建筑保温隔热材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑节能是解决我国能源问题的根本途径,而建筑节能最直接有效的方法是使用保温隔热材料,胶粉聚苯颗粒保温浆料、EPS板、XPS板已成为我国三大主体保温隔热材料,另外,单组分聚氨酯泡沫(PU)填缝剂也成为建筑上主要的密封保温材料。然而,关于上述几种材料的导热性能方面的研究数据还很有限,尤其是缺少导热系数的数据及经验公式,在现有的设计手册中只有传统的保温材料如蛭石、膨胀珍珠岩等的经验公式。为了提高工程质量及节能效率、满足节能设计和产品验收的需求,有必要对上述几种保温隔热材料进行实验研究。本课题的实验设备及材料由常州工学院提供,主要结论如下:
     胶粉聚苯颗粒保温浆料性能研究:对实验周期(28天)内胶粉聚苯颗粒保温浆料的主要性能变化及各性能间的影响进行研究,得出:(1)通过实验发现,加水量多少对保温浆料的密度、导热系数、抗压强度有较大的影响;因此,在施工时,应严格按照材料厂家推荐的配料比例和要求进行浆料制备及施工;(2)在实验周期(28天)内,胶粉聚苯颗粒保温浆料的含水率、导热系数、抗压强度的变化非常显著,研究表明:导热系数、抗压强度的变化受含水率的影响最大,在实际施工时,胶粉聚苯颗粒保温浆料抹灰工序完成后应养护至少14天后,方可进行下一步护面层的施工,这样作为保温层的浆料才能充分发挥其良好的保温隔热、较高的机械强度等性能;(3)实验结束后,保温浆料的含水率仍很高(10%以上),且受自然环境的影响含湿率波动较大,所以导热系数、抗压强度等性能与产品说明中干燥状态时的数据有很大的差距,在热工设计及计算时,应以现场实测的数据为准。
     单组分聚氨酯泡沫(PU)填缝剂性能研究:通过反复实验,确定了振摇料罐的频率、振摇料罐后的最佳使用时间以及喷射形成的最佳泡柱直径;研究表明:聚氨酯泡沫填缝剂最佳密度值范围为22~26kg/m~3,当密度ρ<15kg/m~3或ρ>29.69kg/m~3,平均温度35℃时导热系数大于0.05W/(m·K),不满足相关标准的规定;对实验数据进行线性回归分析,得出不同密度填缝剂泡沫体的导热系数随温度变化的方程式,为工程测量及热工计算提供方便。
     EPS板、XPS板导热性能研究:通过实验测试,结合导热理论分析,得出不同干密度的EPS板和XPS板的导热系数与温度的关系式,以及EPS板和XPS板在一定含湿率时导热系数与温度的关系式。通过本次实验在一定程度上也说明了在保温材料市场中存在大量的不合格产品;因此,提出把好保温材料质量关、从源头保证工程质量的建议。
The construction energy conservation is a basic way to solve the energy question in our country. And the direct and effective method for energy efficiency in buildings is to use heat preservation and thermal insulation materials. Colloid powder polyphenylene grain thermal insulation mortar, EPS foam and XPS foam have become three major heat preservation and thermal insulation materials, moreover, the mono-component polyurethane foam (PU) sealing agent also becomes the main sealing and thermal insulation material used in buildings. However, it is also limited to study heat conduction performance about the above materials, lacking the data and the empirical formulas of the thermal conductivity in particular (only empirical formulas of the traditional thermal insulation materials, such as vermiculite and inflated pearlite, included in existing design handbook). So it is necessary to study the several materials in deep for improving the project quality and energy efficiency and satisfying the energy -saving design and the product acceptance testing.
     Research on the properties of colloid powder polyphenylene grain thermal insulation mortar: To test the main properties' changes and influence on each other during the experiment cycle (28d) ,and conclude:(1) It is discovered through the experiment that how much Water poured has tremendous influence on the density, the thermal conductivity and the compressive strength of the thermal insulation mortar. Therefore, the mortar preparation and the construction should be under the material factory's ingredient proportion and requests. (2) The main properties of the thermal insulation mortar, such as the moisture content, the thermal conductivity and the compressive strength, have remarkable changes during the experiment cycle (28d).The research indicated: the moisture content affects supremely the changes of the thermal conductivity and the compressive strength. In actual construction, it should maintain at least 14 days after the plastering procedure of thermal insulation mortar, then carries on the next step armor layer construction. Only thus can the mortar, as the heat insulating layer, fully display its good heat preservation and thermal insulation, high mechanical strength and so on. (3)After experiment, the mortar's moisture content is still high (above 10%), and is influenced by the natural environment. Therefore, the experiment data of thermal conductivity and compressive strength are very different from that of product instruction on the dry condition. So design and computation should take the scene actual data.
