铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜闪速熔炼是一个多操作变量、多过程耦合的复杂熔炼过程。在投入工业应用半个多世纪以来,闪速熔炼工艺以其巨大的技术优势和良好的经济效益获得了世界火法炼铜行业的亲睐,特别是“四高”作业制度的实现,更是开创了铜工业高技术熔炼的新时代。熔炼强度的不断增加,熔炼指标的不断提高,都给闪速炉生产系统提出了更高的要求。因此,以进一步强化生产和节能降耗为目标,以“数学模拟—全息仿真—整体优化”为技术路线,开展铜闪速炉熔炼过程的合理强化与反应塔炉衬保护的计算机仿真研究就显得日趋重要。
     为了适应生产强化的要求,更好的协调系统配置,科学地挖掘闪速炉生产潜力,本文通过对闪速炉熔炼过程及系统设备的详细研究,以闪速熔炼过程物料衡算和热量衡算的数学模型为基础,综合熔炼系统四环节六大因素,开发了闪速炉生产系统数值熔炼仿真模型,并针对贵溪冶炼厂闪速炉系统进行了仿真强化试验,论证了其扩产改建的可能,同时提出了铜锍品位、富氧浓度、闪速炉渣成分以及精矿含铜品位等生产参数的合理选择方案。
     熔炼过程的强化不仅对系统设备要求更高,而且使得炉衬的工作环境更为恶劣,损毁加快。通过对闪速炉反应塔炉衬蚀损机理的研究,作者发现,在反应塔壁面挂渣良好的保护作用下,反应过程中高温熔锍、熔渣以及腐蚀性气体的侵蚀是造成塔壁耐火砖衬损毁的主要原因,而采取有效措施,降低反应塔壁面炉衬的工作温度在合理的范围之内,将有助于塔壁的保护,延长炉体寿命。
     在铜闪速炉反应塔炉膛内形数值仿真研究中,作者建立了闪速炉反应塔炉衬热场的数值解析模型;给出了反应塔炉膛内形的定义并进行了物理界定,分析了闪速炉反应塔内壁挂渣层厚度及移动边界的形成与变化机理,提出并定义了反应塔壁面挂渣的“过冷态”与“过热态”的概念;详细研究并提出了实现闪速炉反应塔炉膛内形仿真研究的物理模型以及数学求解方法,开发了反应塔炉膛内形在线监测系统,并分别在贵溪冶炼厂与金隆铜业有限责任公司两座闪速炉系统上投入使用,实现了闪速熔炼过程中对反应塔塔壁状况的实时仿真监测与预警分析,为现场调整操作参数,控制塔壁温度,加强炉体保护提供了可靠依据。
     本文还对闪速炉反应塔壁面结构进行了数值仿真与优化研究。通过建立局部塔壁的三维传热数值解析模型,作者提出了,提高塔壁耐火材料的热导率,降低壁面温度,适当减少砖衬厚度,以进一步延长炉体使用寿命的结构优化方案。
The copper flash smelting process is a complicated process coupled with multi-operational variables and reactions. For more than fifty years being applied in industry, the flash smelting technology has attracted great attentions of copper-smelting professionals worldwide with its technical advantages and better economic benefits, and further opened a new era of higher technological level in copper industry since the working regime of 'Four Highs' has been put in practice. Along with enhanced smelting intensity and smelting norms, higher demands are set on the productive system of flash smelting furnace (FSF). Hence it seems to be more important to follow the technical sequence of'mathematical modeling-hologram simulation-comprehensive optimization' and to carry out computational simulation and optimization researches on rational enhancement of the copper-smelting process and protection of the FSF furnace's linings, aiming to further intensify smelting processes and reduce energy consumptions.
