催化臭氧氧化处理DDNP废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硝基重氮酚(DDNP)作为硝基重氮类起药的典型代表,因其具有炸性能优良、原料丰富、成本低廉及生产操作相对较为安全等优点而被广泛采用,特别被大量应用于制造工业爆破雷管。但是,DDNP生产废水中含有二硝基重氮酚、硝基化合物、硫化物、酚类等多种有害物质,属于噢毒性有机废水,如不妥善处理甚至不处理就直接排放,必然会污染环境,影响水体周围的生态环境及附近居民的身体健康。目前,已有多种针对此种废水的处理方案,但或因处理效果不理想,或因处理成本投入太大等缺点,均未得到广泛应用,更有部分DDNP生产企业因DDNP生产废水排放不达标而被迫停产。总之,DDNP废水给人们及社会带来了一系列问题。
     本文采用催化臭氧氧化技术对DDNP废水进行处理,探讨了影响处理结果的各种因素并分析可能导致其产生的原因,获得了最佳工艺参数。试验结果表明,使用该工艺处理DDNP废水,处理水可以达到国家相应排放标准。因此,催化臭氧氧化技术在DDNP废水处理中的应用,有着实际的工程应用价值和广阔的发展前景,并对处理其它硝基酚类有机污染物废水有着重要的借鉴意义。
     本文的主要内容包括以下4个方面:
     首先,对经单纯臭氧处理预处理后的DDNP废水进行试验研究。考察了氧化时间、温度、pH值、臭氧浓度等主要工艺参数对处理效果的影响。结果表明:在氧化时间为40min、温度为20℃、pH值为9、臭氧浓度为1.32mg/L的条件下,CODcr可降低至140.04mg/L,色度为202倍,硝基酚含量为1.5mg/L。
     其次,为强处理效果,引入了催化剂强化氧化过程,在处理水中加入了具有催化作用的活性组分(铜、铁离子硝酸盐),筛选出了对废水处理效果最优的活性组分。
     随后,将筛选出的催化剂活性组分浸渍于载体上,制备了非均相催化剂。研究了采用该催化剂催化氧化DDNP废水时pH值、温度、臭氧浓度、非均相催化剂吸附等因素对去除CODcr的影响。试验结果表明:当氧化时间为30min、温度20℃、pH值12、臭氧浓度1.32mg/L、流速为400ml/min时,CODcr可降低为73.15mg/L,色度为43倍,硝基酚含量为0.97mg/L,均达到工业排放标准。
     最后,在试验数据基础上,初步计算臭氧利用率情况。单纯臭氧氧化DDNP废水时,臭氧利用率仅为41%左右;非均相催化臭氧氧化处理时,臭氧利用率有了大幅度的提高,可达到76%以上。
As a representative detonating explosives in the nitro-diazotized category, diazodinitrophenol(DDNP) has been widely used, because of its excellent performance, abundant raw materials, low cost and comparatively safe production, especially in manufacture of industrial blasting detonators. However, DDNP wastewater contain some hazardous substances, such as diazodinitrophenol, nitro-compound, sulfide and phenolic compound, all of which are toxic organic wastewater, exerting high pollution on the environment and impact on the healthy of nearby residents if proper handle is not given. Although there are some treatment programs, these programs fail to be widely used in the real operation because of their poor effect, or technical problems and the economic reasons. Some manufacturers forced to stop production because they can not reach the emission standards. Therefore, the DDNP wastewater brings about aseries of problems to people and the society.
     The wastewater was treated by catalytic ozonation technology in this paper, effects of different factors on processing results were discussed and the reasons which may lead to its generating were analyzed, at last the optimum technological parameters were obtained. The result of the test shows that the treated water can reach the corresponding national wastewater discharge standards. All in all, this method which is used in the treatment of DDNP wastewater, has high potential value and broad application prospect. In the meantime, it can be also used for the reference in netrophenolic organic wastewater treatment.
     The main contents of this article includes the following four aspects:
     First of all, the paper examined the ozonization of DDNP wastewater. By employing the single-factor method, the study further investigated the effects of different technological parameters, including the processing time, temperature, pH value and the concentration of ozone. The result of the study showed that under such a condition of the processing time of 40 min, temperature of 20℃, pH value 9, the concentration of ozone of 1.32mg/L, the CODCr, nitrophenols, chroma could reach to 140.04mg/L, 1.5mg/L and 202.
     Secondly, In order to enhance the effects of treatment, the strengthening oxidation process of catalysts was introduced, the catalysis of the active components(copper ion and iron ion nitrate salts) were added into treated water, the catalysis were screened out which had the best treatment effect towards the wastewater.
     Thirdly, heterogeneous catalyst was prepared with the active ingredient of catalyst which soaks on the carrier. The pH value, reaction temperature, concentration of ozone, adsorption of heterogeneous catalysts in testing process, which influent the CODcr’s removal efficiency, are investigated. The results showed that under such a condition of the processing time of 30 min, temperature of 20℃, pH value 12, the concentration of ozone of 1.32mg / L, the velocity of flow of 400ml/min, the CODCr, chroma and nitrophenols could reach 73.15mg/L, 43 and 0.97mg/L, industrial emission standards can be reached.
