微纳米炭材料的电弧等离子体选控制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米炭材料尺度和形貌多样,具有独特的光、电、磁和机械性能,在功能材料领域展现出广阔的应用前景。规模化、低成本、尺度和形态可控制备是实现微纳米炭材料实际广泛使用的基本前提条件。本论文根据煤的组成和结构特征,采用“分子剪裁”的技术策略,借助电弧等离子体及其耦合化学气相沉积技术手段,实现了多种功能性微纳米炭材料的选控制备,主要研究内容和成果如下:
     1.自行研制一套多功能电弧等离子体实验装置、煤基炭棒炭化装置并实现等离子体原位光谱诊断。电弧等离子体实验装置阴极卡套设进气管,不同种类的碳氢气体可直接进入电弧等离子体区域;通过发射光谱,对炭材料的制备过程进行检测和分析。
     2.以煤为碳源,通过电弧等离子体法实现煤基一维纳米炭材料—单壁碳纳米管(SWCNTs)及双壁碳纳米管(DWCNTs)的大量制备,建立了适于SWCNTs纯化的技术方法。以Y2O3和Ni为催化剂,在氦气条件下制得大量的SWCNTs,其产率在10%以上放电过程的原位光谱诊断结果显示,电弧等离子体中存在C2和CN物种,电弧区域温度为3150 K,通过氧化性酸处理与空气氧化,SWCNTs纯度可达近90wt.%;使用FeS催化剂,在氦气和氢气混合气氛中制备了大量的DWCNTs,其生成速率可达25 mg/min,光谱诊断发现其生长过程中存在C2和CH物种,电弧区域温度为3050 K。
     3.以煤基炭棒为阳极,将有机气体引入等离子体区域,实现电弧等离子体技术和化学气相沉积技术的耦合,通过调节催化剂用量等条件选控制备了零维纳米炭材料—纳米洋葱状富勒烯(NOLFs)和碳包覆磁性金属纳米颗粒(CEMNs)。NOLFs石墨层数可以达到数十甚至数百层,呈现同心圆状,具备良好的洋葱状结构;CEMNs具有较窄的直径分布和良好的石墨化程度,在室温下具有铁磁性、高磁响应性和抗酸腐蚀性。
     4.以煤基炭棒为阳极,利用电弧等离子体耦合化学气相沉积技术,通过调节反应条件如催化剂种类及用量和气氛种类及压力等,实现多种功能性微米炭材料—碳带、螺旋炭纤维、炭微米树以及分级结构炭材料的选控制备。碳带的宽厚比为7.5-50,长度可以达到几百微米乃至毫米量级,碳带尺度由催化剂尺寸决定,放电气氛是影响碳带形貌的关键因素;螺旋炭纤维由单根炭纤维规则地螺旋卷合而成,螺旋方向有左旋和右旋两种形式,存在交叉螺旋现象;制备的炭微米树具有实心结构、良好的石墨化程度和与碳纳米管相接近的弹性模量,其生长的关键性因素是铁催化剂和有机气体的使用;碳纤维阵列呈现锥状结构,由直径50-200 nm的纳米碳纤维组装构成,通过对煤基炭棒的预处理,实现了分级结构炭材料形貌的可控调变,基本结构单元变为顶部填充金属的荆棘状碳纤维。
Micro/nano-sized carbon materials have attracted extensive research interests across the world in recent years due to their unique physical and chemical properties as well as potential applications in many high-tech fields. Selective and controlled preparation with low price is the precondition of commercial application of these functional carbon materials. Based on the specific structure and chemical composition of coals, a series of functional carbon materials have been successfully fabricated via the technique of arc plasma or arc plasma coupled with chemical vapor deposition (CVD) and the results obtained are summarized as follows.
     A multi-functional device of arc plasma system was designed and built. Various hydrocarbons could be introduced into the plasma zone via the hole in the cathode for making different carbon materials. The process of arc plasma could be diagnosed in-situ by optical emission spectroscopy (OES).
     One-dimensional (1 D) nanomaterials, single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs), were synthesized by arc plasma method using coal-based carbon rods as the evaporating anode. The influences of experimental parameters, such as the catalyst, atmosphere, pressure, coal types and carbonization temperature of rods, on the production of SWCNTs were investigated systematically. The results show that Taixi anthracite is a suitable carbon source for mass production of SWCNTs with Y2O3 and Ni as catalysts at a helium pressure of 0.05 MPa. The yield of the SWCNTs could reach up to 10%. The species in the arc plasma during the preparation process were analyzed using OES. The OES analysis reveals that active species such as C2 dimers and CN species were present in the arc plasma and the active intermediates involved in the formation and growth of SWCNTs. The impurity was removed by mixture acids combined with air and the purity of the SWCNTs was about 90 wt.%. High quality DWCNTs could be obtained in large scale in the mixture of hydrogen and helium using FeS as catalyst. The production rate of DWCNTs was 25 mg/min. The CH species as well as C2 dimers were identified in the preparation process of DWCNTs.
     Zero-dimensional (0 D) nanomaterials, nano onions-like fullerences (NOLFs) and carbon-encapsulated magnetic nanoparticles (CEMNs), were fabricated on a large scale by arc plasma combined with CVD in acetylene atmosphere. The NOLFs have several hundred graphene layers with concentric circle structure. The as-obtained CEMNs with well-ordered graphitic shells have narrow diameter distribution and ferromagnetic properties at room temperature. The results suggested that the magnetic nanoparticles could be well protected from the acid eroding.
