重力数据处理方法的研究及其在钾盐矿勘探中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在一些常规重力数据处理方法的基础上,进行了一定的改进和创新。利用新的方法对老挝甘蒙省他曲地区钾盐矿区的重力资料进行二次开发,获得了新的认识。研究内容包括:研究了趋势面分析法、解析延拓法、有限元素法、九点差分格式异步迭代法、插值切割法、小波多分辨分析法这几种常规异常分离方法的应用条件和优缺点;改进了小子域滤波的剖分方式,“田”字型的小子域剖分方法使重力梯级带更加收敛,异常形态失真更少,刻画地质体的边界更清晰,而且节省了计算时间;首次提出将图像边缘检测的Canny算子应用到斜导数图中,提取断裂或线性构造,模型试验证明这种组合方式具有抗噪能力强、提取边界准确的优点;应用重力梯度法能给出断裂的倾向和埋深等信息。对比了常规的密度界面反演方法Parker-Oldenburg法和频率域的压缩质面法,实例证明它们反演的结果很相似;对老挝钾盐矿区重力勘探的数据重新处理,通过视密度反演了解地下不同深度的视密度分布,重新厘定了钾盐矿勘探的远景区,并识别出一个新的勘探有利区。
With the development of modern gravity exploration, nearly one hundred years, it is still a very important geophysical method. The data from gravity exploration provide us with a lot of underground geological information after data processing and interpretation. With the update of data processing method and interpretation technology, its capacity has been improved.
     In this paper, study on gravity data processing method. Mainly comparative analysis some routine method, and improve some of them. Take advantage of new method to deal with gravity data of sylvite mine in GanMeng Province of Lao People’s Democratic Republic, and gain new understanding of the sylvite mine.
     The structure of this paper is the same as the flow of gravity data processing, details as follow:
     1. The method of extracting the target gravity anomaly
     Gravity anomalies are the responses of all density distribution underground, and the results of extracting the target gravity anomaly effects latter interpretation directly. Base on the principle of dividing the Bouguer gravity anomaly into two parts, one is regional gravity anomaly and the other is local gravity anomaly, compare the trend analysis method, continuation method, finite element method, iterative difference method with nine points, cut interpolation, and wavelet multi-resolution analysis method. Begin with their basic principles, find out the conditions of each method and the implicit subjective factors. All of them can isolate the local anomalies and the regional anomalies well. Relatively, the finite elements method is the best while the continuation method is the worst. But so far, none is better than other method under any conditions. Every anomaly separation method has its assumptions. Once the given data satisfy the prerequisite of it, it will bring better result than any other method. So, when deal with gravity exploration data, we should analysis the data firstly. Then compare the best results of different methods, choose the result of the method, whose prerequisite is best met.
     2. Regional sub-block method
     Sub domain filtering play a role of compressing gravity gradient zone, which is used to divide research region into several sub blocks and to find deep fault in favorite conditions. Traditional sub domain filtering divides the moving windows into eight small domains, whose shapes are not the same. This paper proposes a new sub domain filtering, whose eight sub domains are the same. The size of new sub domain is only half of the size of traditional sub domain, so it is facilitate to calculation. Under the condition of with the same data and the same size of moving window, the time consuming of new method is only half of traditional method. More importantly, new method brings greater convergence at gravity gradient zone and less distortion at corners.
     3. Edge enhance, extraction and fracture interpretation
     The borders of geological body or linear structures on Bouguer gravity anomaly map are usually at high frequency and low amplitudes. In order to obtain this information more accurately, it is necessary to enhance these wick anomalies. This paper compares the tilt method, the horizontal derivate of tilt method, normalized analytical signal amplitude method and normalized standard deviation of vertical derivate method, which are popular methods in recently years. Find out that all of them utilize the vertical derivate to enhance wick signal. So, it is important to calculate the vertical derivate correctly. This paper discusses the effect of different edge extension methods in frequency domain. Propose a new extension method by cycle expansion with spline interpolation, which enhance the accuracy of vertical derivate compared with regional extension method, cosine extension method, spline extension method. The effect of vertical derivate by Hilbert transform is also compared. Draw a conclusion that the favorable conditions for applying the new extension method by cycle expansion with spline interpolation are data is under sampling or both ends of data varies with small gradient.
