城市隧道建设对地表建筑物的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市交通事业的发展,地下隧道工程日益增多。由于城市环境的复杂性,隧道施工将会经常出现穿越或邻近密集建筑群的情况,从而影响建筑物的安全和正常使用。因此,研究隧道施工对地表建筑物的影响是非常必要的。
     本文结合厦门机场路一期工程JC2、JC3标段工程中隧道邻近或穿越地表建筑物的实际,采用理论分析、施工监测和数值模拟相结合的方法,比较系统地研究隧道施工对周边建筑物的影响,主要研究内容和成果如下:
     (1)通过理论分析,探讨隧道开挖造成的地层移动和变形产生的机理,分析表明,开挖造成的地层移动和变形主要由以下几方面组成:施工引起的地层损失、周围地层孔隙水的变化、受剪破坏的重塑土再固结以及衬砌变形等,其中地层损失和地层疏水引起的地表移动和变形是主要部分;通过随机介质理论分析隧道开挖深度、开挖断面大小和地层条件对隧道施工中地表移动和变形的影响,结果表明,当隧道埋深增大时,地表的位移和变形值也都相应减小;地表位移和变形、沉降槽的宽度均随隧道开挖半径的增大而增大。对于软弱地层,开挖影响范围大;对于较坚硬的地层,开挖影响范围小。
     (2)对JC2、JC3标段工程中隧道穿越的地表建筑物进行了安全监测,通过分析监测结果,得出不同结构型式、不同高度建筑物的沉降及裂缝的分布及其随施工过程而演化发展的规律:连拱隧道CRD法施工中,掌子面CRD1~4开挖期间对混合结构沉降影响最大,掌子面CRD1~5开挖期间对框架结构影响最大;裂缝多处于纵墙门窗洞口的对角处,沉降较大一侧的上角和沉降较小一侧的下角表现为开裂或者是已有裂缝的开展,沉降较大一侧的下角和沉降较小一侧的上角表现为已有裂缝的闭合;隧道施工穿越建筑物时间较长,建筑物沉降较大,裂缝宽度开展变化也较大;框架结构抵御隧道施工引起环境变化的能力强于混合结构的;低层建筑抵御隧道施工引起环境变化的敏感度高于多层建筑的。
     (3)基于岩石爆破理论和爆破地震波的特性,针对我国《爆破安全规程》(GB6722-2003)中地表建筑物的爆破振动判据的不足,即因忽略结构物本身的自振特性而不能充分反映爆破振动对建筑物的影响,提出了建筑物爆破振动安全判据的建议:对建筑物进行振动危害评价及确定建筑物的破坏判据时,应考虑爆破地震波的振动主频和建筑物自振频率的影响,并采用相关爆破规程中关于此类建筑物抗爆破振动的质点速度作为安全判据。
     (4)对地表建筑物在爆破地震波作用下的动力响应进行了理论分析,结果表明:爆破地震波幅值越大,地表建筑物振动的幅值也就越大;在线性反应中,只要爆破地震波卓越频率接近地表建筑物自振频率,线性变形就会加大;在非线性反应中,若爆破地震波的卓越频率接近或大于地表建筑物的自振频率,在结构反应进入非线性阶段后,变形会减小或停止加大。若爆破地震波的卓越频率小于地表建筑物的自振频率,在结构反应进入非线性阶段后,变形可能会进一步加大;爆破振动的持续时间越长,其强迫振动引起的位移幅值出现的次数也就越多。
     (5)运用数值模拟方法,对爆破地震波作用下建筑物的动力响应进行了模拟分析,提出如下建议:为保证建筑物在爆破地震波作用下的安全及正常使用,减小爆破地震波的最大振速,增加爆破地震波的主频,使其远离结构的自振频率,减小建筑物和爆破地震波之间的共振效应。
Nowadays, with urban traffic developing rapidly, the amount of underground tunnel projects has had an augmentation. Tunnel projections are constructed near or even across districts with the high density of buildings frequently due to the complexity of urban environment, increasing the risk of unsafety for their surroundings. On the ground of that, researches on how tunnel constructions affect the buildings on the earth surface are very necessary.
