高层建筑外墙的保温与节能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高层、超高层建筑的大量建造,建筑能耗不断加剧,而能源短缺又日益严重,因此建筑节能变得尤为重要。外墙是建筑围护结构最主要的部分,通过外墙传热所造成的能耗损失约占建筑外围护结构总能耗损失的48%,因此,研究高层建筑外墙的保温节能特性是十分必要的。
     首先,对哈尔滨地区几个典型结构高层建筑外墙的传热系数及温度场进行了现场检测。结果表明,高层框架结构外墙和剪力墙结构外墙相比,前者的保温材料厚度可相对小些,保温材料性能可相对差些;同时,建议后者选用高效保温材料。另外,供暖模式影响墙体内表面温度及热流密度的变化幅度。
     其次,对检测过程的影响因素给予了分析。分析表明,墙体传热阻的检测误差受墙体热惰性、室外风速以及热流计本身的影响。给出了相应的修正公式。
     再次,基于检测中墙体传热过程的非稳态数值模拟,验证了本文选用的数值模拟方法的可行性。通过对比分析不同保温形式的优缺点,以及模拟不同保温形式下外墙内表面温度的稳定性和墙体结构层的温差,说明外保温体系的优势。
     另外,对墙体的衰减倍数和延迟时间进行了研究。证明二者受墙体保温形式,墙体结构层材料以及保温材料的影响。建议哈尔滨地区,保温材料选用挤塑苯板,结构层优先选用陶粒空心砌块。
     最后,以哈尔滨地区某一框架结构高层建筑为例,分析了保温材料的最优厚度。计算出了哈尔滨地区高层建筑常用的外保温墙体保温层最优厚度,并通过经济回收期的计算,证明外保温墙体既节能又省钱。
With the construction of high-rise and extra-high-rise buildings, building energy consumption intensifies unceasingly. At the same time, the energy shortage becomes serious day by day. Therefore, building energy-saving becomes especially important today. The external wall, being the most important part of the building envelope, creats nearly 48 percent of the total energy loss caused by the building envelope. So, the research of the thermal insulation performance of the external wall in high-rise buildings is extremely essential.
     First, the heat transfer coefficient and the temperature fields of several typical external wall of high-rise buildings in Harbin were measured on site. Through the contrast of the external wall of high-rise frame and shearwall structure buildings, we can include that the thickness of insulating materials of the former one can be relatively thinner, and the thermal performance could be relatively poorer. And, high efficient thermal insulating materials are commended for the latter one. Besides, the change of the heat flow and the change of the temperature of the internal surface of the wall are both influenced by the heatingmode.
     Secondly, some factors influencing the process of the tests have been analyzed. The results show that the measure error of the thermal resistance of the wall is influenced not only by the thermal inertia of the wall, but also by the wind speed outdoors, as well as the heat flow meter itself. In addition, the thermal resistance has been modified in this paper.
     Thirdly, based on transient thermal transfer simulation of the walls which were tested, the simulation method chosen in this paper was proved feasible. Through the contrast of the good points and bad points of the different ways of heat preservation, as well as the simulation of the stability of the internal surface temperature of the wall and the temperature difference of the main body of the wall, the advantage of the external thermal insulation has been displayed.
     In addition, on the base of the research of attenuation multiple and delay time, we include that they are both influenced by the ways of heat preservation, the type of the main body materials, as well as the thermal insulation materials. So, the structure with ceramsite hollow block for the main body of the wall and XPSpanels for the insulation material, is suggested in Harbin area.
     Finally, taking a frame structure high-rise building in Harbin for example, the optimal thickness of insulation material has been analyzed. In this chapter, the optimal thickness of insulation materials, which are commonly used in the external insulated walls of high-rise buildings in Harbin, are displayed. What's more, by means of the calculations of the economic recovery period of insulating system, we can see that external insulated walls save both energy and money.