    In order to meet the demands for enhanced production, to coordinate better systematic arrangement and to scientifically tap the latent power of system production, in this paper, based on detailed study of the smelting processes, equipments and models for balance computation of material and heat in flash smelting process, a mathematical model for simulation and optimizations of flash smelting system has been developed by considering four links and six factors in the system. Moreover, simulative enhancement experiments for Guixi Smelter's FSF have been carried out, possibilities for the system to be enlarged and re-built been expounded, and optical parameters such as matte grade, oxygen-enriched smelting, slag compositions and copper concentrate been proposed.
    Intensified smelting process not only sets higher demands on the system equipments but also makes the work environment of furnace linings even worse and more prone to be damaged. Based on the study of erosion mechanism of linings in a reaction shaft of FSF, the author found that, under the cover of frozen slag, the refractory bricks of shaft were mainly damaged at high temperature by the erosion of smelted matte, slag and erosive gas. So, if effective measures are to be adopted to control the linings' surface temperature within a reasonable range, the inner walls of the shaft will be protected better and the furnace life will be prolonged longer.
    In numerical simulation of the frozen profile of reaction shaft in a copper flash smelting furnace, the author established a numerical model for the temperature field of shaft's linings. Giving the shaft's frozen profile definition and physical boundaries and analyzing the forming process and variation mechanism of wall slag and moving boundaries in reaction shaft, the author proposed and defined the conception of 'over-cooled state' and 'over-heated state', studied in detail the physical model and its mathematical solution during the research of the frozen profile of reaction shaft, and developed an on-line monitoring system for the frozen profile of shaft's inner surface. The system
    
    
    2002
    later has been applied in two flash furnaces located in Guixi Smelter and Jinlong Copper Company, Ltd respectively. Since provided with real time simulative monitoring and warning analysis of wall situations of the reaction shaft in a smelting process, technicians then are greatly helped in better adjusting operation parameters in-site, controlling the wall temperature and protecting the furnace.
    Finally in this paper, the author carried out both the numerical simulation and optimization researches on wall structures of reaction shaft in Guixi's flash furnace. By establishing a three-dimensional analytical model for heat transfers in local wall of the shaft, the author proposed optimized structures of reaction shaft, such as improving the heat conductivity of the wall refractory, decreasing the wall temperature and reducing the thickness of bricks, to help the furnace to work better and longer.
引文
[1]贵溪冶炼厂熔炼车间岗位培训教材(闪速炉部分).江西:贵溪冶炼厂,1997.
    [2]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册:铜镍.北京:冶金工业出版社,2000.
    [3]王中奎.中国铜的生产与消费.世界有色金属,1997,(1):49~54.
    [4]张忠义,王士爱等.我国铜工业的现状与发展分析.云南冶金,1998,27(1):8~15.
    [5]张凤奎.中国铜铝产品生产现状和发展趋势.世界有色金属,1998,(7):27~31.
    [6]陈莉.我国铜冶炼生产现状与发展趋势.有色冶炼,1998,(8):31~34.
    [7]罗晓玲.发展我国铜工业的对策和政策建议.世界有色金属,2000,(7):17~19.
    [8]张兰芝.铜冶炼技术发展趋势.江西有色金属,1997,(1):46~49.
    [9]郭逵,郑明.冶金工艺导论.湖南:中南工业大学出版社,1991.
    [10]甄明.80年代的铜冶炼工业(2)—铜精矿熔炼技术的发展.有色金属(冶炼部分),1994,(2):41~45.
    [11]N.J. Themelis. Pyrometallrugy Near the End of the 20th Century. JOM, vol.46, 1994,(8):51~57.
    [12]H.Y. Sohn. Advances in Sulfide Smelting - Technology, R&D, and Education. Sulfide Smelting' 98: Current and Future Practice[C]. The Mineral, Metals & Material Society: 1998, 3~37.
    [13]张训鹏,彭容秋.熔池熔炼的发展.有色冶炼,1995,(4):20~25.
    [14]梅炽,游旺.铝电解槽槽膛内形在线显示仿真软件的研究与开发[J].中南工业大学学报,1997(2):138~141.
    [15]Herbert H.Kellogg.有色金属火法冶金的动向.化学冶金进展评论.北京:冶金工业出版社,1985:173~197.