     A series of micrometer sized carbon materials were selectively prepared with high efficiency on a large scale by arc plasma coupled with CVD in the presence of hydrocarbons, of which coal-based carbon rods were used as consuming anode. The synthesis of micrometer carbon materials, such as carbon belts, carbon micrcoils (CMCs), carbon microtrees, carbon strings and hierarchical carbon microfibers, have been accomplished by adapting the experimental condition. It is found that the carbon belts obtained have the width of 1.5-2.5μm, the thickness of 50-200 nm and the length of hundreds of micrometers, of which possess a large width-to-thickness ratio. A combination process has been demonstrated in which catalyst grain with a shape of cuboid formed during arc plasma was responsible for the growth of carbon belts during the subsequent chemical vapor deposition. The CMCs are composed of almost amorphous carbon without any pore in the fiber axis, existing both left-chirality and right-chirality. It is found that the carbon micro-trees grew on the anode surface with highly-oriented arrays when iron was used as catalyst in the presence of acetylene. The carbon micro-trees have a solid inner core and an anisotropic yet highly graphitized structure. The Young's modulus of the micro-trees is comparable to that of carbon nanotubes reported in literature. In the case of the un-treated coal-based anodes, a large amount of whisker-like strings that are perpendicular to the anode surface in aligned arrays and composed of nano-sized carbon fibers in diameter 50-200 nm are obtained. When the coal-based anodes are impregnated with salt solution, thorn-shaped fibers act as their basic building blocks.
引文
[1]Kroto H W, Heath J R, Obrien S C et al. C-60-Buckminsterfullerene. Nature,1985,318(6042):162-163.
    [2]Iijima S. Helical microtubules of graphitic. Nature,1991,354(6348):56-58.
    [3]日本炭素材料学会编.中国金属学会炭材料专业委员会编译.新炭材料入门,2000:1-4.
    [4]Heimann R B, Evsyukov S E, Koga Y. Carbon allotropes:a suggested classification scheme based on valence orbital hybridization. Carbon,1997,35(10-11):1654-1658.
    [5]Geim A K, Kim P. Carbon wonderland. Scientific American,2008,298(4):90-97.
    [6]Ugarte D. Curing and closure of graphitic networks under electron-beam irradiation. Nature,1992, 359(6397):707-709.
    [7]Mani R C, Li X, Sunkara M K et al. Carbon nanopipettes. Nano Letters,2003,3(5):671-673.
    [8]Krishnan A, Dujardin E, Treacy M M et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature,1997,388(6641):451-454.
    [9]Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science,2003, 299(5611):1361-1361.
    [10]Liu J W, Shao M W, Tang Q et al. Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. The Journal of Physical Chemistry B,2003,107(26):6329-6332.
    [11]Colomer J F, Henrard L, Flahaut E et al. Rings of double-walled carbon nanotube bundles. Nano Letters,2003,3(5):685-689.
    [12]Qiu J S, Li Y F, Wang Y P et al. A novel form of carbon micro-balls from coal. Carbon,2003, 41(4):767-772.
    [13]Zhang G Y, Jiang X, Wang E G. Tubular graphite cones. Science,2003,300(5618):472-474.
    [14]Ajayan P M, Nugent J M, Siegel R W et al. Growth of carbon micro-trees-Carbon deposition under extreme conditions causes tree-like structures to spring up. Nature,2000,404(6775):243-243.
    [15]Gogotsi Y, Libera J A, Kalashnikov N et al. Graphite polyhedral crystals. Science,2000, 290(5490):317-320.
    [16]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes. Science,1997,277(5334):1971-1975.
    [17]Poncharal P, Wang Z L, Ugarte D et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science,1999,283(5407):1513-1516.
    [18]Yu M F, Lourie O, Dyer M J et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science,2000,287(5453):637-640.
    [19]Bonduel D, Bredeau S, Alexandre M et al. Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites:effect of the catalytic system on the coating morphology. Journal of Materials Chemistry,2007,17(22):2359-2366.
    [20]Guo S Q, Sivakumar R, Kitazawa H et al. Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes. Journal of the American Ceramic Society,2007,90(5):1667-1670.
    [21]Edler F, Baratto A C. A cobalt-carbon eutectic fixed point for the calibration of contact thermometers at temperatures above 1100 degrees C. Metrologia,2005,42(4):201-207.
    [22]Wildoer J W G, Venema L C, Rinzler A G et al. Electronic structure of atomically resolved carbon nanotubes. Nature,1998,391(6662):59-62.
    [23]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社.2002.
    [24]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature,1993, 363(6430):603-605.
    [25]Bethune D S, Kiang C H, Devries M S et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature,1993,363(6430):605-607.
    [26]Wang X K, Lin X W, Mesleh M et al. The effect of hudrogen on the formation of carbon nanotubes and fullerences. Journal of Materials Research,1995,10(8):1977-1983.
    [27]Ando Y, Zhao X L, Sugal T et al. Growing carbon nanotubes. Materials Today,2004,7:22-29.
    [28]Journet C, Maser W K, Bernier P et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature,1997,388(6644):756-758.
    [29]Liu C, Cong H T, Li F et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon,1999,37(11):1865-1868.
    [30]Williams K A, Tachibana M, Allen J L et al. Single-wall carbon nanotubes from coal. Chemical Physics Letters,1999,310(1-2):31-37.
    [31]Ando Y, Zhao X, Hirahara K et al. Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chemical Physics Letters,2000,323(5-6):580-585.
    [32]Hutchison J L, Kiselev N A, Krinichnaya E P et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon,2001,39(5):761-770.
    [33]Saito Y, Nakahira T, Uemura S. Growth conditions of double-walled carbon nanotubes in arc discharge. The Journal of Physical Chemistry B,2003,107(4):931-934.
    [34]Pang L S K, Prochazka L, Quezada R A et al. Competitive reactions during plasma arcing of carbonceous materials. Energy& Fuels,1995,9(1):38-44.
    [35]Qiu J S, Wang Z Y, Zhao Z B et al. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel,2007,86(1-2):282-286.