     Set up several geological models buried with different depths, whose gravity anomaly is interference by regional gravity anomaly. All methods above can enhance weak anomaly aroused by geological edge. But the shape of anomaly is with distorted by interference. On tilt map, the zero contour line is related to the geology border, while on the other maps, the local maxim contour is correspond to the border. Both the zero contour and maxim contour deviate from the theoretical positon. It is difficault to locate the boder positon of geology model from these maps.
     Use the approximating edges method proposed by Blakely and Simpson to locate the local maixm points, but it dose not fit for zero contour detecting. This paper proposes applying the Canny edge detection oprator to locate the zero contour on tilt map at first time. Canny operator is one of the optimize operator, which has a low error rate and high accuracy of locating the marginal point. Besides, the probability of response to multiple margion is low. Model test proved that this method with strong ability of anti-noise and with high precision of extracting borders.
     In order to interprate the faults in details, we need to seek other methods. Through model test and application example, the gravity gradient method under favorable conditions can provide inclication and depth of fault.
     4. Density interface inversion and pseudo-density inversion
     Compared two kinds of density interface inversion method, one is widely used Parker-Oldenburg method, and the other is compressed density layer method. In the application example, the curst-mantle boundary shapes inversed by both methods are similar. The results depend on the gravity anomaly aroused by interface can be correctly extracted and both methods require the average depth of interface much deeper than the ups and downs. For 3D pseudo-density inversion, I adopt the method proposed by Xu Shizhe. Model test proved that the key technologies of this method– the use of iterative upward continuation to calculate downward continuation is feasible.
     Apply the new methods and techniques in gravity anomaly of sylvite mine in Laos, I gain new information:
     1. The local gravity anomaly map obtained from wavelet multresolution analysis is more in line with the geological condition than that from upward continuation method. At least it is more incordance with drill results and model results.
     2. The result of using Canny operator dealed with tilt map is similar with that from horizontal derivates at different angels and continuation method. But the front method provides more information. Appling the gravity gradient method to the main fault, calculate the inclication and depth.
     3. By pseudo-density inversion, I come to understand the relative density distributions at different depths.
     4. Reduce the boundarys of sylvite mine area, and find out a new favorable area for exploration.
引文
[1] SKEELS D C. What is residual gravity?[J]: Geophysics, 1967, 32(5): 872-876.
    [2] GRIFFIN W R. Residual gravity in theory and practice [J]: Geophysics, 1949, 14(1): 39-56
    [3] GUPTA V K., RAMANI N. Some aspects of regional residual separation of gravity anomalies in a Precambrian terrain [J]: Geophysics, 1980, 45(9): 1412-1426.
    [4] LI Y., OLDENBURG D W. Separation of regional and residual magnetic field data [J]: Geophysics, 1998, 63(2): 431-439.
    [5] AGOCS W B. Least-squares residual anomaly determination [J]: Geophysics, 1951, 16(4): 686-696.
    [6] SIMPSON S M., Jr. Least-squares polynomial fitting to gravitational data and density plotting by digital computers [J]: Geophysics, 1954, 19(2): 255-269.
    [7] OLDHAM C H G., SUTHERLAND D B. Orthogonal polynomials: their use in estimating the regional effect [J]: Geophysics, 1955, 20(2): 295-306.
    [8] FAJKLEWICZ Z. The use of cracovian computation in estimating the regional gravity [J]: Geophysics, 1959,24 (3): 465-478.
    [9] BELTRAO J F., SILVA J B C., COSTA J C., Robust polynomial fitting method for regional gravity estimation [J]: Geophysics, 1991, 56(1): 80-89.