    [16]P.J.Machey,P Tarassoff.硫化矿冶炼的新工艺.In:硫化矿冶炼的进展(下册).北京:冶金工业出版社,1991,1~23.
    [17]M. SHIMA, K. YAOITA. A Review of the Future of Flash Smelting Process for Copper. Proceedings of the Seventh International Flash Smelting Congress, 35-49.
    [18]陈汉春.世界闪速熔炼的现状与进展.闪速炼铜,1996,(2):5~13.
    [19]Markku, Kyto, et al. Outokumpu Flash Technology Meeting the Environmental and Business Challenges of the Next Century. In: E. Nieminen. Proceedings of the Eighth International Flash Smelting Congress, 14~18 October 1996 in Tuscon and Salt City, U.S.A.
    [20]L. Helle, I. Kojo, et al. Improvements in Outokumpu Flash Smelting Process and Equipment. Proceedings of the Seventh International Flash Smelting Congress, 91~106.
    [21]潘文举.圣马纽尔冶炼厂改造闪速熔炼炉加大熔炼强度的评述.有色冶炼,1999,(2):9~12.
    [22]刘英刚.因科闪速熔炼.铜陵有色金属,1996,(6):32~38.
    [23]D.B.George,C.J.Newman.肯尼科特公司犹他铜冶炼厂的技术改造.In:W.J.陈,C.迪亚兹等.铜的火法冶金—1995年铜国际会议论文集.北京:冶金工业出版社,1998,
    
    45~58.
    [24]张法平.奥托昆普闪速熔炼和闪速吹炼工艺.有色冶金设计与研究,1993,(4):50~58.
    [25]Pekka Hanniala, Tuula Makinen, Markku Kyto. Flash Technology for Converting. Proceedings of the Sixth International Flash Smelting Congress, 137~156.
    [26]周松林.闪速熔炼—清洁高效的炼铜工艺.中国工程科学,2001,(10):86~89.
    [27]梅炽,王前普等.有色冶金炉窑的仿真与优化.中国有色金属学报,1996,(4):19~23.
    [28]梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001.
    [29]朱苗勇,萧泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社,1998.
    [30]J.Szekely提取冶金数学模型的进展.闪速炼铜,1991,(3):36~43.
    [31]游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究.[D].湖南:中南工业大学,1997.
    [32]姚峻峰.热工智能与混沌理论在铜锍吹炼炉实时仿真与优化决策中的应用研究[D].湖南:中南大学,2001.
    [33]胡军.铜锍吹炼仿真和操作优化研究[D].湖南:中南大学,2000.
    [34]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化[D].湖南:中南大学,2001.
    [35]曾青云.铜闪速熔炼操作数据的回归分析.有色金属(冶炼部分),1995,(5):4~6.
    [36]蒋建兴.进一步完善目标冰铜温度控制模型的探讨.有色冶炼,1991,(1):10~13.
    [37]谭鹏夫,张传福等.铜闪速熔炼过程中的渣含铜的研究—计算机研究.有色冶炼,1996,(6):58~60.
    [38]李晓明.铜闪速炉和转炉冶金计算CUFC软件开发.化工冶金,1997,(3):277~281.
    [39]黎书华,梅显芝等.贵溪闪速炉铜锍熔炼过程热力学模型.中南工业大学学报,1995,(5):627~637.
    [40]黄克雄,黎书华等.贵溪闪速炉造锍熔炼过程计算机模拟.中南工业大学学报,1996,(2):173~176.
    [41]黎书华.造锍熔炼过程热力学模型及其在工业中的应用.[D]湖南:中南工业大学,1992.
    [42]凌玲,沈剑韵等.镍闪速熔炼过程的平衡计算.有色金属,2000,(4):71~73.
    [43]万维汉,史维祥等.镍闪速熔炼过程的模糊建模.冶金自动化,2000,(2):9~12.