    [36]Qiu J S, Li Y F, Wang Y P. Novel fluffy carbon balls obtained from coal which consist of short curly carbon fibres. Carbon,2004,42(11):2359-2362.
    [37]Wang Z Y, Zhao Z B, Qiu J S. Synthesis of branched carbon nanotubes from coal. Carbon,2006, 44(7):1321-1324.
    [38]Wang Z Y, Zhao Z B, Qiu J S. In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source. Carbon,2006,44(9):1845-1847.
    [39]Li Y F, Qiu J S, Zhao Z B et al. Bamboo-shaped carbon tubes from coal. Chemical Physics Letters, 2002,366(5-6):544-550.
    [40]Qiu J S, Zhang F, Zhou Y et al. Carbon nanomaterials from eleven caking coals. Fuel,2002,81(11-12): 1509-1514.
    [41]Qiu J S, Li Y F, Wang Y P et al. High-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon,2003,41(11):2170-2173.
    [42]Qiu J S, Li Y F, Wang Y P et al. Synthesis of carbon-encapsulated nickel nanocrystals by arc-discharge of coal-based carbons in water. Fuel,2004,83(4-5):615-617.
    [43]Tian Y, Zhang Y L, Wang B J et al. Coal-derived carbon nanotubes by thermal plasma jet. Carbon, 2004,42(12-13):2597-2601.
    [44]田亚峻,谢克昌,樊友三.用煤合成碳纳米管的新方法.高等学校化学学报,2001,22:1456-1458.
    [45]Guo T, Nikolaev P, Thess A et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters,1995,243(1-2):49-54.
    [46]Thess A, Lee R, Nikolaev P et al. Crystalline ropes of metallic carbon nanotubes. Science,1996, 273:483-487.
    [47]Yudasaka M, Komatsu T, Ichihashi T et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chemical Physics Letters,1997,278:102-106.
    [48]Wang Y, Wei F, Luo G H et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chemical Physics Letters,2002,364(5-6):568-572.
    [49]Yacaman M J, Yoshida M M, Rendon L et al. Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letter,1993,62:202-204.
    [50]Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters,1998,292(4-6):567-574.
    [51]Wang N, Tang Z K, Li G D et al. Materials science-Single-walled 4 angstrom carbon nanotube arrays. Nature,2000,408(6808):50-51.
    [52]Ci L J, Rao Z L, Zhou Z P et al. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chemical Physics Letters,2002,359(1-2):63-67.
    [53]Zhang Q, Yu H, Liu Y et al. Few walled carbon nanotube production in large-scale by nano-agglomerate fluidized-bed process. Nano,2008,3(1):45-50.
    [54]Lauerhaas J M, Dai J Y, Setlur A A et al. The effect of arc parameters on the growth of carbon nanotubes. Journal of Materials Research,1997,12:1536-1544.
    [55]Dujardin E, Ebbesen T W, Hiura H et al. Capillarity and wetting of carbo nanotubes. Science,1994, 265(5180):1850-1852.
    [56]Bandow S, Rao A M, Williams K A et al. Purification of single-wall carbon nanotubes by microfiltration. The Journal of Physical Chemistry B,1997,101(44):8839-8842.
    [57]Bandow S, Asaka S, Zhao X et al. Purification and magnetic properties of carbon nanotubes. Applied Physics a-Materials Science& Processing,1998,67(1):23-27.
    [58]Shelimov K B, Esenaliev R O, Rinzler A G et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters,1998,282(5-6):429-434.
    [59]朱春野,谢自立,郭坤敏等.碳纳米管纯化研究进展.化工进展,2003,22:482-485.
    [60]Yamamoto K, Akita S, Nakayama Y. Orientation and purification of carbon nanotubes using ac electrophoresis. Journal of Physics D-Applied Physics,1998,31(8):L34-L36.
    [61]Dujardin E, Ebbesen T W, Krishnan A et al. Purification of single-shell nanotubes. Advanced Materials,1998,10(8):611-613.
    [62]Ebbesen T. W., Ajayan P. M., H. H et al. Purification of nanotubes. Nature,1994,367:519.
    [63]Tsang S C, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide. Nature,1993,362(6420):520-522.
    [64]Chen C M, Chen M, Leu F C et al. Purification of multi-walled carbon nanotubes by microwave digestion method. Diamond and Related Materials,2004,13(4-8):1182-1186.
    [65]王世敏,许祖勋,傅晶.纳米材料的制备技术.北京:化学工业出版社,2002.
    [66]Raymundo-Pinero E, Cacciaguerra T, Simon P et al. A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chemical Physics Letters,2005, 412(1-3):184-189.
    [67]Xu B S, Tanaka S I. Control of nanoscale interphase boundaries by an electron beam. Intergranular and Interphase Boundaries in Materials,1996,207:137-140.
    [68]Sano N, Wang H, Chhowalla M et al. Nanotechnology-Synthesis of carbon'onions'in water. Nature, 2001,414(6863):506-507.
    [69]Sano N, Wang H, Alexandrou I et al. Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics,2002,92(5):2783-2788.
    [70]Lange H, Sioda M, Huczko A et al. Nanocarbon production by arc discharge in water. Carbon,2003, 41(8):1617-1623.
    [71]Guo J J, Wang X M, Yao Y L et al. Structure of nanocarbons prepared by arc discharge in water. Materials Chemistry and Physics,2007,105:175-178.
    [72]Xing G, Jia S L, Shi Z Q. Influence of transverse magnetic field on the formation of carbon nano-materials by arc discharge in liquid. Carbon,2007:2584-8.
    [73]Sano N, Kawanami O, Charinpanitkul T et al. Study on reaction field in arc-in-water to produce carbon nano-materials. Thin Solid Films,2008,516(19):6694-6698.