     Finally, based on the data of experiment, the utilization of ozone is preliminarily calculated. The utilization of ozone can be reached about 41percent when only use the ozone to dispose the DDNP wastewater. However, the utilization of ozone has great elevation, which can be reached above 76 percent when use heterogeneous catalytic ozonation to dispose DDNP wastewater.
引文
[1]王惠勇,闫鹏.中国给水资源化问题及对策.环境保护. 2000, 4:35-36
    [2]郑必清.生态文明的时代性和水环境建设.消费经济. 2008, 24(1):16-19
    [3]郑利平,郭雨蓉.我国城市生活污水排海构想及其研究.环境保护. 2000, 12:30-34
    [4]张锐.水污染:沉重的中国环境报告.北方观察. 2007, 9:24-26
    [5] D. Manojlovic,D.R. Ostojic.ect. Removal of phenol and chlorophenols from water by new ozone generator. ScienceDirect 2007(213):116-122
    [6]阳立平臭氧法处理高浓度苯酚废水.资源开发与市场. 2005, 21(2):86-88
    [7]陈小龙.用表面活性剂改性的沸石处理DDNP生产废水技术研究中北大学硕士学位论文,2006
    [8] Zhang Xuecai, Chen Shoubing, Cao Huaixin. Micro Electrolytic Treatment of Wastewater from Diazodinitrophenol Production. Fine Chemicals. 2003, 20(3):94-97
    [9]陈双. DDNP生产废水处理的研究.福建化工. 1999, 1:31-34
    [10]王海云,赵仁兴. DDNP废水处理方法研究综述. 2002, 31(5):25-28
    [11]伍文波,林洁,韩统昌.利用废铁屑和粉煤灰的电化学原理处理印染废水的方法研究.中国环境监测. 2003, 19(1):47~49
    [12]朱洪涛,张振声,许佩瑶.粉煤灰铁屑组合处理印染废水的研究.环境科学与技术. 2002, 25(4):8~9
    [13]梁培煜,马艳然,孙汉文.电化学法处理二硝基重氮酚废水的研究.河北师范大学学报(自然科学版). 2002, 26(3):283-285
    [14]宋晓敏,王惠娥,李广学等.铁屑-粉煤灰微电解法处理DDNP废水.爆破器材, 2005, 34(4):36-38
    [15]陈寿兵,段日雄,张学才. Fenton试剂处理二硝基重氮酚工业废水的研究.安徽理工大学学报(自然科学版), 2003, 23(1):50~54
    [16]郭峰波. UV/Fenton试剂处理DDNP废水研究.火工品, 2006, 10(5):31-23
    [17]宋晓敏,顾广颐,张学才.粉煤灰絮凝剂预处理DDNP废水的研究.工业用水与废水, 2005, 36(1):41-43
    [18]陈晓龙,袁凤英,郭峰波. CPB与HDTMA改性沸石处理DDNP废水试验研究.机械管理开发, 2006, 2(1):11-13
    [19]李志刚,孟震,吴运生.活性炭吸附法处理重氮废水.煤矿环境保护, 2000, 14(5):44-45
    [20]陈寿兵,张学才,徐灏龙.白腐真菌降解经微电解预处理二硝基重氮酚废水的研究.环境污染与防治, 2006, 28(2):143-146
    [21]张文兵,均相和非均相高级氧化技术处理水中有机污染物的研究,中国科学院博士论文, 2003, 4
    [22] C.Cooper,R.Burch.An Investigation of Catalytic Ozonation for theOxidation of Halocarbons in Drinking Water Preparation.Wat.Res. 1999, 33(18):3695~3700
    [23]赵伟荣.阳离子红X-GRL染料的UV,O3,UV/O3氧化处理研究.浙江大学博士论文, 2004, 4
    [24]胡军.光催化-臭氧联用技术在环境工程中的应用研究.大连理工大学硕士论文, 2004, 3
    [25]徐新华,赵伟荣.水与废水的臭氧处理.北京:化学工业出版社, 2003. 10.
    [26]吴玲等.臭氧氧化法处理焦化废水的研究.氮肥设计, 1995,33 (5):45~47
    [27] O.leitzke.臭氧与生物处理净化重度污染废水.中国给水排水, 1998, 14 (4):46~47.
