高效复合菌降解氯代苯胺类化合物的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代芳烃及其衍生物是化工、医药、制革、电子等行业广泛应用的化工原料、有机合成中间体和有机溶剂,大多数在环境中高度持留。这类化合物不仅对水生生物的毒性很强,而且通过自然水体中的微生物降解作用很难消除其影响。目前,相对于其他氯代芳烃类化合物的微生物降解方面所作的大量研究工作,人们对氯代苯胺类化合物的微生物降解研究还很少见报道。因此,研究氯代苯胺类化合物的生物降解特性对保护水资源环境具有重要意义。
     作者从南京扬子石化净水一车间曝气池取活性污泥样品,进行分离、培养和驯化,得到了氯代苯胺类化合物的耐受菌,初步鉴定氯代苯胺类耐受菌组成包括黄单胞菌属(Xanthomonas)、产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)及放线菌科诺卡氏属(Actinomycetaceae nocardia.)。通过细菌生长抑制实验表明,分离得到的复合菌对氯代苯胺的耐受性高于自然水体中(长江)的混合细菌;而且经苯胺和2-氯苯胺驯化后,复合菌对毒物的耐受性进一步提高。
     以驯化后的复合菌为降解微生物,采用实验室模拟方法研究了几种氯代苯胺单独存在时的生物降解特性。结果发现,采用苯胺和2-氯苯胺驯化的复合菌能分别以3-氯苯胺、4-氯苯胺及2,4-二氯苯胺为唯一碳源和能源进行生长代谢。但是,相比较而言,用于驯化复合菌的2-氯苯胺比较容易降解,2,4-二氯苯胺的降解率高于3-氯苯胺和4-氯苯胺,4-氯苯胺最难降解。
     较之单独存在的情况,2-氯苯胺与2,4-二氯苯胺共存条件下,共存的2,4-二氯苯胺在初期抑制了2-氯苯胺的降解,但是,对2-氯苯胺最终去除率无显著影响。而更易降解的2-氯苯胺的存在使2,4-二氯苯胺的代谢效率明显提高,2,4-二氯苯胺的去除率提高了22%,降解速率常数也提高了50%以上。
     以2-氯苯胺为目标污染物,研究化合物暴露浓度、复合菌接种量、水体pH值,添加生长基质等对目标化合物生物降解速率及最终去除率的影响。结果表明,氯代苯胺类化合物的生物降解能适应较广泛的pH值范围,但当pH值降至2.5时,氯代苯胺类化合物的生物降解受到明显的抑制;同时,降低化合物的初始浓度、增加微生物量及添加苯胺生长基质等可以能提高复合菌对氯代苯胺类化合物的去除率。
Chlorinated aromatic hydrocarbons and their derivative are chemical materials, intermediate products of organic compounds and organic solvents which are widely applied in industry, such as chemical, medicine, curry, electron and so on. Most of them are persistent in the environment. They are toxic to aquatic organisms, and non-ready to be biodegraded by the microorganisms in nature water. At present, many researches have been done about the biodegradation of chlorinated aromatic hydrocarbons. However, there are few reports about the biodegradability of chloroanilines. It is very important to protect water resources to study the biodegradation characteristic of chloroanilines.Dominant mixed bacteria, which was able to utilize chloroanilines as sole carbon source, was isolated, incubated and domesticated from the activated sludge collected from the returned sludge well hole in the industrial wastewater treatment plant of Yangtse Petrochemical Company. By identification, the dominant mixed bacteria included four kinds of bacteria, which were Xanthomonas, Alcaligenes, Pseudomonas and Actinomycetaceae nocardia. By bacteria growth-inhibition experiment, it has been shown that the isolated mixed bacteria were more tolerant to chloroanilines than the bacteria from nature water (Yangtze River), and after the domestication with aniline and 2-chloroaniline selective medium, the toleration of dominant mixed bacteria was improved evidently.The biodegradability to the chloroanilines used the dominant mixed bacteria as degradation microorganism by laboratory simulation method. The result showed that dominant mixed bacteria domesticated with aniline and 2-chloroaniline was able to utilize 3- chloroaniline, 4- chloroaniline and 2,4- dichloroaniline as sole carbon source and energy source. However, 2-chloroaniline, which was used to domesticate the dominant mixed bacteria, was the most easily to be biodegraded, while 4-chloroaniline was the most difficultly to be biodegraded. The biodegradation rate of 2,4- dichloroaniline is higher than 3- chloroaniline and 4- chloroaniline.Compared with existence lonely, when 2-chloroaniline and 2,4-dichloroaniline co-existing, 2,4-dichloroaniline would inhibit the biodegradation of 2-chloroaniline in the initial stage. But it would not have a notable effect on the final biodegradation rate of 2-chloroaniline. However, the biodegradation rate of 2,4-dichloroaniline was improved obviously because of the existence of 2-chloroaniline which was more
    easily degraded. The biodegradation rate of 2,4-dichloroaniline was improved 22%, and its biodegradation rate constant was improved more than 50%.Using 2-chloroaniline as object pollutant, we researched the effects of condition factors to object compound's biodegradation rate and ultimate degreased rate, such as the exposure concentration of compound, the mixed bacteria's inoculum size, the water's pH value and appending growth matrix. The experimental results showed that the dominant mixed bacteria could adapt the extensive pH value. However, the biodegradation would be obviously restrained when pH value was below 2.5. Besides, decreasing initial concentration, increasing bacterial concentration and appending growth matrix could improve the biodegradation rate.