    [74]Muthakarn P, Sano N, Charinpanitkul T et al. Characteristics of carbon nanoparticles synthesized by a submerged arc in alcohols, alkanes, and aromatics. The Journal of Physical Chemistry B,2006,110 (37):18299-18306.
    [75]Li Y B, Wei B Q, Liang J et al. Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon,1999,37(3):493-497.
    [76]Serin V, Brydson R, Scott A et al. Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon,2000,38(4):547-554.
    [77]Chen X H, Deng F M, Wang J X et al. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters,2001,336(3-4):201-204.
    [78]Cabioc'h T, Thune E, Riviere J P et al. Structure and properties of carbon onion layers deposited onto various substrates. Journal of Applied Physics,2002,91(3):1560-1567.
    [79]He C N, Zhao N Q, Shi C S et al. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Materials Chemistry and Physics,2006,97(1):109-115.
    [80]He C N, Zhao N Q, Shi C S et al. A practical method for the production of hollow carbon onion particles. Journal of Alloys and Compounds,2006,425(1-2):329-333.
    [81]Nagai T, Feng Z B, Kono A et al. Growth mechanism for spherical carbon particles in a dc methane plasma. Physics of Plasmas,2008,15(5):050702-1-050702-4.
    [82]Liu Y, Vander Wal R L, Khabashesku V N. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials,2007,19(4):778-786.
    [83]Zhou J F, Shen Z Y, Hou S M et al. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy. Applied Surface Science,2007,253(6): 3237-3241.
    [84]He C N, Tian F, Liu S J et al. Characterization and magnetic property of carbon coated metal nanoparticles and hollow carbon onions fabricated by CVD of methane. Materials Letters,2008, 62(21-22):3697-3699.
    [85]Henstridge M C, Shao L D, Wildgoose G G et al. The electrocatalytic properties of Arc-MWCNTs and associated'Carbon Onions'. Electroanalysis,2008,20(5):498-506.
    [86]Joly-Pottuz L, Matsumoto N, Kinoshita H et al. Diamond-derived carbon onions as lubricant additives. Tribology International,2008,41:69-78.
    [87]Seo W S, Lee J H, Sun X M et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature Materials,2006,5(12):971-976.
    [88]Jeong U, Teng X W, Wang Y et al. Superparamagnetic colloids:Controlled synthesis and niche applications. Advanced Materials,2007,19(1):33-60.
    [89]Teunissen W, Bol A A, Geus J W. Magnetic catalyst bodies. Catalysis Today,1999,48(1-4):329-336.
    [90]Kodama R H. Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,1999, 200(1-3):359-372.
    [91]Tsang S C, Caps V, Paraskevas I et al. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angewandte Chemie-International Edition,2004,43(42):5645-5649.
    [92]Bystrzejewski M, Huczko A, Lange H. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications. Sensors and Actuators B-Chemical,2005,109(1):81-85.
    [93]Ruoff R S, Lorents D C, Chan B et al. Single-crystal metals encapsulated in carbon nanoparticles. Science,1993,259(5093):346-348.
    [94]Jiao J, Seraphin S, Wang X K et al. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics,1996,80(1):103-108.
    [95]Dong X L, Zhang Z D, Jin S R et al. Carbon-coated Fe-Co(C) nanocapsules prepared by arc discharge in methane. Journal of Applied Physics,1999,86(12):6701-6706.
    [96]Zhang Z D, Zheng J G, Skorvanek I et al. Synthesis, characterization, and magnetic properties of carbon-and boron-oxide-encapsulated iron nanocapsules. Journal of Nanoscience and Nanotechnology,2001,1(2):153-158.
    [97]Zhang Z D, Zheng J G, Skorvanek I et al. Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules. Journal of Physics-Condensed Matter,2001,13(9):1921-1929.
    [98]Schaper A K, Hou H, Greiner A et al. Copper nanoparticles encapsulated in multi-shell carbon cages. Applied Physics A:Materials Science& Processing 2004,78:73-77.
    [99]Zhong Z Y, Chen H Y, Tang S B et al. Catalytic growth of carbon nanoballs with and without cobalt encapsulation. Chemical Physics Letters,2000,330(1-2):41-47.
    [100]雷中兴,刘静,李轩科等.CVD法制备的碳包覆(Fe,Co)纳米粒子的结构及电磁特性.磁性材料及器件,2003,34(4):4-6.
    [101]Liu B H, Ding J, Zhong Z Y et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chemical Physics Letters,2002,358(1-2):96-102.
    [102]Wang Z H, Zhang Z D, Choi C J et al. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation. Journal of Alloys and Compounds,2003, 361(1-2):289-293.
    [103]Wang C F, Wang J N, Sheng Z M. Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles. The Journal of Physical Chemistry C,2007,111(17):6303-6307.
    [104]Singjai P, Wongwigkarn K, Laosiritaworn Y et al. Carbon encapsulated nickel nanoparticles synthesized by a modified alcohol catalytic chemical vapor deposition method. Current Applied Physics,2007,7(6):662-666.
    [105]Song H H, Chen X H. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene. Chemical Physics Letters,2003,374(3-4):400-404.
    [106]Host J J, Block J A, Parvin K et al. Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals. Journal of Applied Physics,1998, 83(2):793-801.
    [107]Walter J, Shioyama H. Quasi two-dimensional palladium nanoparticles encapsulated into graphite. Physics Letters A,1999,254(1-2):65-71.
    [108]Tomita S, Hikita M, Fujii M et al. A new and simple method for thin graphitic coating of magnetic-metal nanoparticles. Chemical Physics Letters,2000,316(5-6):361-364.
    [109]Song H H, Chen X H, Chen X G et al. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon,2003,41(15):3037-3046.
    [110]Jian N W, Li Z, Fan Y et al. Synthesis of carbon encapsulated magnetic nanoparticles with giant coercivity by a spray pyrolysis approach. The Journal of Physical Chemistry B,2007, 111(8):2119-2124.