    [28]施耀等.黄磷诱发的臭氧与紫外光联合处理有机废水研究.环境污染与防治, 2003, 25(2):74~76
    [29]张彭义,余刚,孙海涛等.臭氧/活性炭协同降解有机物的初步研究中国环境科学2000, 20(2):159-162
    [30]石枫华,马军.臭氧化和臭氧催化氧化工艺的除污效能.中国给水排水. 2004,20(3):1~4
    [31] Roser Sauleda, Enric Brillas. Mineralization of Aniline and 4-Chlorophenol in Acidic Solution by Ozonation Catalyzed with Fe2+ and UVA Light. Applied Catalysis B:Environmental. 2001:135~145
    [32] D .Pines, D Reckhow . Effect of Dissolved Cobalt (II) on the Ozonation of Oxalic Acid. Envir. Sci. Tech. 2002, 36(9): 4040~4051
    [33]童少平,杜桂荣,张鉴清.液相中MnO2催化臭氧化降解磺基水杨酸.环境化学2003,22(5):454-458
    [34]马军,韩帮军,张涛等.臭氧多相催化氧化处理微污染水中试研究.环境科学学报.2006, 26(9):1412~1419
    [35]彭丽婧,杨润昌.臭氧技术在水处理中的应用及发展.湖南环境生物职业技术学院报.2006, 12(1):28~31
    [36]汪磊,孙红文.固-液异相催化剂在环境科学领域中的应用.生态环境. 2004, 13(3):420~424
    [37]闫海生,刘博,喻为福等.催化湿式氧化中多相非贵金属催化剂的研究进展.化工环保. 2006, 26(3):213~217
    [38]孙贤泼,赵庆祥,曹国民等.高级氧化法的特性及其应用.中国给水排水.2002,18:33-35
    [39] B .Legube, N. Karpel, Solution. Tran. Far. Soc. J. Weiss. Investigations on the Radical HOZ in 1935. 31:668-681
    [40] Legube B , Karpel Vel Leitner N. Catalytic ozonation : A promising advanced oxidation technology for water treatment [ J ] . Catalysis Today , 1999, 53 (1) :61 - 72.
    [41] Virginie Fontanier, Incent Farinesa, Joe Albeta, et al .Study of Ctalyzed Donation for Avanced Teatment of Pulp and Paper Mill Effluents. Wat. Res. 2006, 40: 303一310
    [42]张涛,陈忠林,马军等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学. 2004, 25(4):43~47
    [43]马军,张涛,陈忠林等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨.环境科学. 2005, 26(2):78~82
    [44]杨忆新,马军,张静等.硅胶负载纳米TiO2催化臭氧化降解水中微量硝基苯的研究.环境科学学报.2006,26(8):1258~1264
    [45] Y.X.Yang,J.Ma,Q.D.Qin,et al.Nanosize Titanium Dioxide Catalyzed Ozonation of Nitrobenzene in Aqueous Solution.Proc.17thOzone World Congress.Strasbourg,2005
    [46]张翼,马军,胡兵等.多相催化-臭氧氧化法处理模拟有机磷农药废水.环境污染治理技术与设备. 2005, 6(11):51~55
    [47]孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧化降解水中微量硝基苯.环境科学. 2005, 26(6):84~88
    [48] ZhouY R, Zhu W P, Liu F D, et al. Catalytic activity of Ru/Al2O3 forozonation of dimethyl phthalate in aqueous solution. Chemosphere. 2007, 66:145-150
    [49]马军,蔡国庆,翟学东等.臭氧催化氧化与活性炭联用提高电厂供水水质.给水排水. 2001, 27(11):43~46
    [50]肖月华,张海金.新型起药的应用.爆破器材, 2003, 32(1):24-28
    [51] Eloise Marais,Tebello Nyokong.Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallphophthalocyainies.Journal of Hazardous Materials, 2007
    [52]李秋莲,欧阳润庆.十六烷基三家及溴化铵分光光度法测定DDNP废水中的硝基酚,爆破器材, 2005, 34(2):8-9
    [53]韩帮军.臭氧催化氧化除污染特性及其生产应用研究.哈尔滨工业大学博士论文. 2007:12
    [54]钱正刚,黄新闻,何志桥.臭氧氧化处理苯胺废水.水处理技术. 2006, 32(3):29~31
    [55]徐新华,赵伟荣,水与废水的臭氧处理化学工业出版社2003
    [56] Barbara KasPrzyk-Hordem a, Maria ZiO3ek b,et al.,Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment , Applied CatalysisB:Environmenial,2003,46:639一669
    [57]李继,董文艺,贺彬等.臭氧投加方式对溴酸盐生成量的影响.中国给水排水. 2005, 21(4):1~4
    [58] C.Cooper,R.Burch. An Investigation of Catalytic Ozonation for The Oxidation of Halocabrons in Drinking Water PreParation. Wat.Res. 1999, 33(18):3695~3700
    [59]周云瑞,祝万鹏. A120:催化臭氧化处理邻苯二甲酸二甲酷.环境科学, 2006, 27(l):51~56
    [60] Siddiqui MS,Amy GL,Murphy BD. Ozone enhanced removal of natural organic matter from drinking water sources.Water Res, 1997:31(12):3098~3106.
    [61]张涛,陈忠林,马军等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学. 2004, 25(4):43~48
    [62]曲险峰活性炭纤维对水中酚类有机物的催化臭氧化.中国石油大学.博士论文2007,4
    [63]赵国华,谢栋,耿政松,等.高浓度臭氧用于污水处理的研究.工业水处理, 2002, 22(9): 1~5
    [64]赵大为.催化臭氧化TNT的非均相负载型金属催化剂的研制与功效.西北工业大学硕士论文2006 3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700