    [10] ABDELRAHMAN E M., BAYOUMI A. I., EL-ARABY H. M. A least-squares minimization approach to invert gravity data [J]: Geophysics, 1991, 56(1):115-118.
    [11] ULRYCH T J. Effect of wavelength filtering on the shape of the residual anomaly [J]: Geophysics, 1968, 33(6):1015-1018.
    [12]张愉才.正交多项式趋势面分析[J].物化探电子计算技术,1980,(2): 84-97.
    [13]李九亮.划分重力区域异常与局部异常的变阶滑动趋势分析法[J].物探化探计算技术,1998,20(1):53-61.
    [14]羊春华.筛选-趋势分析法分离区域异常与局部异常[J].物探与化探计算技术,2005,29(2):167-169.
    [15]王四龙,宁书年,李郴,等.用三维趋势面分析分离位场异常[J].煤田地质与勘探,1993,21(5):60-64.
    [16] PAUL M K. A method of computing residual anomalies from bouguer gravity map by applying relaxation technique [J]: Geophysics, 1967, 32(4):708-719.
    [17] MICKUS K L, AIKEN C L V, KENNEDY W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]: Geophysics, 1991, 56(2): 279-283.
    [18] MALLICK K., SHARMA K K. A finite element method for computation of the regional gravity anomaly[J]: Geophysics, 1999, 64(2):461-469.
    [19] GUSPI F, INTROCASO B. A sparse spectrum technique for gridding and separating potential field anomalies[J]: Geophysics, 2000, 65(4):1154-1161.
    [20]童永春.一种提取重力局部异常的方法—九点差分格式异步迭代法[J].地质与勘探,1984,(12):51-58.
    [21]程方道,刘东甲,姚汝信.划分重力区域场与局部场的研究[J].物探化探计算技术,1987,9(1):3-11.
    [22]文百红,程方道.用于划分磁异常的新方法—插值切割法[J].中南矿冶学院学报,1990,21(3):229-235.
    [23]汪炳柱,徐世浙,刘保华,等.多次插值切割法分场的一个实例[J].石油地球物理勘探, 1997,32(3):431-438.
    [24]段本春,徐世浙,阎汉杰,等.划分磁异常的插值切割法在研究火成岩体分布中的应用[J].石油地球物理勘探,1998,34(1):125-131.
    [25]邢怡.重磁异常分离方法技术研究[D].北京:中国地质大学硕士学位论文,2008.
    [26] DEAN W C. Frequency analysis for gravity and magnetic interpretation[J]: Geophysics, 1958, 23(1):97-127.
    [27] BHATTACHARYYA B K. Design of spatial filters and their application to high-resolution areomagnetic data[J]: Geophysics, 1964, 37(1): 68-91.
    [28] BYERLY P E. Convolution filtering of gravity and magnetic maps[J]:Geophysics, 1965, 30(2): 281-283.
    [29] SAX R L. Application of filter theory and information theory to the interpretation of gravity measurements[J]: Geophysics, 1966, 31(3): 570-575.
    [30] ZURFLUEH E G. Applications of two-dimensional linear wavelength filtering[J]: Geophysics,1967, 32(6): 1015-1035.
    [31] LAVIN P M, DEVANE J F. Direct design of two-dimensional digital wavenumber filters[J]: Geophysics, 1970, 35(6):1073-1078.
    [32] KU C C, TELFORD W M, LIM S. H. The use of linear filtering in gravity problems[J]: Geophysics, 1971, 36(6):1174-1203.
    [33]候重初.补偿圆滑滤波方法[J].石油物探,1981,20(02):22-29.
    [34]魏献齐.椭圆窗方向滤波器在重力资料处理中的应用[J].石油地球物理勘探,1984,(6):556-566.
    [35]程方道.波数域重磁数据处理中的随机误差分析[J].石油物探,1985,24(1):70- 90.