引文
[1] 樊耀波.水科技发展及在人类社会发展中的作用[J].环境科学进展,1998,6(5):65-74.
    [2] Lu G. H., Zhao Y. H., Yang S. G., et al. Quantitative Structure-Biodegradability Relationships of Substituted Benzenes and Their Biodegradability in River Water [J]. Bull Environ Contam Toxicol, 2002, 69(1): 111-116.
    [3] Lu G. H., Yuan X., Wang C. Quantitative Structure-Toxicity Relationships for Substituted Aromatic Compounds to Vibrio fischeri [J]. Bull Environ Contam Toxicol, 2003, 70(4): 832-838.
    [4] W. Vetter, K. Hummert, B. Luckas, et al. Organochlorine residues in two seal species form western Iceland [J]. Sci. Total Environ., 1995, 170(3): 159-164.
    [5] A. A. Nomani, M. Ajmal, S. Ahmad. Gas chromato-graphy-mass spectrumetric analysis of four polluted riverwaters for phenolic and organic compounds [J]. Environ. Monit. Assess., 1996, 40(1): 1-9.
    [6] Chang C. W., Bumpus J. A. Oligomers of 4-chloroaniline are intermediates formed during its biodegradation by Phanerochaete chrysosporium [J]. FEMS Microbiology Letters, 1993, 107: 337-342.
    [7] 王业俊,许保玖,严煦世.水和废水技术研究[M].北京:中国建筑工业出版社,1991.
    [8] Sahoo M. K., Kuruc J., Svec A. HPLC profiling of radiolytic products of nitrobenzene-CCl_4-water two-phase systems [J]. J. Radioanal. Nucl. Chem., 1992, 163(1): 107-112.
    [9] Sahoo M. K., Kuran P., Kubinec R. GC-FTIR-MS analysis of volatile radiolysis products of nitrophenol solutions in carbon tetrachloride [J]. J. Radioanal. Nucl. Chem., 1993, 175(5): 359-370.
    [10] Vel Leitner, N. K., De Laat J., Dore M, et al. Inorganic and organic byproducts of the reactions between chlorite, activated carbon, and phenolic compounds [J]. Environ. Sci. Yechnol., 1994, 28(2): 222-230.
    [11] Wendel D. J., Beravan, Wesseling, et al. Chronic nervous-systen effects of long-term occupationalesposure to DDT [J]. Chemosphere, 2001, 35(7): 1014-1016.
    [12] Aaron T. F., Gary A. S., Kerth A. H. Persistent organic pollutants in a small Herbivorous, Arctic marine zooplankton (Calanus hyperboreus): trends from April to July and the influence of Lipids and Trophic Transfer [J]. Mar Pollut, 2001, 43: 93-101.
    [13] 李玉梅,陆光华.氯代苯类化合物对江水细菌的毒性及QSAR研究[J].环境科学研究,2005,18(6):116-119.
    [14] 詹迅羽,李健生.一起水体五氯酚污染的调查[J].环境与健康杂志,2000,17(1):40.
    [15] 王华东.水环境污染概论[M],北京:北京师范大学出版社,1989:112-157.
    [16] 程能林,胡生闻.溶剂手册(上册)[M].北京:化学工业出版社,1986,238-250.
