, 1998. 72~78.
    37.雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999, 10: 309~318.
    38.雷志栋,苏立宁,杨诗秀等.青铜峡灌区水土资源平衡分析的探讨[J].水利学报,2002,6:9~14.
    39.李保国,龚元石,左强.农田土壤水的动态模型及应用.北京:科学出版社,2000,5.
    40.李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,20(4): 397~400.
    41.李怀恩,蔡明.非点源营养负荷-泥沙关系的建立及其应用[J].地理科学,2003,23(4): 460~463.
    42.李良谟,潘映华,周秀如,等.太湖地区主要类型土壤的硝化作用及其影响因素[J].土壤,1987,19(6):289~293.
    43.李祥龙,彭勃,郭正,等.黄河流域水污染趋势分析[J].人民黄河,2004,26(10):26~27.
    44.李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应.植物营养与肥料学报,2000,6(4):383~388.
    45.李韵珠,陆锦文.作物和土壤干旱的温差模型[J].气象,1992, 18(5):9~15.
    46.李韵珠,陆锦文,吕梅,等.作物干早指数(CWSI)和土壤干旱指数(SWSI) [J].土壤学报,1995, 5(2): 202~209.
    47.李志博,王起超,陈静.农业生态系统中氮素循环研究进展[J].土壤与环境,2002, 11 (4) : 417~421.
    48.梁涛,王红萍,张秀梅,等.官厅水库周边不同土地利用方式下氮磷非点源污染的模拟研究[J].环境科学学报,2005, 25 (4): 483~490.
    49.廖文根,彭静.太湖水体的磷负荷分析[J].水利学报,1994,11:77~81.
    50.陆敏.水旱轮作农田系统氮素循环与水环境效应[博士学位论文].上海:华东师范大学,2007.
    51.刘昌明,任鸿遵,等.水量转换:实验与计算分析[M].北京:科学出版社,1988,9.
    52.刘昌明,魏忠义,等.华北平原农业水文及水资源[M].北京:科学出版社,1989,2.
    53.刘昌明,张喜英,由愚正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998, 10: 36~39.
    54.刘昌明,孙壑.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999, 10: 251~258.
    55.刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮累积和分布的影响[J].土壤通报,1996,27(5):216~218.
    56.刘方,黄昌勇,何腾兵,钱晓刚,刘元生,罗海波.长期施肥下黄壤旱地磷对水环境的影响及其风险评价[J].土壤学报,2003,40(6):838~844.
    57.刘洪斌,武伟,魏朝富,等.土壤水分预测神经网络模型和时间序列模型比较研究[J].农业工程学报,2003, 7(4), 33~36.
    58.刘培斌,丁跃元,张瑜芳.田间-维饱和-非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490~498.
    59.刘鸿志,任隆江.太湖水污染防治对策[J].环境保护科学,1998,24(6):5~7,12.
    60.刘远金,卢瑛,陈俊林,等.广州城郊菜地土壤磷素特征及流失风险分析[J].土壤与环境,2002,11(3):237~24.
    61.刘忠翰.滇池流域农业区排水水质状况的初步调查[J].云南环境科学,1997, 15(2): 6~9.
    62.刘忠翰,彭江燕.化肥氮素在水稻田中迁移与淋失的模拟研究[J].农村生态环境,2000,16(2):9~13.
    63.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8~15.
    64.吕唤春,方志发,等.千岛湖流域坡地利用结构对径流氮、磷流失量的影响[J].水体保持学报,2002,16(2):91~92,132.
    65.吕耀.苏南太湖流域农业非点源污染及农业持续发展战略[J].环境科学动态,1998,(2):1~4.
    66.吕忠贵,杨圆.浅析氮磷化肥的使用,利用及对农业生态环境污染[J].农业环境与发展,1997,14(3):30~34.
    67.马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究[J].应用生态学报,1992,3(4):346~354.
    68.毛飞,张佳华,卢志光.地下水浅埋条件下冬小麦和大豆土壤水分动态预报模型研究[J].应用气象学报,2003,8(4):480~486.
    69.毛飞,张光智,周丽.冬小麦土壤水分预报和灌溉决策系统的业务应用[J].气象,2001, 27(6):36~39.
    70.茆智.稻田节水灌溉[J].中国农村水利水电,1997, 4:45~47.