引文
[1] 陈荣华.建筑节能发展及其技术应用.中国勘查设计.2005(4):50-52页
    [2] 杨西伟,李萍.关于推进建筑节能工作的思考.建设科技.2003(8):8页
    [3] 王铁宏.对发展节能省地型住宅与公共建筑:工作的研究与思考.建筑学报.2005(5):18-20页
    [4] 王素霞.国外建筑节能与保温材料一瞥.砖瓦.2005(10):57页
    [5] 郑鸿.夏热冬冷地区混凝土小型空心砌块保温与节能分析.天津大学博士学位论文,2006:8-9页
    [6] Z.H. Kodah, M. A. Jarrah, N. S. Shanshal. Thermal characterization of foam-cane (Quseab) as an insulant material. Energy Conversion & Management. 1999(40): 349—367P
    [7] H. Asan. Investigation of wall's optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy and Buildings. 2000(32): 197—203P
    [8] Mousa S. Mohsen. Some prospects of energy savings in buildings. Energy Conversion and Management. 2001(42): 1307-1315P
    [9] Elisabeth Kossecka, Jan Kosny. Influence of insulation configuration on heating and cooling loads in a continuously used building. Energy and Buildings. 2002(34): 321-331P
    [10] Fernando Branco, Antonio Tadeu, Nuno Simoes. Heat conduction across double brick walls via BEM. Building and Environment. 2004(39): 51-58P
    [11] Recep Yumrutas, Mazhar Unsay, Mehmet Kanoglu. Periodic solution of transient heat flow through multilayer walls and flat roofs by complex finite Fourier transform technique. Building and Environment. 2005(40):1117-1125P
    [12] 李德荣,刘明明,杨星虎.上海地区混凝土空心砌块住宅建筑节能技术研究.新型建筑材料.1999(6):10-14页
    [13] 曲南.采暖地区自然气候条件下建筑围护结构传热过程的数值模拟.中国建筑科学研究院硕士学位论文.2001:27-30页
    [14] 贾永英.墙体热传递过程数值模拟.应用能源技术.2001(3):28-30页
    [15] M. Bojic, F. Yik, W. Leung. Thermal insulation of cooled spaces in high rise residential buildings in Hong Kong. Energy Conversion and Management. 2002(43): 165-183P
    [16] 樊洪明,曾剑龙,简毅文,江亿.围护结构三维导热数值仿真研究.建筑技术.2002,33(10):736-738页
    [17] 高岩,赵立华,张泓森.复合混凝土砌块热工特性研究.哈尔滨工业大学学报.2003,35(7):866-868页
    [18] 王甲春,阎培渝.外墙外保温系统对室内热舒适性的影响.新型建筑材料.2004(11):36-38页
    [19] 伍志东.寒冷地区建筑外墙保温技术性能评价.西安建筑科技大学硕士学位论文.2005 .
    [20] 许景峰.间歇采暖条件下建筑围护结构热工性能评价研究.重庆大学硕士学位论文.2005
    [21] 吴雪岭,徐庆鸿.寒冷地区节能65%墙体材料选择.新型墙材.2007(3):50-52页
    [22] 陆要武,金玉时,杨怀君.普通混凝土小型空心砌块在高层建筑的施工实践.点击新型墙材.2003(1):30-32页
    [23] 潘雷,陈宝明,方肇洪,韩保华.热箱法现场检测建筑物围护结构热 阻的探讨.建筑热能通风空调.2005(2):74-80页
    [24] 范宏武,邢大庆,王吉霖等.建筑物围护结构传热系数现场检测技术.上海计量测试.2005(3):13-15页
    [25] 孙增桂,郑宜.热流计法在建筑节能检测中的应用.建设科技.2003(6):78-79页
    [26] 中华人民共和国行业标准.民用建筑热工设计规范GB50176-93.北京:中国建筑工业出版社,1993
    [27] 刘念雄,秦佑国编著.建筑热环境.北京:清华大学出版社,2005:149—150页,157—159页
    [28] 曲通馨,张德信编著.绝热材料与绝热工程实用手册.北京:中国建材工业出版社,1998
    [29] 戴自祝等编著.热流测量与热流计.北京:计量出版社,1986
    [30] 朱德忠等编著.热物理测量技术.北京:清华大学出版社,1990
    [31] 李超,肖劲松.张敏.马重芳.热流计测量精度影响因素的数值分析.节能.2005(2):3-7页
    [32] 温周平,王丹.东北地区高层建筑外墙外保温体系的研究.技术交流.2004(5):25-27页
    [33] 杨嗣信,吴琏.几种外墙外保温做法的探讨.施工技术.2002,31(8):21-22页
    [34] 彦启森,赵庆珠编著.建筑热过程.北京:中国建筑工业出版社,1986:37页
    [35] 章熙民,任泽霈,梅飞鸣编著.传热学.北京:中国建筑工业出版社,1993:86-90页
    [36] 韩占忠,王敬,兰小平编著.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004:21页
    [37] 戎卫国等编著.民用建筑热工设计应用图说.山东:山东科学技术出版社,2005:119-121页
    [38] 胡智敏,曾令可,吴建青,刘振群.周期性变化边界条件下窑墙非稳态导热的数值模拟.硅酸盐通报.1997(4):4-9页
    [39] 杨艺,邓启红,时冰冰.建筑墙体的延时与削弱作用.建筑热能通风空调.2005,24(4):66-70页
    [40] 赵金玲,庄智,李伯军.建筑围护结构保温层经济厚度计算方法的研究.建筑热能通风空调.2005,24(3):65-68页
    [41] 黄春华,叶勇军.节能建筑外墙保温层厚度的经济性优化.建筑热能通风空调.2005(12):73-76页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700