    [17] 崛口博着,刘文宗等译.公害与毒物、危险物(有机篇)[M].北京:石油化学工业出版社, 1978, 74-82, 96, 152-162.
    [18] F. Dietz, J. Traud. Odor and taste threshold concentrations of phenolic compounds [J]. Gas-Wasserfach, Wasser-Abwasser, 1978, 119(6): 318-325.
    [19] Ann O. Cheek. Environmental signaling: A biological context for endocrine disruption [J]. Environmental Health Perspectives, 1998, 106, Suppl. 1, Feb.: 5-10.
    [20] Thomas M. Crisp, Environmental endocrine disruption: An effects assessment and analysis[J]. Environmental Health Perspectives, 1998, 106, Suppl.1, Feb.: 11-56.
    [21] 唐全.受氯代苯酚污染水体沉积物厌氧生物修复的应用基础研究[D].浙江:浙江大学,2004.
    [22] 王菊思.合成有机化合物的生物降解性研究[J].环境化学,1993,12(3):161.
    [23] Pitter P. Biodegradation of organic substances in the aquaticenvironment [M]. CRC Press, 1992.
    [24] 瞿福平,张晓健,何苗等.氯苯类有机物生物降解性及共代谢作用研究[J].中国环境科学,1997,17(2):142-145.
    [25] Gibson D T. Microbial degradation of organic compounds [J]. Marcel Ddkker, 1984.
    [26] Raymond, Horvath S. Microbial co - metabolism and the degradation of organic compound in nature [J]. Bacteriological Review, 1972, 36(2): 146.
    [27] 王战勇,苏婷婷等.氯苯降解菌株的选育[J].抚顺石油学院学报,2002,22(4):20-22.
    [28] Haigler B. E. Degradation of 1, 2-Dichlorobenzene by a Psedomonas sp [J]. Applied and Environmental Microbiology, 1988, 54(2): 294-301.
    [29] 陈勇生,庄源益.2,4-二氯酚降解菌的分离及其特性[J].环境科学学报,1999,19(1):28-32.
    [30] Spokes J. R., Walker N. Chlorophenol and Chlorobenzoic Acid Cometabolism by Different Genera of Soil Bacteria [J]. Arch. Microbiol., 1997, 44: 1421-1427.
    [31] Knackmuss H. J., Heilwig M. Utilization and Co-oxidation of Chlorinated Phenols by Pseudomonas sp. B 13[J]. Arch. Microbiol., 1978, 117: 1-7.
    [32] Reber H., Helm V., Karanth N. G. K. Comparative Studies on the Metabolism of Aniline and Cholroanilines by Pseudomonas multivorans Strain Anl[J]. European Journal of Applied Microbiology and Biotechnology, 1979, 7: 181-189.
    [33] Zeyer J. and Keamey P. C. Microbial Degradation of Para-Chloroaniline as Sole Carbon and Nitrogen Source [J]. Pesticide Biochemistry and Physiology, 1982, 17: 213-215.
    [34] Loidl M., Hinteregger C., Ditzelmuller G. et al. Degradation of Aniline and Monochlorinated Anilines by Soil-born Pseudomonas acidovorans Strains [J]. Archives of Microbiology, 1990, 155: 56-61.
    [35] Boon N., Top E M., Goris J. et al. Bioaugmentation of Activated Sludge by Anlndigenous 3-Chloroaniline-Degrading Comamonas testosterone Strain[J]. Applied and Environmental Microbiology, 2000, 7: 2906-2913.
    [36] Emtiazi G., Sstarii M., Mazaherion F. The Utilization of Aniline, Chlorinated Aniline, and Aniline Blue as the only Source of Nitrogen by Fungi in Water [J]. Water Research, 2001, 35(5): 1219-1224.
    [37] Curtis R. F., Land D. G., Griffiths N. M., et al. 2,3,4,6-tetrachloroanjsole Association with Musty Taint in Chickens and Microbiological Formation [J]. Nature, 1972, 235: 223-224.
    [38] Bumpus J. A., Tien M., Wright D., et al. Oxidation of Persistent Environmental Pollutants by White-rot Fungus [J]. Science, 1982, 228: 1434-1436.
    [39] 黄俊,余刚,成捷等.白腐真菌生物降解五氯苯酚的动力学研究[J].农业环境科学学报,2004,23(1):167-169.
    [40] Carmen Ruttimann-Johnson. Polymerization of Pentachlorophenol and Ferulic Acid by Fungal Extracellular Lignin-Degrading Enzymes [J]. Applied And Environmental Microbiology, 1996, 62(10): 3890.