     Considering the environment of the projection sections (Xiamen JiChangLu project JC2and JC3), including the surface buildings which are nearby or even across the projection sections, the influence of tunnel constructions on the surrounding buildings are compared systematically with the use of three methods(theoretical analysis, construction monitoring and numerical simulation). The main research contents and results are as follows:
     (1) Through theoretical analysis, the mechanisms of the strata movement and deformation caused by tunnel excavation are discussed in this paper, indicating that the strata movement and deformation mainly result from following aspects:the strata loss caused by construction; the change in the amount of peripheral pore water; the reconsolidation of the remolded soil which are subjected to shear failure; lining deformation and so on, among where strata formation and water loss have play critical roles in the strata movement and deformation. On the basis of the random medium theory, during the tunnel construction process, the effects of excavation depth, the excavation section size and formation condition on the surface movement and deformation are analyzed. It could be concluded that, with the depth of tunnels increasing, the surface displacement and deformation value corresponding decrease; with the excavation radius increasing, the surface displacement and deformation as well as the width of settling tanks have a rise. Soft strata are larger than hard strata, in terms of excavation influence range.
     (2) The surface buildings which are across the projection sections (JC2JC3) have done safety monitoring. Based on those statistics, the settlement and the distribution of cracks are obtained for different structure types and heights, and the corresponding laws of development are documented:under the multiple arch tunnel construction of CRD method geology and hydrogeology conditions, project CRD1-4have the biggest effect on the settlement of mixed structures while project CRD1-5have the biggest effect on the settlement of frame structures. Cracks emerge in the diagonal sections of the vertical walls involving window or door openings more frequently, in which cracking or the development of existing crack appear near the corner of the upside of the larger settlement side and the downside of the less settlement side while cracking at other place has been closed; during the long period of construction, the settlement of specific buildings and the width of cracking increase. Frame structures with high height are stronger than mixed structures with low height, in terms of the capacity of resisting the changes occurred by tunnel construction.
     (3) Based on the rock blasting theory and the properties of blasting seismic waves, aimed at the defects in(GB6722-2003) about the blasting vibration criterion for surface buildings, that is not full to reflect the influence of the blasting vibration on buildings due to ignoring structures itself vibration characteristics, the advice about the building safety criterion has been proposed:when the risk assessment and the destroyed criterion of buildings are being determined, the influence of the vibration frequency of the blasting seismic waves and buildings themselves should been taken into consideration; according to related rules, the blasting vibration particle velocities are used as safety criterion.
     (4) The dynamic responses of surface buildings under blasting seismic waves have been analyzed. The theory analysis deduce results, showing that:amplitude of the surface vibration increase with the rise of blasting seismic waves; in nonlinear reaction, if the value of EDFR close to that of natural frequencies of surface buildings, linear deformation will be on the rise; when it comes into the nonlinear phase, if the value of EDFR close to or even larger than that of natural frequencies of surface buildings, deformation will be in decline or stop to rise, while quite the reverse is true. The longer the blasting vibration last, the more frequently the amplitude of vibration displacement occurred.
     (5) Dynamic responses of the buildings under blasting seismic waves have been on the simulation analysis with the use of the finite element method; relative suggestions are proposed as follows:to ensure the buildings under blasting seismic waves can be used safely, for the blasting seismic waves, the vibration velocity should be reduce while the natural frequency should increase, making it far away from the natural frequency of the structure itself and reducing the resonance effect between the building and blasting seismic waves.
引文
[1]阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社,2002.
    [2]Martos F.,Concerning an approximate equeation of subsidence trough and its time factors.[M]. Proc. of the International Strata Control Comtrol Congress,Leizig,1958.
    [3]Peck R.B, Deep excavations and tunnelling in soft ground,State of the Art Report. Proc. 7th Int. Conf. on Soil Mechanics and Foundation Engineering[C]. Mexico City,1969.225-290.