    71.裴洪平,王维维.杭州西湖引水后生态系统中磷循环模型[J].生态学报,1998,18(6):648~653.
    72.钱蕴壁,李英能,李刚,等.节水农业新技术研究[M].郑州:黄河水利出版社,2002, 1~302.
    73.单保庆,尹澄清,于静,等.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J].环境科学学报,2001, 21 (1):7~12.
    74.邵晓梅.黄河流域节水农业关键问题的区域特征研究[R].中国农业科学院博士后出站报告,2005, 44~50.
    75.申双和,周英.牧草地土壤水分地动态平衡计算[J].气象科学,1995, 15(3): 254~261.
    76.沈振荣,张瑜芳,等.水资源科学实验与研究[M].北京:中国科学技术出版社,1992.
    77.施为光,陈达平.黑龙滩水库氮磷平衡与富营养化评价[J].长江流域资源与环境,2002, 11(2):171~174.
    78.司友斌,王慎强,陈怀满.农田氮、磷流失与水体富营养化[J].土壤,2000,32(4):188~193.
    79.宋勇生,范晓辉,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265~269.
    80.宋玉芳,任丽萍,等.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志,2001,20(6):20~24.
    81.苏成国,尹斌,朱兆良.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,41(11):1884~1888.
    82.苏成国,尹斌,朱兆良,沈其荣.农田氮素的气态损失与大气湿沉降及其环境效应[J].土壤,2005,37(2):113~120.
    83.苏德纯.北京郊区蔬菜保护地土壤磷空间及形态分布特征[J].中国蔬菜,1999,(4): 7~11.
    84.苏祯禄,任和平.河南玉米[M].北京:中国农业科技出版社出版,1994.
    85.田玉华,贺发云,尹斌,朱兆良.不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤,2006,38(6):727~733.
    86.屠其璞,王俊德,丁裕国等.气象应用频率统计学.北京气象出版社,1984,222~289.
    87.王道涵,梁成华.农业磷素流失途径及控制方法研究进展[J].土壤与环境,2002,11(2): 183~188.
    88.王德建,林静惠,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426~432.
    89.吕唤春,王飞儿,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19(6 ):281~284.
    90.王家玉.高效覆膜尿素农化特征鉴定及利用研究[J].浙江农业学报,1996,8 (1):24~27.
    91.王坷等.应用污染模型和地理信息系统评价和管理农业面源污染[J].环境污染与防治,1997,19(6):30~33.
    92.王鹏,高超,姚琪,韩龙喜,申霞.环太湖丘陵地区农田磷素随地表径流输出特征[J].农业环境科学学报,2006,25(1):165~169.
    93.王强,杨京平,沈建国,郑洪福,余永远.稻田田面水中三氮浓度的动态变化特征研究[J].水土保持学报,2004,17(3):51~54.
    94.王强.稻田分次施氮对田面水和渗漏水中氮素变化特征的影响.[硕士学位论文].浙江大学,2003.
    95.王少平,陈满荣,等.GIS在农业非点源污染研究中的应用[J].农业环境保护,2000,19(5):289~292.
    96.王夏晖,刘军,等.不同施肥方式下土壤氮素的运移特征研究.土壤通报,2002,33(3):202~206.
    97.王小治,高人,朱建国,蔡祖聪,宝川靖和.稻季施用不同尿素品种的氮素径流和淋溶损失[J].中国环境科学, 2004,24:600~604.
    98.王欣,李兰,王万,朱灿,贾仰文.宁蒙灌区水资源模拟研究[J].人民黄河,2005,27(6):51~52.
    99.汪林,甘泓,汪珊,等.宁夏黄灌区水盐循环演化与调控[M].北京:中国水利水电出版社, 2003.
    100.汪林,汪珊,甘泓,等.宁夏青铜峡灌区水土化学场演化态势初步分析[J].水利学报,2003,6:78~84.
    101.武雪萍,蔡典雄,梅旭荣,等.黄河流域农业水资源与水环境问题及技术对策[J].生态环境, 2007,16(1):248~252.
    102.吴厚水.利用蒸发力进行农田灌溉预报的方法[J].水利学报,1981,(1):2~9.
    103.谢红梅,朱波.农业非点源氮污染研究进展[J].生态环境,2003,12 (3):349~352.
    104.谢学俭.苏南稻麦轮作农田系统土壤磷氮的流失[博士学位论文].南京:南京农业大学,2003.