    [36]刘祥重.区域重力波数域解释及找油效果[J].石油地球物理勘探,1988 , 23(1):110-118.
    [37] DARBY E K, DAVIES E B. The analysis and design of two-dimensional filters fortwo-dimensional data[J]: Geophysical Prospecting, 1967, 15(3): 383-406.
    [38] CLARKE G K C. Optimum second derivative and downward continuation filters[J]: Geophysics, 1969, 34(3): 424-437.
    [39] AGARWAL B N P, LAL L. Application of rational approximation in the calculation of the second derivative of the gravity fields[J]: Geophysics, 1971, 36(3): 571-581.
    [40] COWAN D R, COWAN S. Separation filtering applied to aeromagnetic data[J]: Exploration Geophysics, 1993, 24(4): 429-436.
    [41] PETERS L J. The direct approach to magnetic interpretation and its practical application[J]: Geophysics, 1949, 14(3):290-320.
    [42] HENDERSON R G, ZIETZ I, The computation of second vertical derivatives of geomagnetic fields[J]: Geophysics, 1949, 14(4): 508-516.
    [43] BHATTACHARYYA B K. Two-dimensional harmonic analysis as a tool for magnetic interpretation[J]: Geophysics, 1965, 30(5):829-857.
    [44] ROBISON E S. Upward continuation of total intensity magnetic fields[J]: Geophysics, 1970, 35(5): 920-926.
    [45] KONTIS A. Aeromagnetic field test of total intensity upward continuation[J]: Geophysics, 1971, 36(2): 418-425.
    [46] HANSEN R. O., MIYAZKI Y. Continuation of potential fields between arbitary surface[J]: Geophysics, 1984, 49(6): 787-795.
    [47]曾华霖.重磁资料数据处理某些方法效果的讨论[J].物探与化探,1982,6(5): 257-264.
    [48]毛小平,吴蓉元,曲赞.频率域位场下延的振荡机制及消除方法[J].石油地球物理勘探,1998,33(2):230-237.
    [49]曾华霖,许德树.最佳向上延拓高度的估计[J].地学前沿,2002,9(2):499-503.
    [50] WANG B. 2D and 3D potential-field upward continuation using splines[J]: Geophysics, 2006, 54(2):199-209.
    [51] SPECTOR A, GRANT F S. Statistical models for interpreting aeromagnetic data[J]: Geophysics, 1970, 35(2)293-302.
    [52] SYBERG F J R. A Fourier method for the regional-residual problem of potential fields[J]: Geophysical Prospecting, 1972, 20(1):47-75.
    [53] JACOBSEN B H. A case for upward continuation as a standard separation filter for potential-field maps[J]: Geophysics, 1987, 52(8): 1138-1148.
    [54]梁锦文.分离重磁区域场与局部场的维纳滤波器[J].地球物理学报,1983, 26(1):80-88.
    [55]于舟,李昭荣.重磁异常的方向维纳串联滤波器[J].物探化探计算技术,1989,11(2): 149-155.
    [56]董焕成,李宗杰.重力异常匹配滤波法的原理和应用[J].物探与化探,1993,17(5):331-340.
    [57]刘青松,王宝仁.利用多次匹配滤波技术进行垂向位场分离[J].物探化探计算技术,1996,18(4):279-286.
    [58] PAWLOWSKI R S, HANSEN R O. Gravity anomaly separation by Wiener filtering[J]: Geophysics, 1990, 55(5):539-548.
    [59] PAWLOWSKI R S. Green's equivalent-layer concept in gravity band-pass filter design[J]: Geophysics, 1994, 59(1):69-76.
    [60]雷林源.二维Wiener滤波器及在物探中应用的一些问题[J].地球物理学报,1982,25(2):153-162.
    [61]刘沈衡.维纳滤波法在重力资料解释中的应用[J].有色金属矿产与勘查,1995,4(1):48-51.