     Performance research on the mono-component polyurethane foam (PU) sealing agent: Through testing repeatedly, to determine the frequency of swaying the bucket," the best using period after swaying the bucket, as well as the best spraying column diameter. The research indicated that the best density value of polyurethane foam plate is 22~26 kg/m~3. Whereas, the densityρ<15kg/m~3 orρ>29.69kg/m~3, thermal conductivity is bigger than 0.05 W/(m·K) at the average temperature 35℃, which does not satisfy the correlation standard. Basing on the linear regression analysis to the empirical data, functions of conductivity versus temperature were obtained for PU foam boards of different density, which provides the convenience for the project survey.
     Heat conduction performance research on EPS foam and XPS foam: With tests and theoretical analysis about heat conduction, functions of conductivity versus temperature were obtained for different dry densities of EPS foam and XPS foam, as well as functions of conductivity versus temperature at containing certain water. To a certain extent, the test also demonstrates that there are massive unqualified products in the thermal insulation material market. Therefore, suggestion of "closing the good thermal insulation material quality and guaranteeing the project quality from the source" is given.
引文
[1]胡吉士,方子晋.建筑节能与设计方法:夏热冬冷地区暨浙江省《居住建筑节能设计标准》的应用[M].北京:中国计划出版社,2005.5
    [2]Gyoung-Seok Choi,Jae-Sik Kanga,Young-Sun Jeong,Seung-Eon Lee,Jang-Yeul Sohn.An experimental study on thermal properties of composition insulation[J].Thermochimica Acta 2007(455):75-79
    [3]林宇澄.外墙保温技术及节能材料[J].福建建材,2006,92(2):59-61
    [4]曲通馨.绝热材料与绝热工程实用手册[M]。北京:中国建材工业出版社,1998.7
    [5]Prof.Wang Tiehong.Expectation in Chance and Challenge of Technological Development in Building Industry in China.China Hangzhou(International)Optimum Human Settlements & Environment Seminar.April,2003:21-25
    [6]张德信.建筑保温隔热材料[M].北京:化学工业出版社,2006,2
    [7]中国建筑科学研究院,重庆大学.JGJ134-2001《夏热冬冷地区居住建筑节能设计标准》[S].北京:中国建筑工业出版社,2001
    [8]Kub Edward C.Ⅱ.Cracking in exterior insulation and finish systems[J].Journal of Performance of Constructed Facilities,1993,7(1):60-66
    [9]冯金秋.绝热材料性能特点及使用中需注意的问题[A].2005年绝热隔音材料轻质建筑板材新技术新论文集[C],2005
    [10]冯金秋.常用绝热材料使用要领[J].建设科技,2004,11
    [11]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003
    [12]Naziev M,Naziev D,Gasanov V G.Determination of the effect of variability of the thermal properties of materials when measuring thermal conductivity using steady-state thermal methods[J].Measurement Techniques,2004,47(1):73-77
    [13]Konstantin B.Determination of the thermal conductivity coefficient of superhard material[J].Powder Metallurgy and Metal Ceramics,2003,42(5/6):310-315
    [14]Saleh A.AI-Ajlan.Measurements of thermal properties of insulation materials by using transient plane source technique[J].Applied Thermal Engineering,2006(26):2184-2191
    [15]邹宁宇,鹿成滨,张德信.保温隔热材料应用技术[M].北京:中国石化出版社,2005
    [16]倪文,张丰收.绝热材料的优化设计[J].新型建筑材料,2001,(2):31-33
    [17]D.Salmon.Thermal conductivity of insulations using guarded hot plates,including recent developments and sources of reference materials[J].Meas.Sci.Techn01.2001(12):89-98
    [18]林中鹤.稳态平板法实验样品的绝热分析[J].华中师范大学学报,1994,28(1):56-58
    [19]聂玉强,翼兆良.防护热箱法测试试验装置的设计[J].节能技术,2002,3:3-5
    [20]周景德,管康雄.绝热材料及其构件绝热性能测试方法回顾[J].房材与应用,2001,1:8-12
    [21]李雪,张双喜.绝热材料性能的试验研究[J].青岛建筑工程学院学报,1998,431-36
    [22]高相斌,刘晓燕,邵丽君.平板法及圆管法绝热材料导热系数测试[J].油气田地面工程,2002,4:119-120
    [23]项雷军,郑力新.基于ARM的万能材料试验机控制器[J].机械与电子,2007,2:23-25.