    [44]Yutaka Yasuda, H.Y. Sohn. Experimental and Theoretical Study of Particle Dispersion Phenomena in a Turbulent Gas Jet of the Flash Smelting Process by the Image Analysis Technics. Metallurgical and Material Transactions, 26B, 1995, (6): 637~646.
    [45]Nobumasa. Kemori, Yoshiaka. MORI. Simulation of Oxygen Pressure Profile Along The Reaction Shaft. 资源素材, 1996, (10): 723~728.
    [46]I.D. Sutalo, F.R.A. Jorgensen, et al. Experimental and Mathematical Investigation of the Fluid Flow inside and below a 1/4 Scale Air Model of a Flash Smelting Burner. Metallurgical and Material Transactions, 29B, 1998, (10): 993~1005.
    [47]I.D. Sutalo, J.A. Harris, et al. Modeling Studies of Fluid Flow below Flash Smelting Burner including Transient Behavior. Metallurgical and Materials Trans, 29B, 1998, (8):773~783.
    [48]T. Ahokainen, A. Jokilaakso. Modeling of Gas-Particle Reactions in the Copper Flash Smelting. Bulletin of the Association of Engineering Geologists. Vol.23, 1986, (4): 498~503.
    [49]Kyung Won Seo, Kang-In Rhee. Computer Simulation of a Commercial Flash Smelting
    
    Operation. J. of the Korean Inst. Of Met & Mater. 1187~1196.
    [50]Y. Ahokainen, A. Jokilaasko. Modelling of Gas-Particle Reactions in the Copper Flash Smelting. AIME Annual Meeting, New York, 1985.
    [51]A. Jokilaakso, O. Teppo. Numerical Simulation of Concentrate Burners of the Flash Smelting Process. Proceedings of the International Conference on Modeling and Simulation in Metallurgical Engineering and Materials Science, Beijing, 1996.
    [52]T. Ahokainen, A. Jokilaakso. Numerical Simulation of the Outokumpu Flash Smelting Furnace Reaction Shaft. Canadian Metallurgical Quarterly, 1998 (3-4): 275~283.
    [53]P.T.L. Koh, T. V. Nguyen, F.R.A. Jorgensen. Numerical Modelling of Combustion in a Zinc Flash Smelter. Appl. Math. Modelling, 1998:941~948.
    [54]S.R. Varnas, J.S. Truelove. Simulating Radiative Transfer in Flash Smelting Furnace.Appl. Math. Modelling, 1995: 456~464.
    [55]TB.R. Adams, G.A. Eltringham, A.A. Shook. Application of a Reacting CFD to Drop Tube Kinetics and Flash Smelter Combustion. The Forth International Conference Copper99-Cobre99: Phoneix, 1999.
    [56]陈汉春.闪速熔炼的现状与进展.有色冶炼.1997,(2):1~7.
    [57]N.Kemori,W.T.Denholm,H.Krokawa.铜闪速熔炼炉内的反应机理.闪速炼铜,1991,(2):1~12.
    [58]家守伸正,近藤康裕.铜精矿粒子在反应塔内的氧化和碰撞.闪速炼铜,1992,(1):35~45.
    [59]Nobumasa. Kemori, Yoshiaka. MORI. Smelting Reactions in a Copper Flash Fumace Shaft with an Oxygen Cencentrate Burner. 资源素材, 1991, (12): 881~886.
    [60]N.J. Themelis, J.K. Makinen, N.D.H. Munroe. Rate Phenomena in the Outokumpu Flash Smelting Reaction Shaft. AIME Annual Meeting, U.S.A., 1985.
    [61]白猛,袁则平.贵溪冶炼厂闪速熔炼富氧技术改造工的实施与完善.世界有色金属,1997,(9):16~20.
    [62]叶薇.贵溪冶炼厂闪速炉增产改造工艺方案.第一次闪速炉技术会议,江西:贵溪冶炼厂.1997.
    [63]谢朝礼.对贵溪冶炼厂闪速炉富氧熔炼能力的探讨.江西铜业工程,1992,(2):60~66.