    [62]蒋甫玉,孟令顺,张凤旭,等.维纳滤波技术及其在新疆地球重力场划分中的应用[J].吉林大学学报(地球科学版),2007,37(5):1016-1022.
    [63] FEDI M, QUARA T. Wavelet analysis for the regional-residual and local separation of potential field anomalies[J]: Geophysical Prospecting, 1998, 46(5):507-525.
    [64] RIDSDILL-SMITH T A. Separation filtering of aeromagnetic data using filter-banks[J]: Exploration Geophysics, 1998, 29(4):577-583.
    [65]汤井田,宋守根,何继善.多分辨分析和重磁异常的识别与分层次提取[J].中国有色金属学报,1994,4(3):6-14.
    [66]高德章,侯遵泽,唐建.东海及邻区重力异常多尺度分解[J].地球物理学报, 2000, 43(6): 842-849.
    [67]杨文采,施志群,侯遵泽,等.离散小波变换与重力异常多重分解[J].地球物理学报, 2001, 44(4): 534-541.
    [68]陈社教.基于小波变化的重力异常分离及应用[D].长春:吉林大学地球探测科学与技术学院,2007.
    [69]邱宁,何展翔,昌彦君.分析研究基于小波分析与谱分析提高重力异常的分辨能力[J].地球物理学进展,2007,22(1):112-120.
    [70]黎海龙,朱国器.桂西地区重力场小波多重分解及地质意义[J].物探与化探,2007,31(5):465-468.
    [71]刁博,王家林,程顺有.塔里木盆地东部重力异常离散小波多分辨分析[J].同济大学学报(自然科学版),2008,36(4):555-559.
    [72] HAMMER S. Deep gravity interpretation by stripping[J]: Geophysics, 1963, 28(3): 369-378.
    [73]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社.2000.
    [74]杨高印.位场数据处理的一项新技术—小子域滤波[J].石油地球物理勘探,1995,30(2):240-244.
    [75]张凤旭,张凤琴,刘财,等.断裂构造精细解释技术—三方向小子域滤波[J].地球物理学报,2007,50(5):1543-1550.
    [76] NABIGHIAN M E, ANDER M E, GRAUCH V J, et al. 75th Anniversary Historical development of the gravity method in exploration, Geophysics, 2005, 70(6): 63ND-89ND.
    [77] MILLER H G, SINGH V. Potential field tilt-A new concept for location of potential field source[J].Journal of Applied Geophysics,1994, 32(2/3): 213-217.
    [78]刘金兰,李庆春,赵斌.位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究[J].工程地质学报,2007,15(4):569-574.
    [79] VERDUZCO B, FAIRHEAD J D, GREEN C M, et al. New insights into magnetic derivatives for structural mapping[J]. The Leading Edge, 2004, (23): 116-119.
    [80] WIJNS C, PEREZ C, KOWALCZYK P. Theta map: Edge detection in magnetic data[J].Geophysics, 2005, 70(4): L39-L43.
    [81] COOPER G R J, COWAN D R. Edge enhancement of potential-field data using normalized statistcs [J].Geophysics,2008, 73(3): H1-H4.
    [82] FEDI M, FLORIO G, Detection of potential fields source boundaries by enhanced horizontal derivative method [J].Geophysical Prospecting, 2001, 49: 40-58.
    [83]罗孝宽,郭绍雍.应用地球物理教程——重力磁法[M].北京:地质出版社.1991.
    [84] WILLIAM C D. Frequency analysis for gravity and magnetic interpretation [J]. Geophysics, 1958, 23(1): 97-127.
    [85] BLAKELY R J. Potential theory in gravity and magnetic applications[M].New York: Cambrige University Press, 1995.
    [86]程乾生.数字信号处理[M] .北京北京大学出版社, 2006.
    [87] BUTTKUS B. Spectral analysis and filter theory in applied geophysics[M]. Springer, 2000.
    [88]肖锋,孟令顺,吴燕冈.在波数域计算一维重磁异常导数的Matlab语言算法[J].物探与化探, 2008,32(3): 316-320.