    [24]栗静娴,秦忠民.一种新型节能墙体保温材料——胶粉聚苯颗粒浆料[J].节能,2003,5:35-36
    [25]于建.ZL 胶粉聚苯颗粒保温材料及其成套技术简介[J].工程建设信息,2003,3:64-65
    [26]郝先成.节能型外墙保温隔热材料系统研制与应用[D].硕士学位论文.2006,4
    [27]陈明凤,瞿金东,彭家惠等.EPS保温砂浆的耐候性、抗裂性及其机理[J].建筑技术开发,2002,29(3):41-42
    [28]阎春霞,李志国.保温料浆中有机胶结料的应用及其作用[J].低温建筑技术,2004,3:71-72
    [29]桑国臣.节能环保型保温材料的研制[D].硕士学位论文.2004,6
    [30]中国建筑标准设计研究所,北京振利高新技术公司.JG158-2004《胶粉聚苯颗粒外墙外保温系统》[S].北京:中国标准出版社,2004
    [31]陕西省建筑科学研究设计院.JGJ-90《建筑砂浆基本性能实验方法》[S].北京:中国建筑工业出版社,1991.
    [32]河南建筑材料研究设计院.GBT20473-2006《建筑保温砂浆》[S]北京:中国标准出版社,2007
    [33]程蓬.影响蒸压灰砂加气混凝土抗压强度的因素研究[J].新型建筑材料,2004,9:1-3
    [34]狄超.单组分聚氨酯泡沫填缝胶的研究[J].硕士学位论文,2004,12
    [35]李秀娟.单组分硬质聚氨酯泡沫塑料的试制[J].聚氨酯工业,1994(1):35
    [36]王静华.单组分聚氨酯发泡填充剂[J]..新型建筑材料,1998(7):35
    [37]毛建军.单组分聚氨酯泡沫填缝剂的现状及发展[J].气雾剂通讯,2001,(6):29-33
    [38]李俊贤.塑料工业手册[M].北京:化学工业出版社,1999,7
    [39]姜继圣,罗玉萍,兰翔.新型建筑绝热、吸声材料[M].北京:化学工业出版社,2002.8
    [40]国家建筑材料工业局标准化研究所,东元公司.JC936-2004《单组分聚氨酯泡沫填缝剂》[S]北京:中国建材工业出版社,2005
    [41]丁苏华,段林丽.单组分聚氨酯泡沫填缝剂的性能及测试方法研究[J].新型建筑材料,2003,(10):1-4
    [42]上海市塑料制品工业研究所.GB/T6343-1995《泡沫塑料和橡胶表观(体积)密度的测定》[S].北京:中国标准出版社,2003
    [43]河南建材研究设计院,中国预防医学科学院卫生研究所.GB10295-88《绝热材料稳态热阻及有关特性的测定热流计法》[S]北京:中国标准出版社,1996
    [44]中国科学院数学研究所树立同济组编写.回归分析方法[M]北京:科学出版社,1974
    [45]Booth L.D.Radiation contribution as an element of thermal conductivity[J].Polyurethanes World Congress,1987:85-90
    [46]D.Baillis et al.Identification of spectral radiative properties of polyurethane foam from hemispherical and bi-directional transmittance and reflectance measurements[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2002(73):297-306
    [47]Ganesh Venkatesan et al.Measurement of thermophysical properties of polyurethane foam insulation during transient heating[J].International Journal of Thermal Sciences,2001(40):133-144
    [48]冯金秋.模塑聚苯乙烯泡沫塑料性能特点及使用中需注意的问题[J].工程质量,2003,10:38-40
    [49]周雍.建筑传湿的不利影响及处理原则[J].沈阳建筑工程学院学报,1999,2
    [50]王章兴.拭谈XPS板与EPS板的区别[J].中州建设,2006,11:40
    [51]黄清.新型的保温材料——挤塑聚苯乙烯保温板的制备[J].甘肃科技,2004,11:36-38
    [52]国家建筑材料工业局标准化研究所,轻工业塑料加工与应用研究所等.GB/T10801.2-2002.热用模塑聚苯乙烯泡沫塑料(EPS)[S].北京:中国标 准出版社出版,2002
    [53]国家建筑材料工业局标准化研究所,轻工业塑料加工与应用研究所等.GB/T10801.2-2002.热用挤塑聚苯乙烯泡沫塑料(XPS)[S]北京:中国标准出版社出版,2002
    [54]A.Kerestecioglu,L.Gu.Theoretical and computational investigation of simultaneous heat and moisture in buildings:evaporation and condensation theory[J].ASHRAE Transactions,1990,96(part1):455-464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700