    105.谢新民,赵文骏,裴源生,等.宁夏水资源优化配置与可持续利用战略研究[M].郑州:黄河水利出版社, 2002.
    106.徐明岗,孙本华.土壤磷扩散规律及其能量特征的研究II.施肥量及水肥温相互作用对磷扩散的影响[J].土壤学报,1998,35(1):55~65.
    107.徐谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39~43.
    108.许迪,蔡林根,王少丽,等.农业持续发展的农田水土管理研究[M].北京:中国水利水电出版社,2000,111~I53.
    109.晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷富集机理[J].环境科学学报,2000, 20(3):332~337.
    110.晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响—1968-1997年的时间变化分析[J].地理学报,2001,56(5):505~514.
    111.闫莉,锦辉,建军等.宁夏农灌退水对黄河水质的影响研究[J].人民黄河,2007,29(3):35-37.
    112.杨邦杰.土壤蒸发过程的数值模型及其应用[M].北京:学术书刊出版社,1989.
    113.杨建峰,万书勤,邓伟,章光新.地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J].农业工程学报,2005,21(6):158~165.
    114.杨文龙,杜娟.前置库在滇池非点污染源控制中的应用研究[J].云南环境科学,1996,15(4):8~10.
    115.杨新民,张建丰,王文焰.大型蒸渗仪内土壤含水量剖面分布的量测技术研究[J].灌溉排水,1997,16:58~61.
    116.尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229~232.
    117.于涛,何大伟,陈静生.黄河流域灌溉农业的发展对黄河水量和水质的影响[J].农业环境科学学报, 2003,22 (10): 664~668.
    118.于涛,陈静生.农业发展对黄河水质和氮污染的影响—以宁夏灌区为例[J],干旱区资源与环境,2004,18(5):1~7.
    119.郁梦德,莫江明,孔国辉.离子交换树脂袋法测定鼎湖山季风常绿阔叶林土壤有效氮的初步研究[J].热带亚热带植学报,1995,3(4):44~48.
    120.袁宾.人民胜利渠灌区水盐运动规律及评价[J].人民黄河,1992,10:11~14.
    121.袁东海,王兆蓦,陈欣,等.红壤小流域不同利用方式氮磷流失特征研究[J].生态学报,2003,23(1):188~197.
    122.袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱区研究,2000,17(4):46~52.
    123.岳卫峰,杨金忠,高鸿永,等.内蒙河套灌区义长灌域水均衡分析[J].灌溉排水学报,2004,23(6):25~28.
    124.赵新宇.大型灌区退水量预测理论与方法研究[博士学位论文].西安:西安理工大学,2007.
    125.张大弟,张晓红,戴育民.上海市郊区4种地表径流污染负荷调查与评价[J].上海环境科学,1997,16(9):7~11.
    126.张大伟,徐辉,王刚.黄河流域水污染问题研究[J].人民黄河, 2003,25(10): 12~14.
    127.张立成,董文江,郑建勋,潘佑民,黄璋.湘江水体中六六六的化学地理特征[J].环境科学,1983,5:8~13.
    128.张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998, 17(6):51~55.
    129.张水铭,汪祖强,马杏法.农田排水中磷素对苏南太湖水系的污染[J].环境科学,1993,14(6):24~30.
    130.张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80~87.
    131.张维理,徐爱国,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026~1033.
    132.张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].环境科学,2000, 6 ( 21):16~19.
    133.张亚丽,张兴昌,邵明安.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报,2004,20 (3):55~59.
    134.张燕,张洪,彭补拙,等.不同土地利用下农地土壤侵蚀与养分流失[J].水土保持通报,2003,23(1):23~31.
    135.张蔚榛,张瑜芳,肖铁树.包气带水分运移问题讲座(二)—土壤水分运动参数测定方法[J].水文地质工程地质,1981,2:57~62,30.
    136.张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中氨态氮转化和运移的研究[J].水利学报,1994(6):9~19.
    137.张志剑,朱荫媚,王坷,等.水稻田土-水系统中磷素行为及其环境影响研究[J].应用生态学报,2001,12(2):229~320.
    138.张志剑,王光火.嘉兴地区水稻土磷素状况与环境效应评估[J].科技通报,1999,15(5):377~381.
    139.赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,2:37~42.
    140.赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37~40.
    141.钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估I.淋失临界值[J].生态学报,2004,24(10):2275~2280.