    [4]Attewell P.B.,Yeates J. and Selby A.R.,Soil movement induced by tunnelling and the effects on pipelines and structures[M],Blackie and son,London,1986
    [5]M.P.O.'Reilly,B.M. New,Settlements above tunnels in the UK-their magnitude and prediction[C], Tunnelling'82,1982.173-181
    [6]Barry M.New, M.P.O.'Reilly, Tunnelling induced ground movement:predicting the magnitude and effects[C], in:James D Geddes eds.,Proc.4th International Conference on Ground Movements and Structures,Pentech Press, London,1992.671-697
    [7]T.Kimura, R.J.Mair, Centrifugal testing of model tunnels in soft clay[C], Proc. of Int. Conf. Soil Mechanics & Foundation Engineering, Stockholm, Balkema,1981
    [8]O.'Reilly M.P et al, Long settlemennts over tunnelling [C], an 11 year study at Grimsby, Tunnelling'91,1991
    [9]Fujita K., Prediction of surface settlements caused by shield tunnelling[C], Proc. of Int. Conf. on Soil Mechanics, Mexico City,1982.239-246
    [10]T. Nomoto,H. Mori, M. Matsumoto, Overview of ground movement during shield tunnelling:A survey on Japanses shield tunnelling, in:Fujita & Kusakabe eds., Proc. Underground Construction in Soft Ground, Balkema, Rotterdam,1995.345-351
    [11]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993(4)
    [12]Litwiniszyn J, Fundamental principles of the mechanics of stochastic medium[C], Proc. of 3rd Conf. Theo. Appl. Mech., Bongalore, India,1957
    [13]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报.1995,14(4):289-296
    [14]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991
    [15]Lee KM,Rowe K. Analysus of three dimensional ground movements [J]. the Thunder Bay tunnel.Can Geotech J.1991.28(1):25-41
    [16]刘洪洲,孙钊.软土隧道盾构推进中地面沉降影响因素的数值法研究[J].现代隧道技术.2001,38(6):24-28
    [17]申玉生,高波.大跨度铁路车站隧道施工过程弹塑性有限元数值分析[J].铁道标准设计.2007(z1):45-47
    [18]吴波,高波索,等.地铁隧道开挖与失水引起地表沉降的的数值分析[J].中国铁道科学.2004,25(4):59-63
    [19]施建勇,张静,等.隧道施工引起土体变形的半解析分析[J].河海大学学报.2002.30(6):48-51
    [20]孙钊,刘洪洲.上海地铁交叠盾构隧道施工变形问题[J].同济大学学报.2002,30(4):379-385
    [21]Toshi Nomoto,Shinichiro Imamura,et al,Shield tunnel construction in centrifuge[J],J. of Geotechnical and Geoenvironmental Engineering,125(4),1999.289-299
    [22]Takao Shimada et al,隧道开挖中的地表下沉模型试验[J].隧道译丛,1983(1)
    [23]T.Kimura, R.J.Mair,Centrifugal testing of model tunnels in sofy clay[C],Proc. of Int. Conf. on Soil Mechanics,Mexico City,1982.239-246
    [24]Mroueh H, Shahrour I Afull 3-D finite element analysis of tunneling-adjacent struetures interaction[J].ComPuters and Geotechnics,2003,30:245-253
    [25]Jenck O,Dias D.3D-finite difference analysis of the interaction between concrete building and shallow tunneling[J].Geoteehnique,2004,54(8):519-528
    [26]L. T. Chen,H. G. Poulos,et al.Pile response caused by tunneling[J]. Journal of geotechnical and geo-environment engineering.MARCH 1999.201-205.
    [27]Chungsik Y, Jae-Hoon K. A web-based tunnelling-induced building utility damage assessment system:TURISK[J].Tunnelling and Underground Space Technology, 2003,18(5):497-511
    [28]Richard J, Finno, Frank T, et al. Evaluating damage potential in buildings affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engneering, 2005,131(10):1199-1210
    [29]施成华,彭立敏,刘宝琛浅埋隧道开挖对地表建筑物的影响[J]岩石力学与工程学报,2004,23(19):3310-3316
    [30]杨海朋.施工过程中浅埋隧道自身性状及上部建筑物沉降变形的数值分析[D].长沙:湖南大学,2007
    [31]俞凯.城市地铁隧道施工沉降对邻近建筑的影响研究[D].成都:西南交通大学,2008