    [41] 徐向阳,俞秀娥,郑平等.受酚污染地表水生物修复技术的基础研究[J].浙江大学学报(农业与生命科学版),1999,25(4):409-413.
    [42] 赵启美,何佳,顾向阳等.高效苯胺降解菌筛选方法研究[J].河南农业大学学报,2000,34(2):174-176.
    [43] 温桂照,陈敏,罗颖.高效优势混合菌降解废水中的氯代芳香族化合物[J].上海环境科学,2000,19(8):379-381.
    [44] Dejonghe W., Top E. M., Goris J. et al. Diversity of 3-Chloroaniline and 3,4-dichloroaniline Degrading Bacteria Isolated from Three Different Soils and Involvement of their Plasmids in Chloroaniline Degradation[J]. FEMS Microbiology Ecology, 2002, 42: 315-325.
    [45] Lattorre J. Microbial Metabolism of Chloroanilines: Enhanced Evolution by Natural Genetic Exchange [J]. Arch. Microbiol., 1984, 140: 159-165.
    [46] 钟文辉,何国庆,郑平等.降解2,4-二氯酚的假单胞菌GT241-1的特性及其3,5-二氯儿茶酚1,2-双加氧酶基因定位[J].浙江大学学报(农业与生命科学版),2001,27(3):269-272.(毕业论文)
    [47] 甘平,朱婷婷,樊耀波等.氯苯类化合物的生物降解[J].环境污染治理技术与设备,2000,1(4):1-12.
    [48] Middeldorp, PJM De Wolf, et al. Enrichment and propenies of a 1,2,4-trichloro-benzene dechlorinating met hanogenic microbial consortium [J]. Applied and Environmental Microbiology, 1997, 63(4): 1225-1229.
    [49] Goldman P, et al. Fluorine Containing Metabolites Formed from 2-fiuorobenzic Acid by Pseudomonas Species [J]. Arch. Biochem. Biophys., 1967, 118: 178-184.
    [50] Pot rawfke T., Timmis K. N., Wit tich R. M. Degradation of 1,2,3,4-Tetrachloro-benzene by Pseudomorlas chlororaphis RW 71 [J]. Applied and Environmental Microbiology, 1998, 64(10): 2574-2552.
    [51] Spless E., Sommer C., Gorisch H. Degradation of 1, 4 2 Dkhlorobenzene by Xant hobacter favus 14 [J]. Applied and Environmental Microbiology, 1995, 61: 3884-3888.
    [52] James R. C., Cascarelli A., William W. M., et al. Isolation and Characterization of a Novel Bacterium Growing via Reductive Dehalogenation of 2-chlorophenol [J]. Appl. Environ. Microbiol., 1994, 60: 3536-3542.
    [53] Madsen T., Aamand J. Anaerobic Transformation and Toxicity of Trichlorophenols in a Stable Enrichment Culture [J]. Appl. Environ. Microbiol., 1992, 58: 557-561.
    [54] Pot rawf ke Th Timmis, KN Wittch R. M. Degradation of 1,2,3,4-tetrachlo-robenzene by Pseudomonas Chlororaphis R W71 [J]. Applied and Environmental Microbiology, 1998, 64(10): 3798-3806.
    [55] 张鹤清,胡洪营,席劲瑛.6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J].环境科学,2003,24(6):83-89.
    [56] 吴唯民,HICKEY J.,NYE R.F.,BHATNAGAR L.利用厌氧颗粒污泥处理氯代有毒有机物[J].应用与环境生物学报,1995,1(1):50-60.
    [57] 夏北成,李婉华等.两个分离菌株对2,4-D降解效率的微生态系统模拟[J].中山大学学报(自然科学版),2000,39(3):111-115.
    [58] Sander P., Wittich R. M., Fortnagel P., et al Degradation of 1,2,4,5 -Trkhloro and 1,2,4,5-Terrachlorobenzene, by Pseudomonas St rains [J]. Applied and Envronmental Microbiology, 1991, 57(5): 1430-1440.
    [59] 杜秀英等.多氯代二苯并-对-二恶英的微生物降解[J].环境科学,2001,22(3):97-99.
    [60] 赵金辉,张克荣.酚类化合物在河川水体中的生物降解研究[J].华西医大学报,2000,31(3):367-369.