    [64]Pekka Hanniala, Lars Helle, Ilkka V. Kojo. A Look into the Future of the Copper Smelting Business. A New Century International Conference on Matellurgical High Technology and New Materials of Heavy Nonferrous Metals. China, Kunming, 2002.
    [65]袁精华.闪速炉的设计与展望.第二届全国闪速熔炼技术研讨会论文.安徽,2000.
    [66]唐尊球.金隆铜业单喷嘴闪速炉常温富氧熔硫.第一次闪速炉技术会议,江西:贵溪冶炼厂.1997.
    [67]俞诚诠.国外提高闪速炉生产能力的动向及贵冶二期工程中闪速炉建设方案的选择.闪速炼铜,1990,(2):35~41.
    [68]杜怀明.对贵溪冶炼厂采用富氧闪速熔炼的剖析.有色冶金设计与研究,1995,(4):5~9.
    [69]杨淑霞.奥托昆普闪速熔炼铜的最新发展和应用.有色冶金设计与研究,1993,(4):57~67.
    
    
    [70]周俊,黄永峰.金隆闪速炼铜操作技术的进步.有色金属(冶炼部分),2000,(5):2~6.
    [71]吴东华.闪速炉高品位冰铜冶炼方法探讨.有色冶炼,1998,(3):32~33.
    [72]柯英.生产高品位冰铜新闪速熔炼技术的开发.有色冶炼,1998,(5):41~45.
    [73]刘英刚.闪速炉炉体结构的发展(一).铜陵有色金属,1998,(11):38~42.
    [74]刘英刚.闪速炉炉体结构的发展(二).铜陵有色金属,1998,(12):33~36.
    [75]刘英刚.闪速炉炉体结构的发展(三).铜陵有色金属,1999,(1):41~43.
    [76]Ari Jokilaakso, Ilkka V. Kojo. Water Is The Best Refractory, Isn't It? The Ninth International Flash Smelting Congress, Australia, 1999.
    [77]Zhou Jun, Song Xiuming. Operational Optimization of Concentrate Burner at Jinlong Flash Furnace. A New Century International Conference on Matellurgical High Technology and New Materials of Heavy Nonferrous Metals. China, Kunming, 2002.
    [78]王晓华.中央喷射型精矿喷嘴结构、原理与运行实践.铜陵有色金属,1999,(2):41~45.
    [79]周俊,赵荣升.金隆闪速炉精矿喷嘴运行实践.矿冶,2000,(1):51~58.
    [80]Joiquim Menezes, Silvana Morais, Carlois Duarte. 卡拉伊巴的新型中央喷嘴.The Ninth International Flash Smelting Congress, Australia, 1999.
    [81]Osamu Fujii. The History of First Application and Followed Progress on Flash Smelting in Japan. The Ninth International Flash Smelting Congress, Australia, 1999.
    [82]B.S.Gauri,A.K.Shrivastava,et,al.凯特里冶炼厂闪速炉反应塔高度降低的回顾.第六届国际闪速熔炼会议论文.闪速炼铜,93,(2~3):28~32.
    [83]Femado Jose T.Marinho,Jose Umberto B.Moreira.卡拉伊巴冶炼厂闪速炉的中央喷吹分散型精矿喷嘴.第六届国际闪速熔炼会议论文.闪速炼铜,93,(2~3):65~67.
    [84]中国冶金百科全书:有色金属冶金卷.北京:冶金工业出版社,1999.
    [85]《重有色冶金设计手册》编委会.重有色冶金设计手册:铜镍卷.北京:冶金工业出版社,1996.
    [86]φ.M.罗斯库托夫,A.A.柴德勒.有色重金属冶金计算.北京:冶金工业出版社.1959.
    [87]解可新,韩立兴等.最优化方法.天津:天津大学出版社,1997.
    [88]《有色冶金炉设计手册》编委会.有色冶金炉设计手册.北京:冶金工业出版社,2000.