    [32]郭军.地铁隧道开挖诱发的地表沉降对邻近建筑结构的影响研究[D].北京:北京工业大学,2005
    [33]刘海燕.隧道开挖对地面建筑结构的影响研究[D].安徽:安徽理工大学,
    [34]滕红军.城市隧道穿越地面建筑物的安全风险控制[D].北京:北京交通大学,2007
    [35]Carlos Lopez. Drilling and Blasting of Rocks[M]. Printed in Netherlands,1995
    [36]Ghosh A., Deamen J.k. Simole New Blast Vibration Predietor Based on Wave Propogation Laws[C].24th Symposium on Rock Mechanics,1983
    [37]Ghosh A., Deamen J.k. Statistie-A key to Better Blast Vibration Predietions[C]. Proc. 27th US Symposium on Rock Mechanics,1985,1141-1149
    [38]Anderson D. A. et al. Synthetic Delay Versus Frequency Plots For Predicting Ground Seissmic Analysis And Distomination.Washington,DC,1983,70-74
    [39]Anderson D.A. et al, A Method Site-specific Prediction and Control of Ground Vibration From Blasting[C]. Proc.15th Symposium Explosives and Blasting Reserch, 1985,28-42
    [40]Hizen K.G. et al. A New Approach to Predit and Reduce Blast Vibration by Modelling of Seismograms and Using a New Ekectronic Initiation System[C]. Proc 13th Conf. Explosives and Blasting Techniques,144-161,1988
    [41]Blair D.P. Blast Vibration Control in The Presence of Delay Seatter and Random Fluetuations Between Blast Holes[J].Number Analysis Methods Geomech,1993,19(2), 95-118
    [42]吴腾芳,王凯,季茂荣等.反应谱分析在工程微差爆破地震监测中的应用与研究[J].兵工学报,1998,19(3),271-274
    [43]张奇等.Experimental Research on Amplitude Change of Blasting Seismic Wave with Topography[J]. Journal of Beijing Institute of Technology.9(3),237-242
    [44]韩子荣.金川矿区露天地下联合开采的爆破震动安全评定[J].矿业工程,1985(1),1-6
    [45]张永哲等.爆破地震波传播特性研究[J].矿业研究与开发.2007,27(6):68-72
    [46]刘军,吴从师.建筑结构爆破震动响应的时程预测[J].矿冶工程,2000(4):111-115
    [47]吴从师,吴其苏.爆破地震模拟初探[J].爆炸与冲击,1990,10(2):170-175
    [48]李洪涛.基于能量原理的爆破地震效应研究[D]湖北:武汉大学,2007
    [49]吴浩艺,刘慧,史雅语,杨年华.邻近侧向爆破作用下既有隧道减震问题分析[J].爆破.2002,19(4):74-78
    [50]许海亮,张继春,郭建群.钻孔爆破中质点振动速度的预测公式探讨[J].爆破.2003,20(3):75-78
    [51]张玉成.城市复杂环境下水下爆破施工对既有建(构)筑物的影响及减震技术研究[D].湖北:武汉大学,2010
    [52]C.H.Dowding. Blast Vibration Mornitoring and Control[M]. North-Holland Publishing Company, Amsterdam,1995
    [53]I.Farhoom, E. Wilson. A Nonlinear Finite Element Code for Analyzing The Blast Response of Underground Stucture[D].University of California Berkkeley, Califonia.1970
    [54]G. I. Taylor. Analysis of Explosion of a Long Cylindrical Bomb Detonated at One End[M]. Published by Chapam and Hall.1941
    [55]Rander-Pehrson, Glenn. An Improved Equation for Calculating Fragment Ballistics[J]. Daytonnaahailton Daytona Beach, Florida:Physics Publishing.1977,25(2):23-27
    [56]Yu. T. R. New blast criterial for underground blasting[J].1996,89(998):139-145
    [57]Stephen. D. Butt. Analysis of high frequency microseismicity recordedgeophsics at an underground hard rock mine[J]. Pure and appllied geophsics.1997(150):693-704
    [58]赵以贤.爆炸荷载作用下地下拱形结构应力分析[J].南京理工大学学报.1995,19(6):561-564
    [59]谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报.2003,22(2):281-285
    [60]刘国华,王振宇.爆破盒子啊作用下隧道的动态响应与抗爆分析[J].浙江大学学报.2004,38(2):204-209
    [61]毕继红,钟建辉.邻近隧道爆破震动对既有隧道的影响研究[J].工程爆破.2004,10(4):36-73
    [62]彭道富,李忠献,杨年华.近距离隧道爆破队既有隧道振动影响[J].中国铁道科学.2005,26(4):73-76
    [63]刘世波,翟永昌,杨年华.隧道与路基爆破振动检测评价[J].铁道建筑.2006,12:63-65
    [64]陈泽观等.新爆破安全判据下房屋安全监测与控制[J].西部探矿工程.2006,12:194-196
    [65]付士根,许开立.爆破震动效应预报及减振分析[J].中国安全生产科学技术.2006,2(6):45-48
    [66]孙钧.盾构隧道施工的土体扰动及其环境稳定与控制[C].1999年海峡两岸都市公共工程学术暨实物研讨会论文集.上海土木工程学会.1999.10.21,314-333
    [67]刘宝琛,廖国华,颜容贵.采煤岩层及地表移动基本规律[M].长沙岩石力学工程技术咨询公司,1987.