    142.钟瑞森.博斯腾湖流域水盐平衡模型研究[D].新疆农业大学,2005.
    143.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:中国科学出版社,1983,79~94.
    144.中国农业年鉴农业编辑委员会.中国农业年鉴[M].北京:中国农业出版社,1999,p.189.
    145.朱自玺,赵国强,邓天宏.冬小麦优化灌溉模型研究及其应用[J].华北农学报,1995,10(4):33~36.
    146.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1990.
    147.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    148.朱营.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学,1985,6 (5):6~11
    149.Edwards A.C., Withers P.J. Soil phosphorusus management and water quality: A UK perspective .Soil Use and Manage, 1998,14:124~129.
    150.Sharpley A.N., Chapra S.C., Wedepohl R, et al. Managing agricultural phosphorusus for protection of surface waters: Issues and options.J. Environ Qual, 1994, 23: 437~451.
    151.Kanwar R.S., Bakhsh A., Jaynes D.B., Colvin T.S., Ahuja L.R.. Prediction of NO3–N losses with subsurface drainage water from manured and UAN-fertilized plots using GLEAMS. Trans. Am. Soc. Agric. Eng, 2000, 43: 69~78.
    152.Kanwar R.S., Bakhsh A. Simulating tillage effects on non-point source pollution from agricultural lands using GLEAMS. Trans. Am. Soc. Agric. Eng, 2001, 44: 891~898.
    153.Bruckler L., Cockborne A.M., Renault P, et a1.Spatial and temporal variability of nitrate in irrigated salad crops. Irrigation Science,1997,17(2):53~61.
    154.Calvert D.V. Nitrate, phosphate, and potassium movement into drainage lines under three soil management systems, J.Environ.Qua1 ,1975,4(2)183~185.
    155.Carpenter S.R,, N,F. Caraco, D.L. Correll, et al. Nonpoint pollution of surface waters
    156.Smith R.V., Jorden C., McGuckin S.O. Increased predicted losses of phosphorusus to surface waters from soils with high Olsen-P concentrations. Soil Use and Management, 2000, 16: 27~35.
    145. Coal F.J., lzuno F.T., Bottcher A.B. Phosphorusus in drainage water from sugarcane in the Everglades Agriculture Area as affected by drainage rate. J. Environ. Qual, 1994,23:121~126.
    146. Denmark. CopenhagenConference on Nitrogen as Water Pollutant [J]. Specialized Conference, 1975, vol. 1~3.
    147. Correll D.L. The role of phosphorusus in the eutrophoication of receiving waters: A review J Environ Qua1,1998,27:261 266
    148. Daniel T.C., Sharpley D.R, Edwards R, et al. Minimizing surface water eutriophication from agriculture by phosphorusus management. J.Soil Water Conserv, 1994, 49:30~38.
    149. Dugas W. A., Meyer W.S., Bans H.D., Fleetwood R.J. Effects of soil type on soybean crop water use in weighing lysimeters: II Root growth, soil water extraction and water-table contributions. Irrig Sci, 1990,11:77~81.
    157.Barberis E., Ajmone F., Preta M, et al. Phosphorusus leaching from five heavily fertilized soils.Connecting Phosphorusus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorusus Transfer Workshop ,2001, p. 25.
    158.Frossard E., Condron L.M., Obserson A, et al. Processes governing phosphorusus availability in temperate soils. J. Environ. Qua1, 2000, 29: 15~23.
    159.Eghball B., Binford G.D., Baltensperger D.D. Phosphorusus movement and adsorption in a soil receiving long-time manure and fertilize application. Journal of Environmental Quality, 1996, 25:1339~1343.
    160.Feddes R.A., Kowalik P.J., Zaradny H. Simulation of water use crop yield. Simulation Monograph. PODOC, Wageningen, 1978.
    161.Gardner C.M.K., Field M. An evaluation of success of MORECS, a meteorological model, in estimating soil moisture deficits.Agric.Meteorol, 1983, 29:269~284.
    162.Gaynor J.D., Findlay W.L. Soil and phosphorusus loss from conservation and conventional tillage in corn production. J. Environ. Qual, 1995, 24:734~741.
    163.Drecht G., Bouwmann A.F., Knoop J.M, et al .Global pollution of surface waters from point and non-point sources of Nitrogen. Sci World, 2001,2:632~641.