    [89] COOPER G R J, COWAN D R. Edge enhancement of potential-field data using normalized statistcs [J].Geophysics,2008, 73(3): H1-H4.
    [90]段本春,徐世浙.重(磁力)异常局部异常与区域异常分离处理中的扩边方法研究[J].物探化探计算技术,1997, 19(4): 298-304.
    [91] BLAKELY R J, SIMPSON R W. Approximating edges of source bodies from magnetic or gravity anomalies[J].Geophysics, 1986, 51(7): 1494-1498.
    [92] CANNY J. A computational approach to edge detection [J].IEEE Transaction on PatternAnalysis and Machine Intelligence,1986, PAM1-8(6): 679-698.
    [93]刘禾.数字图像处理及应用[M].北京:中国电力出版社, 2006.
    [94] PAUL M K, DATTA S, BANERJEE B. Direct interpretation of two-dimensional structural faults from gravity data[J].Geophysics, 1966, 31(5): 940-918.
    [95] STANLEY J M, GREEN R. Gravity gradients and interpretation of the truncate plate[J].Geophysics, 1976, 41(6): 1370-1376.
    [96] BUTLER D K. Generalized gravity gradient analysis for 2-D inversion[J] .Geophysics, 1995, 60(4): 1018-1028.
    [97]魏伟,刘天佑.梯度法解释复杂二维断裂重力异常[J].物探与化探,2005, 29(4): 347-350.
    [98] ABDELRAHMAN E M, EL-ARABY H M, EL-ARABY T M, et al. A least-squares derivatives analysis of gravity anomalies due to faulted thin slabs[J].Geophysics, 2003, 68(2): 535-543.
    [99]余钦范,楼海.水平梯度法提取重磁源边界[J].物探化探计算技术,1994, 16(4): 363-367.
    [100] DANES Z F. On a successive approximation method for interpreting gravity anomalies[J].Geophysics, 1960, 25(6): 1215-1228.
    [101] CORDELLS L, HENDERSON R G. Iterative three-dimensional solution of gravity anomalye data using a digital computer[J].Geophysics, 1968, 33(4): 596-601.
    [102] OLDENBURG D W. The inversion and interpretation of gravity anomalies[J].Geophysics, 1960, 39(4): 526-536.
    [103] GERARD A, DEBEGLIA N. Automatic tree-dimensional modeling for the interpretation of gravity or magnetic anomalies[J].Geophysics, 1975, 40(6): 1014-1034.
    [104] CHAI Y F, HINZE W J. Gravity inversion of an interface above which the density contrast varies exponentially with depth[J].Geophysics, 1988, 53(6): 837-845.
    [105] REAMER S K, FERGUSON J F. Regularized two-dimensional Fourier gravity inversion method with application to the Silent Canyon caldera, Nevada[J].Geophysics, 1989, 54(4): 486-496.
    [106] GUSPI F. Three-dimensional Fourier gravity inversion with arbitrary density contrast[J].Geophysics, 1992, 57(1): 131-135.
    [107] BARBOSA V C F, SILVA J B C, MEDEIROS W E. Gravity inversion of basement relief using approximate equality constraints on depth[J].Geophysics, 1997, 62(6): 1745-1757.
    [108] GóMEZ-ORTIZ D, AGARWAL B N P. 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm[J].Computers & Geoscinces,2005,31:513-520.
    [109]曾华霖.重磁勘探反演问题研究述评[J].物探与化探.1990,14(3):182-190.
    [110]刘元龙,王谦身.用压缩质面法反演重力资料以估算地壳构造[J].地球物理学报.1977,20(1):59-69.
    [111]刘元龙,郑建昌,武传珍.利用重力资料反演三维密度界面的质面系数法[J].地球物理学报.1987,30(2):186-196.
    [112]孙德梅,闵志.三维密度界面反演的一个近似方法[J].物探与化探.1984,8(2):89-98.