    [68]刘建航,侯学渊主编.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [69]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社,1994
    [70]中华人民共和国煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,1985
    [71]周国铨,崔继宪等.建筑物下采煤[M].北京:煤炭工业出版社,1983
    [72]张顶立,李鹏飞,侯艳娟等.浅埋大断面软岩隧道施工响下建筑物安全性控制的试验研究[J].岩石力学与工程学报,2009,1(28):96-102.
    [73]龚建伍,郭金芳,徐礼华等.工程建筑物变形观测若干问题探讨[J].勘察科学技术.2003,第6期:24-26
    [74]徐礼华,艾心荧,余佳力等.厦门机场路隧道施工对砌体结构建筑物的影响分析[J].岩石力学与工程学报,2010,29(3):583-592
    [75]钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报,2009,28(10):1946-1968
    [76]孟吉夏,惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992
    [77]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.5
    [78]Midlin R D etal. Effcts of an Oscillating Tangential Force on The contact surface of elastic spheres. Proc.1st US Con. Appl.Mech,1953,203-208
    [79]Duffy J, Mindlin R D. Stress-strain Relations and Vibration of a Gaunrlar Medium[J].Appl.Mech,1957, (24):585-593
    [80]Walsh J B. The Effect of Crack on The Comperssibility of Rock[J]. Geophys. Res,1965, (70):381-389
    [81]Mavko, Nur. Wave Attention in a Partually Saturated Rocks[J]. Geophysics. 1979,(44):161-178
    [82]Mason W P, Marfurt K J etal. Internal Friction in Rocks[J]. Acoust, Soc, Am.1978, (63):1596-1603
    [83]Savage J C. Theroelastic Attenuation of Elastic Waves by Cracks[J]. Geophys, Res. 1966, (71):3929-3938
    [84]Armstrong B H. Frequency-independent Background Internal Friction in Heterogencous Solids[J].Geopgys.1980,(45):1042-1054
    [85]White J E. Seismic Waves:Radiation, Transmission and Attenuation. McGraw-hill. 1965,302
    [86]White J E, Walsh D J. Proposed Attenuation-dispersion Pair for Seismic Waves[J]. Geophysics.1972, (37):456-461
    [87]White J E. Seismic Reflection form Gas Reservoirs. Final report,, Nat.Sci, Foundation, Cont.No.AER 75-1726,1997,122
    [88]Plona T J. Observation of a Second Bulk[J].Compressional Wave in Aporous Medium at Ultrasonic Frequecy.Appl.Pys.Lett.1980, (36):259-261
    [89]Dutta N C. Theoretical Analysis of observed Second Bulk Compressional Wave in a Fluid-saturated Porous Solid at Ultrasonic Frequecy[J]. Appl.Phys.Lett.1980, (37):898-990
    [90]吕淑然.露天台阶爆破地震效应[M].北京:首都经济贸易大学出版社,2006.12
    [91]李夕兵,古德生.岩石冲击动力学[M].湖南:中南大学工业出版社,1994
    [92]张雪亮,王树堂.爆破地震效应[M].北京:地震工业出版社,1981
    [93]李翼棋,马素贞.爆炸力学[M].北京:科学出版社,1988
    [94]黄志强.建筑结构对爆破震动响应的数值模拟研究[D].湖北:武汉科技大学,2003
    [95]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993
    [96]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981