    [111]Harris P J F, Tsang S C. A simple technique for the synthesis of filled carbon nanoparticles. Chemical Physics Letters,1998,293(1-2):53-58.
    [112]Harris P J F, Tsang S C. Encapsulating uranium in carbon nanoparticles using a new technique. Carbon,1998,36(12):1859-1861.
    [113]Koltypin Y, Fernandez A, Rojas T C et al. Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C8H12)2.Chemistry of Materials,1999,11(5):1331-1335.
    [114]Wu W Z, Zhu Z P, Liu Z Y et al. Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method. Carbon,2003,41(2):317-321.
    [115]Bystrzejewski M, Huczko A, Lange H et al. Combustion synthesis route to carbon-encapsulated iron nanoparticles. Diamond and Related Materials,2007,16(2):225-228.
    [116]He N Y, Guo Y F, Deng Y et al. Carbon encapsulated magnetic nanoparticles produced by hydrothermal reaction. Chinese Chemical Letters,2007,18(4):487-490.
    [117]Wang Z F, Mao P F, He N Y. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon,2006,44(15):3277-3284.
    [118]Zhu G X, Wei X W, Xia C J et al. Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells. Carbon,2007,45(6):1160-1166.
    [119]Park J B, Jeong S H, Jeong M S et al. Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution. Carbon,2008,46(11):1369-1377.
    [120]Manning T J, Mitchell M, Stach J et al. Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma Carbon,1999,37(7):1159-1164.
    [121]Yang B J, Wu Y H, Zong B Y et al. Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates. Nano Letters,2002,2(7):751-754.
    [122]Chen G H, Wu D J, Weng W G et al. Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polymer Engineering and Science,2001, 41(12):2148-2154.
    [123]Santos-Pena J, Brousse T, Schleich D M. Search for suitable matrix for the use of tin-based anodes in lithium ion batteries. Solid State Ionics,2000,135(1-4):87-93.
    [124]Iijima S, Wakabayashi T, Achiba Y. Structures of carbon soot prepared by laser ablation. The Journal of Physical Chemistry,1996,100(14):5839-5843.
    [125]Boenm H P. Carbon form carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon,1973,11:583-590.
    [126]Murayama H, Maeda T. A novel form of filamentous graphite. Nature,1990,345(28):791-793.
    [127]Soneda Y, Makino M. Formation and texture of carbon nanofilaments by the catalytic decomposition of CO on stainless-steel plate. Carbon,2000,38(3):478-480.
    [128]Wu Y H, Qiao P W, Chong T C et al. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials,2002,14(1):64-67.
    [129]Ando Y, Zhao X, Ohkohchi M. Production of petal-like graphite sheets by hydrogen arc discharge. Carbon,1997,35(1):153-158.
    [130]Celzard A, Krzesinska M, Begin D et al. Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon,2002,40(4):557-566.
    [131]Shang N G, Au F C K, Meng X M et al. Uniform carbon nanoflake films and their field emissions. Chemical Physics Letters,2002,358(3-4):187-191.
    [132]Kuang Q, Xie S Y, Jiang Z Y et al. Low temperature solvothermal synthesis of crumpled carbon nanosheets. Carbon,2004,42(8-9):1737-1741.
    [133]孟祥敏,尚乃贵,李振声等.碳片组成的纳米薄膜材料显微结构研究.电子显微学报,2002,21(5):613-614.
    [134]Kang Z H, Wang E B, Mao B D et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. Journal of the American Chemical Society, 2005,127(18):6534-6535.
    [135]郑瑞廷,程国安,赵勇等.乙炔催化裂解制备碳纳米带及其结构表征.新型炭材料,2005,20(4):355-358.
    [136]Lin C T, Chen T H, Chin T S et al. Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon,2008,46(5):741-746.
    [137]王维彪,夏玉学,陈明等.碳纳米带的合成及场致电子发射.液晶与显示,2004,19(6):41 1-414.
    [138]齐静,高颖,唐水花等.直接甲醇燃料电池电催化剂载体碳纳米带的合成与表征.催化学报,2006,27(8):708-712.
    [139]Park K K, Lee J B, Park P Y et al. Development of a carbon sheet electrode for electrosorption desalination. Desalination,2007,206(1-3):86-91.
    [140]Motojima S. Preparation of carbon microcoils and their applications. Oyo Buturi,2004, 73(10):1324-7.
    [141]Motojima S, Chen X, Yang S et al. Properties and potential applications of carbon microcoils/ nanocoils. Diamond and Related Materials,2004,13(11-12):1989-1992.
    [142]Seidemann V, Kohlmeier T, Fohse M et al. High aspect ratio spiral and vertical meander micro coils for actuator applications. Microsystem technologies-micro-and nanosystems-information storage and processing systems,2004,10(6-7):564-570.
    [143]Chen X Q, Yang S, Hasegawa M et al. Tactile microsensor elements prepared from arrayed superelastic carbon microcoils. Applied Physics Letters,2005,87(5):054101-1-054101-3
    [144]Yang S M, Chen X Q, Aoki H et al. Tactile microsensor elements prepared from aligned superelastic carbon microcoils and polysilicone matrix. Smart Materials& Structures,2006,15(3):687-694.
    [145]Tang N J, Zhong W, Gedanken A et al. High magnetization helical carbon nanofibers produced by nanoparticle catalysis. The Journal of Physical Chemistry B,2006,110(24):11772-11774.
    [146]Motojima S, Noda Y, Hoshiya S et al. Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region. Journal of Applied Physics,2003,94(4):2325-2330.
    [147]Zhao D L, Shen Z M. Preparation and microwave absorption properties of carbon nanocoils. Materials Letters,2008,62(21-22):3704-3706.