    164.Howell T.A., Tolk J.A., Schneider A.D., Evett S.R. Evapotranspiration, yield, and water use efficiency of corn hybrids differing in maturity. Agron J, 1998, 90:3~9.
    165.Tunney H., Carton O.T., Brookes P.C, et al. Phosphorusus loss from soil to water. CAB international, 1997,253~271.
    166.Hudson J.J., Tayor W.D., Jchindler D.W. Phosphorusus concentrations in lakes. Nature, 2000, 406:54~56.
    167.Hudson Jletal. Aretentivity function for use in soil water simulation models. J.Soil Sci, 1987,38:105~113.
    168.Izuno F.T., Sanchez C.A., Coale F.J, et al. Phosphorusus concentrations in drainage water in the Everglade Agricultural Area. J. Environ. Qual, 1991, 20:608~619.
    169.Jaakola A. Leaching Losses of Nitrogen from a Clay Soil under Grass and Cereal crops I Finland. Plant and Soil, 1984, 76: 59~66.
    170.Jury W.A., Esposito G, White R.E. A transfer function model of solute transport through soil: Fundamental concepts. Water resource Res., 1986, 22:243~247.
    171.Kaddah, Rhoades. Salt and water balance in Imperial Valley. Soil Science Society of America Journal, 1976.
    172.Kingery W.L., Wood C.W., Delaney D.P., Williams J.C., Mullins G.L. Impact of long-term landapplication of broiler litter on environmentally related soil properties. Journal of Environmental Quality, 1994, 23:139~147.
    173.Kuo S., Barker A.S. The effect of soil drainage on phosphorusus status and availability to corn in long-term manure-amended soils. Soi1 sci. soc. Am. J, 1982, 46:744~747.
    174.Kronvang B., Grant R., Larsen S.E., Svendsen L.M., Kristensen P. Non-point source nutrient losses to the aquatic environment in Denmark: impact of agriculture. Mar. Freshwater Res. 1995, 46:167~177.
    175.Legg J. Soil nitrogen budgets. In: Stevenson F J. Nitrogen in Agricultural Soils Am Soc Agron Madison Wis Agron, 1982, 22:503~566.
    176.Lock wood J.G., Jones C.A., Smith R.T. The estimation of soil moisture deficits using meteorological models at an upland site on northern England. Agric. For. Meteorol, 1989, 46(1):41~63.
    177.Siddique M.T., Robinson J.S. Connecting Phosphorusus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorusus Transfer Workshop, 2001, P. 54.
    178.Heckrath N., Brookes P.C. Development of an indicator for Risk of Phosphorusus leaching .J Environ Qual, 2000, 29 (1): 105~110.
    179.Nofziger D.L., Rajender K., Nayudu S.K, et a1. CHEMFLO one-dimensional water and chemical movement in soil[R].Computer Software Series CSS-38. Oklahoma Agricultural Exp. Sta. Oklahoma State Univ. Stillwater, 1998.
    180.Philip D.S, Radcliffe D.E., Cabrera M.L., Belew C.D.Relationship between Soil Test Phosphorusus and Phosphorusus in Runoff: Effects of Soil Series Variability. Journal of Environmental Quality, 1966, 33:1452~1463.
    181.Bulter P.J., Haygarth P.M. The effects of tillage and reseeding on phosphorusus transfers from drained grassland. International Phosphorusus Transfer Workshop, 2001, P. 32.
    182.Haygarth P.M., Heathwaite A.L., Jarvis S.C, et al. Hydrological factors for phosphorusus transfer from agricultural soils. Advances in Agronomy, 2000, 69:153~178.
    183.Prueger J.H., Hatfield J.L., Aase J.K., Pikul Jr. J.L. Bowen-Ratio comparisons with lysimeter Evapotranspiration. Agron J, 1997, 85: 730~736.
    184.Raghubanshi A.S. Effect of topography on selected soil prosperities and ruitrogen mineralization in a dry tropical forest [J]. Soil Biology and Biochemistry, 1992, 3(4):44~48.
    185.Al1en R.G., Pereira L.S., Raes D., Smith M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. 1998.
    186.Allen R.G., Smith M., Perrier A., Pereira L.S. An Update for the Calculation of Reference Evapotranspiration. ICID Bulletion, 1994, Vol: 143(2).