    [61] Hendriksen H. V., Larsen S., Ahring B. K. Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge[J]. Appl. Environ. Microbiol., 1992, 58: 365-370.
    [62] 文湘华,占新民,王建龙等.含盐废水的生物处理研究进展[J].环境科学,1999,20(3):104-106.
    [63] 冯旭东,戴猷元.取代苯胺的生物降解性研究[J].水处理技术,2002,28(5):266-268.
    [64] Ettala M., Koskela J., Kiesila A. Removal of chlorophenols in a municipal sewage treatment plant using activated sludge[J]. Wat., Res., 1992, 26(6): 797-804.
    [65] 刘忠英译.用高负荷厌氧处理的方法去除牛皮纸厂漂白车间废水中的氯酚和毒性[J].国外环境科学技术,1995,3:51-58.
    [66] Hakulinen R., Salkinoju S. M. Salkinoja-Salonen M. Treatment of pulp and paper industry wastewaters in an anaerobic fluidized bed reactor[J]. Process Biochem., 1982, 17(2): 18-22.
    [67] Armenante P. M., Kafkewitz D., Lewandowski G.. Determination of the minimum agitation speed to attain the just dispersed state in solid-liquid and liquid-liquid reactors provided with multiple impellers[J]. Env. Pro., 1992, 11(2): 113-122.
    [68] 杨彦希等.一株高效脱酚菌麦牙糖假丝酵母10-4的研究[J].微生物学通报,1995,22(4): 208-211.
    [69] 任华峰,李淑芹等.一株对氯苯胺降解菌的分离鉴定及其降解特性[J].环境科学,2005,26(1):154-158.
    [70] 孙艳.固定化细胞性能改进的研究[J].环境科学研究,1998,11(1):59-62.
    [71] 孙艳.一种耐酚菌种及其固定化细胞降解含酚废水性能的比较研究[J].环境科学研究,1999,12(1):1-9.
    [72] 万登榜,惠阳等.对-氯代苯胺(PCA)在填充床生物反应器中的降解作用[J].应用生态学报,1998,9(3):313-317.
    [73] 全向春,施汉昌等.苯酚存在对生物强化系统降2,4-二氯酚的影响[J].环境科学,2003,24(1):75-79.
    [74] 全向春,施汉昌等.4-氯酚存在对生物强化系统降2,4-二氯酚的影响研究[J].环境科学学报,2003,23(1):69-74.
    [75] Pubakkka J. A. Aerobic and anaerobic biotransformation and treatment of chlorinated pulp bleach waste constituents [J]. Wat. Sci. and Technol., 1994, 29(5): 73.
    [76] Parsons J. R., Govers H. A. Quantitative structure-activity relationships for biodegradation[J]. Ecotoxicol. Environ. Safety., 1990, 19(2): 212-227.
    [77] Logan D. T., Wilson H. T. An ecological risk assessment method bfor species exposed to contaminant mixtures[J]. Environ. Toxicol. Chem., 1995, 14(2): 351-359.
    [78] Cripe C. R., Walker W. W. A shake-flask test for ertimation of biodegradability of toxic organic sunstances in the aquatic environment [J]. Ecotoxicology and Environment Safety, 1987, 14: 239~251.
    [79] 周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2000:292-308.
    [80] 卢全章.环境和指示生物(水域分册)[M].北京:中国环境科学出版社,1987.
    [81] Trevors J. T. Toxicity Testing Using Microorganisms[M]. Vol, I Bitton G: CRC press, 1986: 14-16.
    [82] Botsford J. L., Rivera J. Assay for Toxic Chemicals Using Bacteria, Bull [J]. Environ. Contam. Toxicol., 1997, 59: 1000-1009.
    [83] Veith G. D., Mekenyan O. G. A QSAR approach for estimating the aquatic toxicity of soft electrophiles [J]. Quantitative Structure-Activity Relationships, 1993, 12: 349~356.
    [84] Tongpim S., Michael A. P. Co-metabolic oxidation of Phenanthrene to Phenanthrene trans-9, 10-dihydrodiol by Mycobacterium Strain S1 growing on anthracene in the presence of Phenanthrene [J]. Canadian Journal of Microbiology, 1999, 54: 369~376.
    [85] 于瑞莲,赵元慧,袁星.取代苯胺和苯酚类化合物对大型蚤的毒性及pH值对其毒性的影响[J].环境化学,1998,17(5):451~455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700