    [148]Chen X, Yang S, Taketichi K et al. Conformation and growth mechanism of the carbon nanocoils with twisting form in comparison with that of carbon microcoils. Diamond and Related Materials, 2003,12(10-11):1836-1840.
    [149]Davis W R, Slawson R J, Rigby G R et al. An unusual form of carbon. Nature,1953,171:756.
    [150]Baker R I K, Waitc R J. Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. Journal of Catalysis,1975,37:101.
    [151]Kim M S, Rodrieuez N M, Baker R T K. The role of interfacial phenomena in the structure of carbon deposits. Journal of Catalysis,1991,134:253.
    [152]Motojirna S, kawanguchi M, Nozaki K. Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene,and its morphology and extension characteristics. Carbon,1991,29(3):379.
    [153]Motojima S, Chen Q Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. Journal of Applied Physics,1999,85(7):3919-3921.
    [154]In-Hwang W, Chen X Q, Kuzuya T et al. Effect of external electromagnetic field and bias voltage on the vapor growth, morphology and properties of carbon micro coils. Carbon,2000,38(4):565-571.
    [155]Shibagaki K, Motojima S. Surface properties of carbon micro-coils oxidized by a low concentration of oxygen gas. Carbon,2000,38(15):2087-2093.
    [156]Chen Y, Liu C, Du J H et al. Preparation of carbon microcoils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate. Carbon,2005,43(9):1874-1878.
    [157]Liu Y F, Shen Z M. Preparation of carbon microcoils and nanocoils using activated carbon nanotubes as catalyst support. Carbon,2005,43(7):1574-1577.
    [158]Yang S M, Chen X Q, Motojima S et al. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts. Carbon,2005,43(4):827-34.
    [159]Mukhopadhyay K, Ram K, Rao K U B. Thin film of carbon micro-spring forest. Materials Letters, 2007,61(10):2004-2006.
    [160]Yang S, Chen X, Katsuno T et al. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process. Materials Research Bulletin,2007,42(3):465-473.
    [161]Yang S M, Hasegawa M, Chen X Q et al. Synthesis and morphology of carbon microcoils produced using methane as a carbon source. Carbon,2007,45(7):1592-1595.
    [162]Bi H, Kou K C, Wang Z D et al. Preparation, microstructures and properties of micro-coiled carbon fibers. Journal of Synthetic Crystals,2008,37(2):304.
    [163]Chang N K, Chang S H. High-yield synthesis of carbon nanocoils on stainless steel. Carbon,2008, 46(7):1106-1109.
    [164]Yang S M, Ozeki I, Chen X et al. Preparation of single-helix carbon microcoils by catalytic CVD process. Thin Solid Films,2008,516(5):718-721.
    [165]Yang S M, Chen X Q, Motojima S. Coiling-chirality changes in carbon microcoils obtained by catalyzed pyrolysis of acetylene and its mechanism. Applied Physics Letters,2002, 81(19):3567-3569.
    [166]Yang S, Chen X, Motojima S. Morphology of the growth tip of carbon microcoils/nanocoils. Diamond and Related Materials,2004,13(11-12):2152-2155.
    [167]Motojima S, Chen X Q. Preparation and characterization of carbon microcoils (CMCs). Bulletin of the Chemical Society of Japan,2007,80(3):449-455.
    [168]Williams K L, Eriksson A B, Thorslund R et al. The electrothermal feasibility of carbon microcoil heaters for cold/hot gas microthrusters. Journal of Micromechanics and Microengineering,2006, 16(7):1154-1161.
    [169]Williams K L, Kohler J, Boman M. Fabrication and mechanical characterization of LCVD-deposited carbon micro-springs. Sensors and Actuators a-Physical,2006,130:358-364.
    [170]Jung Y J, Wei B Q, Nugent J et al. Controlling growth of carbon microtrees. Carbon,2001, 39(14):2195-2201.
    [171]Terranova M L, Sessa V, Rossi M. Tree-like carbon nanostructures generated by the action of atomic hydrogen on glassy carbon. Chemical Physics Letters,2001,336(5-6):405-409.
    [172]Guo X Y. Macroscopic multi-branched carbon trees generated from chemical vapor deposition of toluene. Carbon,2005,43(5):1098-1100.
    [173]Ma H L, Su D S, Klein-Hoffmann A et al. Morphologies and microstructures of tree-like carbon produced at different reaction conditions in a CVD process. Carbon,2006,44(11):2254-2260.
    [174]Ma H L, Su D S, Jin G Q et al. The influence of formation conditions on the growth and morphology of carbon trees. Carbon,2007,45(8):1622-1627.
    [175]魏飞,张强,骞伟中等.碳纳米管阵列研究进展.新型炭材料,2007,22(3):271-282.
    [176]Mei Y F, Wu X L, Qiu T et al. Anodizing process of Al films on Si substrates for forming alumina templates with short-distance ordered 25 nm nanopores. Thin Solid Films,2005,492(1-2):66-70.
    [177]Kiselev N A, Musatov A L, Kukovitskii E F et al. Influence of electric field and emission current on the configuration of nanotubes in carbon nanotube layers. Carbon,2005,43(15):3112-3123.
    [178]Teo K B K, Chhowalla M, Amaratunga G A J et al. Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system. Journal of Vacuum Science& Technology B,2003,21(2):693-697.
    [179]Cheng Y, Fan S S. Applications of oriented batch-CNT. International Journal of Nonlinear Science, 2002,3(3-4):759-762.
    [180]Li D C, Dai L M, Huang S M et al. Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters,2000,316(5-6):349-355.
    [181]Huang S M, Dai L M, Mau A W H. Patterned growth and contact transfer of well-aligned carbon nanotube films. The Journal of Physical Chemistry B,1999,103(21):4223-4227.
    [182]Li W Z, Xie S S, Qian L X et al. Large-scale synthesis of aligned carbon nanotubes. Science,1996, 274:1701-1703.