    [97]建筑振动工程手册[M].北京:中国建筑工业出版社,2002
    [98]刘慧,王中黔.爆破振动的分型特征初探[C].第六届全国工程爆破学术会议论文集.1997:762-764
    [99]魏晓林.爆破震动对邻近建筑物的危害影响[J].爆破.1998,15(1):48-54
    [100]叶海旺,房泽法,彭志刚.爆破地震对结构的影响[J].爆破.2000,17(1):86-91
    [101]阳生权,廖先葵,刘宝琛.爆破地震安全判据的缺陷与改进[J].爆破与冲击.2001,21(3):223-227
    [102]吴德伦,叶晓明.工程爆破安全振动速度综合研究[J].岩石力学与工程学报.1997,16(3):266-273
    [103]张志毅,王中黔.交通土建工程爆破工程师手册[M].北京:人民交通出版社,2002
    [104]杨文渊.工程爆破常用数据手册[M].北京:人民交通出版社,2002
    [105]汪旭光,于亚伦.关于爆破震动安全判据的几个问题[J].工程爆破.2001,7(2):88-92
    [106]娄建武,龙源等.基于反应谱分析的爆破震动破坏评估研究[J].爆炸与冲击.2003,23(1):41-46
    [107]谢全敏,等.城市爆破震动强度的灰色评定[C].第六届全国工程爆破学术会议论文集.1997:766-769
    [108]张志呈,向开伟,鲍是武.露天深孔爆破地震效应与降振方法[M].成都:四川科学技术出版社,2003.3
    [109]肖正学,张志呈,李朝鼎.爆破地震波动力学基础与地震效应[M].成都:电子科技大学出版社,2004.4
    [110]杨光煦.水下爆破工程[M].北京:海洋出版社,1992
    [111]Seismic Waves Transmitted from Rock to Water[C]:Theory and Experince. Confrernce on Explosives and Blasting Technigues(11th),1985
    [112]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000
    [113]王玉杰.爆破工程[M].武汉:武汉理工大学出版社,2007
    [114]张志呈,肖正学.裂隙岩体爆破技术[M].成都:四川科学技术出版社,1996
    [115]钟桂彤.铁路隧道[M].北京:中国铁道出版社,1993
    [116]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984
    [117]焦永斌.爆破地震安全评定初探[J].爆破.1995,12(3):45-47
    [118]钱胜国,王文辉.爆破振动作用结构动力响应反应谱问题[C].第七届全国成功爆破学术会议论文集.201:683-687
    [119]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2004
    [120]陈蜀俊等.爆破地震测试评价技术及一个典型实例[J].地震工程与工程振动,2003, 23(5):95-101
    [121]李仲奎,王爱民,李达成.某地下厂房施工过程中突发性破坏的分析与对策[J].岩土工程学报,1997,19(5):44-79
    [122]张世雄等.地质因素与爆破等工程因素对坚硬裂隙岩体稳定性影响[J].矿冶工程,1997,17(增刊):8-11
    [123]阳生全,刘宝琛.控制爆破中配电站等安全问题处理[J].工程爆破,2000,6(3):89-92
    [124]汪旭光,于亚伦,刘殿中.爆破安全规程实施手册[M].北京:人民交通出版社,2004
    [125]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社,2009
    [126]克拉夫(美).结构动力学[M].北京:高等教育出版社,2006
    [127]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003
    [128]张柏成.复杂地基与结构静、动力相互作用分析研究[D].南京:河海大学,2003
    [129]胡聿贤.地震工程学[M].北京:地震出版社,2006
    [130]龚思礼.建筑抗震设计[M].北京:中国建筑工业出版社,1994
    [131]中华人民共和国国家标准编写组.GB50003-2001砌体结构设计规范[S].北京:中国建筑工业出版社,2002:16-17
    [132]马克俭.砌体结构中气温变化及干缩变形引起的墙体裂缝分析[J].淮南工业学院学报(自然科学版),1999,19(1):13-16
    [133]童光兵.砌体结构裂缝成因及预防措施[J].四川建筑,2005,25(6):111-113
    [134]魏晓林,郑炳旭.爆破震动对邻近建筑物的危害[J].工程爆破,2000,6(3):81-88
    [135]覃为民等.深基坑附近房屋出现裂缝的施工监测分析[J].岩石力学与工程学报,2009,28(3):533-540
    [136]杨军,孙振.爆破振动对周围环境的影响[J].四川建筑,2004,24(3):103-104,108
    [137]田运生,田会礼,于亚伦等.爆破地震波作用下民房破坏分析和破坏特征[J].爆破,2005,22(1):96-98
    [138]娄建武,龙源,徐全军等.普通民房在爆破地震波作用下的振动破坏分析[J].解放军理工大学学报(自然科学版),2001,2(2):21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700