    [113]周国藩,张水英.解三度密度界面的U函数法[J].物化探计算技术.1985,7(4):293-299.
    [114]林振民,阳明.具有已知深度点的条件下解二度单一密度界面反问题的方法[J].地球物理学报,1985,28(3):311-321.
    [115]夏江海.利用奇异值分解求二维单一密度界面的反问题[J].物化探计算技术.1986,8(2):128-133.
    [116]陈超.利用傅里叶变换反演密度界面[J].石油地球物理勘探,1987,22(6):693-698.
    [117]周熙襄,张建中.用边界元法进行二维重力异常反演[J].物探化探计算技术.1989,1(1):40-44.
    [118]杨再朝.应用FFT计算U函数的界面反演方法[J].石油物探.1989,28(2):91-100.
    [119]杨再朝.用傅里叶变换实现起伏地形上观测重力异常的单一密度界面反演[J].石油地球物理勘探.1990,25(2):201-221.
    [120]张红立,周国藩.密度界面的幂级数非线性反演法[J].物探化探计算技术.1989,11(3):214-218.
    [121]汪汉胜,陈雪,杨洪之.深部大尺度单一密度界面重力异常迭代反演[J].地球物理学报.1993,36(5):643-650.
    [122]汪炳柱,王硕儒.二维密度界面正反演的样条函数法[J].石油地球物理勘探.1995,30(2):230-239.
    [123]王硕儒,汪炳柱,于增慧.变密度界面模型重力异常反演的B样条函数法[J].地球物理学进展,1996,11(3):40-52.
    [124]张贵宾,申宁华.频率域位场快速正则化反演界面和物性分布[J].长春地质学院学报.1996,26(4):434-440.
    [125]刘云峰,沈晓华.二维密度界面的遗传算法反演[J].物探化探计算技术.1997,19(2):138-142.
    [126]张凤旭,张凤琴,孟令顺,等.基于余弦变换的密度界面重力异常正反演研究[J].石油地球物理勘探.2005,40(5):598-602.
    [127]柯小平,王勇,许厚泽.基于变密度模型的位场界面反演[J].地球物理学进展,2006,21(3):825-829.
    [128]肖鹏飞,陈生昌,孟令顺,等.高精度重力资料的密度界面反演[J].物探与化探,2007,31(1):29-33.
    [129]高尔根,宋淑云,刘升东.重力异常稳健迭代密度界面反演研究[J].中国科学技术大学学报,2007,37(8):918-921.
    [130]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].长春:吉林科学出版社.1990.
    [131]肖鹏飞,陈生昌.稳定的频率域变深度视密度反演方法[J].地球物理学进展.2008,23(4):1254-1260.
    [132]许德树,曾华霖,万天丰.中国视密度图与大地构造单元[J].地学前沿.2001,8(2):407-413.
    [133]徐世浙,曹洛华,姚敬金.重力异常三维反演——视密度成像方法技术的应用[J].物探与化探.2007,31(1):25-28.
    [134]徐世浙,余海龙,姚敬金,等.新疆色尔特能地区视密度和视磁性的反演[J].物探化探计算技术.2007,29(增刊):13-16.
    [135]杨金玉,徐世浙,余海龙,等.视密度反演在东海及邻区重力异常解释中的应用[J].地球物理学报.2008,51(6):1909-1916.
    [136]陈善.重力勘探[M].北京:地质出版社.1986.
    [137]吴燕冈,肖锋.老挝钾盐矿地球物理勘察——重力勘探工作报告,2007(项目内部使用).
    [138]青海省柴达木综合地质勘探大队.老挝甘蒙省农波县纳占帕矿区地质图,2006(项目内部使用).
    [139]文百红.插值切割法在消除磁异常干扰中的应用[J].地质与勘探.1991,27(2):40-45.
    [140]刘少明,申重阳,孙少安,等.小波多尺度分解特征分析[J].大地测量与地球动力学.2004,24(2):34-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700