    [183]Ren Z F, Huang Z P, Xu J W et al. Synethesis of large arrays of well-aligned carbon nanotubes on glass. Science,1998,282:1105-1107.
    [184]Tu Y, Huang Z P, Wang D Z et al. Growth of aligned carbon nanotubes with controlled site density. Applied Physics Letters,2002,80:4018-4020.
    [185]Ago H, Komatsu T, Ohshima S et al. Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Applied Physics Letters,2000,77:79-81.
    [186]Murakami Y, Chiashi S, Miyauchi Y et al. Growth of ver tically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letter,2004,385: 298-303.
    [187]Noda S, Sugime H, Osawa T et al. A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes. Carbon,2006, 44(8):1414-1419.
    [188]Hata K, Futaba D N, Mizuno K et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science,2004,306(5700):1362-1364.
    [189]Ci L J, Wei J Q, Wei B Q et al. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon,2001,39(3):329-335.
    [190]Hou H Q, Schaper A K, Jun Z et al. Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor. Chemistry of Materials,2003,15(2):580-585.
    [191]Lin C C, Huang C M, Kuo C S et al. Continuous production of carbon nanotubes and carbon fibers with methane, nitrogen, and Fe(CO)5 using a CVD vertical reactor. Journal of the Chinese Institute of Chemical Engineers,2004,35(6):595-601.
    [192]Dong L F, Chirayos V, Bush J et al. Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties. The Journal of Physical Chemistry B,2005,109(27):13148-13153.
    [193]Huang J Q, Zhang Q, Wei F et al. Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests. Carbon,2008,46(2):291-296.
    [194]Wang X B, Liu Y Q, Zhu D B. Two-and three-dimensional alignment and patterning of carbon nanotubes. Advanced Materials,2002,14(2):165-167.
    [195]Huang S M, Dai L M. Microscopic and macroscopic structures of carbon nanotubes produced by pyrolysis of iron phthalocyanine. Journal of Nanoparticle Research,2002,4:145-155.
    [196]Kumar M, Ando Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor. Chemical Physics Letters,2003,374:521-526.
    [197]Rao C N R, Sen R, Satishkumar B C et al. Large aligned-nanotube bundles from ferrocene pyrolysis. Chemical Communication,1998:1525-1526.
    [198]Jones J M, Malcolm R P, Thomas K M et al. The anode deposit formed during the carbon-arc evaporation of graphite for the synthesis of fullerenes and carbon nanotubes. Carbon,1996, 34(2):231-237.
    [199]Kajiura H, Huang H J, Tsutsui S et al. High-purity fibrous carbon deposit on the anode surface in hydrogen DC arc-discharge. Carbon,2002,40(13):2423-2428.
    [200]Luo S D, Huang D C, Huang Y H et al. Orderly evolution in the morphology of the anode deposit in hydrogen arc discharge. Carbon,2005,43(1):109-115.
    [201]Qiu J S, Li Y F, Wang Y P. Novel fluffy carbon balls obtained from coal which consist of short curly carbon fibres. Carbon,2004,42(11):2359-62.
    [202]Kratschmer W, Lamb L D, Fostiropoulos K et al. Solid C-60-A New form of carbon. Nature,1990, 347(6291):354-358.
    [203]Ishigami M, Cumings J, Zettl A et al. A simple method for the continuous production of carbon nanotubes. Chemical Physics Letters,2000,319:457-459.
    [204]Journet C, Master W K, Bernier P et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature,1997,388:756-758.
    [205]Liu C, Cong H T, Li F et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon,1999,37:1865-1868.
    [206]Hutchison J L, Kiselev N A, Krinichnaya E P et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon,2001,39(5):761-770.
    [207]杨津基.气体放电.北京:科学出版社,1983.
    [208]胡志强,甄汉生,施迎难等.气体电子学.北京:电子工业出版社,1985.
    [209]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.
    [210]Du F, Ma Y F, Lv X et al. The synthesis of single-walled carbon nanotubes with controlled length and bundle, size using the electric arc method. Carbon,2006,44(7):1327-1330.
    [211]Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge. Journal of Physics D-Applied Physics,2007,40(8):2388-2393.
    [212]Mansour A, Razafinimanana M, Monthioux M et al. A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process. Carbon,2007,45(8):1651-1661.
    [213]Lopez-Pastor M, Dominguez-Vidal A, Ayora-Canada M J et al. Separation of single-walled carbon nanotubes by use of ionic liquid-aided capillary electrophoresis. Analytical Chemistry,2008, 80(8):2672-2679.
    [214]Tan S H, Goak J C, Hong S C et al. Purification of single-walled carbon nanotubes using a fixed bed reactor packed with zirconia beads. Carbon,2008,46(2):245-254.
    [215]贺德龙,赵廷凯,孙伟等.微量氧对单壁碳纳米管生长的辅助催化作用研究.纳米材料与应用,2007,4(1):12-16.
    [216]Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes. Advances in Physics,2000, 49(6):705-814.
    [217]Rols S, Righi A, Alvarez L et al. Diameter distribution of single wall carbon nanotubes in nanobundles. The European Physical Journal B,2000,18(2):201-205.
    [218]Chiang I W, Brinson B E, Smalley R E et al. Purification and Characterization of Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry B,2001,105(6):1157-1161.
    [219]Chiang I W, Brinson B E, Huang A Y et al. Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process). The Journal of Physical Chemistry B,2001,105(35):8297-8301.
    [220]Arepalli S, Scott C D. Spectral measurements in production of single-wall carbon nanotubes by laser ablation. Chemical Physics Letters,1999,302(1-2):139-145.
    [221]Puretzky A A, Geohegan D B, Fan X et al. In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics Letters,2000,76(2):182-184.