    187.Sims J.T., Maguire R..OObservations on leaching and subsurface transport of phosphorusus on the Delmarva Peninsula, USA. Connecting Phosphorusus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorusus Transfer Workshop, 2001,p.20.
    188.Schneider A.D., Howell T.A., Steiner J.L. An evapotranspiration research facility usingmonolithic lysimeters from three soils. Appl Eng Agric 1993, 9:227~235.
    189.Schils R., Smijders P. The combined effect of fertilizer nitrogen and Phosphorusus on herbage yield and change in soil nutrients of a grass/ clover and grass only sward. Nutrient Cycling in Agroecosystem,2004,68:165~179.
    190.Schindler D.W. Eutroghication and recovery in experimental lakes: Implications for lake management. Science, 1974, 184:897~899.
    191.Schindler D.W. Evolution of phosphorusus limitation in lakes. Science, 1977, 184:897~899.
    192.Schwab A.P., Kulyingyong S. Change in phosphorusate activities and availability indexes with depth after 40 years of fertilization. Soil Science, 1989,147:179~186.
    193.Sharpley A.N. The effect of storm interval in the transport of soluble phosphorusus in runoff,J. Environ.Qual., 1980, 9:575~578.
    194.Sharpley A.N., Simth S.J., Naney J.W. Environmental Impact of Agricultural Nitrogen and Phosphorusus Use. J.Agric.Food Chem, 1987, 35:812~817.
    195.Sharpley A.N., Chapra S.C., Wedepohl R, et al. Managing agriculture phosphorusus protection of surface waters: issues and options. J.Environ.Qual., 1994a: 23:437~451.
    196.Sharpley A.N., and P. A. Withers. The environmentally sound management of agricultural phosphorusus. Fertiliser Research, 1994b, 39:133~146.
    197.SharpleyA.N. Identifying Sites Vulnerable to Phosphorusus Loss in Agricultural Runoff, J.Environ.Qua1, 1995b:24:947~951.
    198.Shuttleworth W. J., Wallace J.S. Evaporation form sparse crops-an energy combination theory. Q .J.R.Meteorol.Soc, 1985, 111:839~855.
    199.Simth K.A., Chalmers A.G., Chambersetal B.J. Organic manure Phosphorusus accumulation, mobility and management. Soil Use and Management (Supplement), 1998, 14,154~159.
    200.Simard R.R., Beauchemin S., Haygarth P.M. Potential for preferential pathways of phosphorusus transport. J.Environ.Qua1, 2000, 29:97~105.
    201.Vandsemb S.M., Bechmann M., Krogstad T. Variation in leaching of phosphorusus in relation to soil phosphorusus status. Connecting Phosphorusus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorusus Transfer Workshop 2001, p. 62.
    202.Stamm C., Fluhler H, et al. Preferential Transport of Phosphorusus in Drained Grassland Soils. J Environmental, 1998, 27:515.
    203.Pierson S.T., Cabrera M L., Evanylo G.K, et al. Phosphorusus losses from grasslands fertilized with broiler litter: EPIC simulations. J. Environ. Qua1.2001, 30: 1790~1795.
    204.Gaines T.P. Soil texture effect on nitrate leaching in soil percolates. Communication Analysis, 1994, 25:2561~2570.
    205.Tsai T.L., Yang J.C. Kinematic wave modeling of overland flow using characteristics method with cubic-spline interpolation. Adv.Water Resour , 2005, 28: 661~670.
    206.Voss C.I., Provost A.M. SUTRA: A Model for Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport[R]. U.S. Geological SurveyWater-Resources Inbestigations Report 02-4231, 2003.
    207.Zhifeng Yang, Xinghui Xia and.Jingsong Zhou Nitrogen Contamination in the Yellow River Basin of China. Environ. Qual. 2002, (31): 917~925.
    208.Yoon K.S., Yoo, K.H., Wood, C.W., Hall, B.M. Application of GLEAMS to predict nutrient losses from land application of poultry litter. Trans. Am. Soc. Agric. Eng, 1994, 37: 453~459.
    209.Young M.H., Wierenga P.J., Mancino C.F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Soil Sci Soc Am J, 1997, 61: 1138~1146.
    210.Yu Tao, CHENG Jinsheng. Impacts of the agricultural development on the water quality and nitrogen pollution of the Yellow River: case of Ningxia irrigation area. Journal of Arid Land Resources & Environment, 2004, 18(5):1~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700