    [89]R. Sridhar et al.. Thermodynamic Consideration in Copper Pyrometallurgy. JOM, 1997(4):48~52.
    [90]Zenjiro Asaki. Kinetic Studies of Copper Flash Smelting Furnace and Improvement of Its Operation in the Smelters in Japan. Mineral Processing and Extractive Metallurgy Review,1992: 163~185.
    [91]有色冶金反应工程学教学参考资料—闪速熔炼.湖南:中南工业大学教材科翻印,1992.
    [92]H.Barthel.铜熔炼炉中铬镁砖的蚀损.In:有色金属冶炼用耐火材料.北京:冶金工业出版社,1984.
    [93]G.Routshka.有色金属工业用耐火材料.In:有色金属冶炼用耐火材料.北京:冶金工业出版社,1984.
    [94]A.K.比士瓦士,W.G.达文波特.铜提取冶金.北京:冶金工业出版社.1980.
    [95]德国钢铁工程师协会.渣图集.北京:冶金工业出版社,1989.
    [96]李勇.高性能镁铬耐火材料的应用研究[D].北京:北京科技大学,2002.
    
    
    [97]李波.固定式连续吹炼炉炉衬寿命的研究和操作优化策略(D].湖南:中南工业大学,1998.
    [98]陈开献.铜转炉用镁铬耐火材料的损毁机理与优化配置的研究[D].北京:北京科技大学,2002.
    [99]R. Mcpherson. Magnesium Sulfate Formation in the Basic Linings of Copper Smelting Furnaces. Ame. Ceram. Soc. Bulli., 1969: 791~793.
    [100]陈肇友.有色金属冶金炉用耐火材料及其发展.有色金属(冶炼部分),1998(6):36~40.
    [101]R.N. Correia, J.White. Phase Equilibrium Relationships Controlling the Reactions of Basic Refractories with Slags Produced During Matte-Smelting Processes: Part Ⅰ. Phase Relationships in the System MgO-FeO-Fe_2O_3-SiO_2 in Air. Br. Ceram. Trans. J., 1988: 185~199.
    [102]R.N. Correia, J.White. Phase Equilibrium Relationships Controlling the Reactions of Basic Refractories with Slags Produced During Matte-Smelting Processes: Part Ⅰ. Phase Relationships in the System MgO-FeO-Fe_2O_3-Cr_2O_3-SiO_2 in Air. Br. Ceram. Trans. J., 1988: 200~206.
    [103]陶文铨.计算传热学的近代进展.北京:科学出版社,2000.
    [104]Suhas V. Patankar. Computation of Conduction and Duct Flow Heat Transfer. Maple Grove: Innovation Research Inc., 1991.
    [105]Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor & France Publishers, U.S.A., 1980.
    [106]NicholasJ.Themelis. Transport and Chemical Rate Phenomena. U.S.A: Gordon and Breach Science Publisher SA, 1995.
    [107]陶文铨.数值传热学.北京:科学出版社,2000.
    [108]梅炽.冶金传递过程原理.湖南:中南工业大学出版社,1987.
    [109]查金荣,陈家镛.传递过程原理与应用.北京:冶金工业出版社,1997.
    [110]数值分析.李庆扬,王能超等.湖北:华中理工大学出版社,1986.
    [111]钱滨江,伍贻文等.简明传热手册.北京:高等教育出版社,1984.
    [112]姚峻峰.卧式转炉炉衬温度场的数值模拟.中国有色金属学报,2000(4):546~550.
    [113]吴懋麟,王立民,刘述临.高炉冷却壁和炉衬的三维传热模型.钢铁,1995(3):6~11.
    [114]俞佐平.传热学.北京:高等教育出版社,1994.
    [115]《重有色冶金设计手册》编委会.重有色冶金设计手册:冶炼烟气收尘通用工程常用数据卷.北京:冶金工业出版社,1996.
    [116]叶大伦,实用无机物热力学数据手册.北京:冶金工业出版社,1981.
    [117]任鸿九.有色金属熔池熔炼.北京:冶金工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700