    [222]Puretzky A A, Geohegan D B, Fan X et al. Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics a-Materials Science& Processing,2000,70(2):153-160.
    [223]Guo Y, Okazaki T, Kadoya T et al. Spectroscopic study during single-wall carbon nanotubes production by Ar, H2, and H2-Ar DC arc discharge. Diamond and Related Materials,2005, 14(3-7):887-890.
    [224]吴旭峰,凌一鸣.单壁碳纳米管生成条件下电弧等离子体光谱分析.电子器件,2006,29(4):1372-1378.
    [225]Makita Y, Suzuki S, Kataura H et al. Synthesis of single wall carbon nanotubes by using arc discharge technique in nitrogen atmosphere. European Physical Journal D,2005,34(1-3):287-289.
    [226]Huang H J, Kajiura H, Tsutsui S et al. High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. The Journal of Physical Chemistry B,2003, 107(34):8794-8798.
    [227]Charlier A, McRae E, Heyd R et al. Classification for double-walled carbon nanotubes. Carbon,1999, 37(11):1779-1783.
    [228]Lyu S C, Lee T J, Yang C W et al. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chemical Communications, 2003(12):1404-1405.
    [229]Gruneis A, Saito R, Kimura T et al. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B,2002,65(15):155405.1-155405.7.
    [230]Smalley R E. From dopyballs to nanowires. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1993,19(1-2):1-7.
    [231]Ebbesen T W. Carbon nanotubes. Physics Today,1996,49(6):26-32.
    [232]Wilson M A, Patney H K, Kalman J. New developments in the formation of nanotubes from coal. Fuel,2002,81(1):5-14.
    [233]Ndaji F E, Thomas K M. The effects of oxidation on the macromolecular structure of coal. Fuel, 1995,74(6):932-937.
    [234]Geldard L, Keegan J T, Young B R et al. Pathways of polycyclic hydrocarbon formation during plasma arcing of carbonaceous materials. Fuel,1998,77(1-2):15-18.
    [235]Yu J L, Lucas J, Strezov V et al. Coal and carbon nanotube production. Fuel,2003,82(15-17): 2025-2032.
    [236]Qiu J S, Li Y F, Wang Y P et al. Production of carbon nanotubes from coal. Fuel Processing Technology,2004,85(15):1663-1670.
    [237]Wilson M A, Moy A, Rose H et al. Fullerene blacks and cathode deposits derived from plasma arcing of graphite with naphthalene. Fuel,2000,79(1):47-56.
    [238]Wei B, Zhang J, Liang J et al. The mechanism of phase transformation from carbon nanotube to diamond. Carbon,1998,36(7-8):997-1001.
    [239]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001, 291(5510):1947-1949.
    [240]Shi W S, Peng H Y, Wang N et al. Free-standing single crystal silicon nanoribbons. Journal of the American Chemical Society,2001,123(44):11095-11096.
    [241]Gao Y H, Bando Y, Sato T. Nanobelts of the dielectric material Ge3N4. Applied Physics Letters, 2001,79(27):4565-4567.
    [242]Bae S Y, Seo H W, Park J et al. Single-crystalline gallium nitride nanobelts. Applied Physics Letters, 2002,81(1):126-128.
    [243]Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts. Inorganic Chemistry,2002,41(20):4996-4998.
    [244]Wagner H D, Lourie O, Feldman Y et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Applied Physics Letters,1998,72(2):188-190.
    [245]Song J H, Wang X D, Riedo E et al. Elastic property of vertically aligned nanowires. Nano Letters, 2005,5(10):1954-1958.
    [246]Huang J Y, Chen S, Wang Z Q et al. Superplastic carbon nanotubes-Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature,2006, 439(7074):281-281.
    [247]Han X D, Zhang Y F, Zheng K et al. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Letters,2007,7(2):452-457.
    [248]Han X D, Zheng K, Zhang Y F et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Advanced Materials,2007,19(16):2112-2118.
    [249]Ilie A, Durkan C, Milne W I et al. Surface enhanced Raman spectroscopy as a probe for local modification of carbon films. Physical Review B,2002,66(4):045412-1-045412-13.
    [250]Bourrat X, Trouvat B, Limousin G et al. Pyrocarbon anisotropy as measured by electron diffraction and polarized light. Journal of Materials Research,2000,15(1):92-101.
    [251]Jellison G E, Hunn J D. Optical anisotropy measurements of TRISO nuclear fuel particle cross-sections:The method. Journal of Nuclear Materials,2008,372(1):36-44.
    [252]Koprinarov N, Konstantinova M, Pchelarov G. Growth of plasma pyrolytic carbon. Carbon,1994, 32(4):559-562.
    [253]Shi R, Li H J, Yang Z et al. Deposition mechanism of pyrolytic carbons at temperature between 800-1200 degrees C. Carbon,1997,35(12):1789-1792.
    [254]Lucas P, Marchand A. Pyrolytic carbon deposition from methane:An analytical approach to the chemical process. Carbon,1990,28(1):207-219.
    [255]Ismail I M K, Rose M M, Mahowald M A. Chemical vapor deposition of pyrolytic carbon on carbon substrates.1. Effect of substrate surface characteristics on the kinetics of deposition. Carbon,1991, 29:575-585.
    [256]Quli F A, Thrower P A, Radovic L R. Effects of the substrate on deposit structure and reactivity in the chemical vapor deposition of carbon. Carbon,1998,36(11):1623-1632.
    [257]Markovic Z, Todorovic-Markovic B, Marinkovic M et al. Temperature measurement of carbon arc plasma in helium. Carbon,2003,41(2):369-371.
    [258]Baek Y, Song Y, Yong K. A novel heteronanostructure system:Hierarchical W nanothorn arrays on WO3 nanowhiskers. Advanced Materials,2006,18(23):3105-3110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700