聚合型溶致液晶单体的制备、组装及光固化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了溶致液晶的组装及其研究进展,研究了可聚合型溶致液晶的制备、自组装及其光固化行为,并对其在膜材料上的应用可能性提出了探索。
     文中首先合成一种可聚合型溶致液晶单体,研究了其在一定条件下的组装行为,在此组装的基础上对其光固化程度及固化后组装体结构的保留行为进行了研究,最后将其涂布在聚酯膜上形成了复合功能膜材料,并对其在膜材料上的应用性提出了展望。首先可聚合型溶致液晶单体的合成以没食子酸为原材料,依次经过酯化、醚化、酰氯化和钠盐化四步反应,生成一种含有三条支链的三官能团单体,通过IR与1H NMR对其结构及其纯度进行了表征。其次在临界堆积参数理论计算的基础上,研究了单体与水的组装行为,结果发现单体/水等于8/2(甲醇占总量的90%),室温时先磁力搅拌24h,再静置至少48h即可得到组装比较完善的L相,并通过PLM和XRD对其结构进行了表征;发现HII相的制备工艺与L相相似,目前得到的最佳配比为单体/水等于92/8,随后再在上述体系中加入不同种类的光引发剂并进行紫外光固化,结果发现在强度为30mW/cm2的紫外光下曝光30min,含光引发剂Darocur2959的体系双键转化率最高,为78%,在此条件下经XRD与PLM证实,L和HII相都可得到一定程度的保留。最后将含有光引发剂Darocur2959的溶致液晶体系涂布在聚酯膜上并进行固化,通过SEM表征,得到表面形貌比较均一、孔径约为1μm的复合材料。该方法得到的复合膜材料孔径均匀、可控性较强且上下层之间可以很好的复合。通过对其制备工艺的改善使其具有更好的机械性能有望在水处理方面作进一步的应用。
In this paper, the assembly and research development of lyotropicliquid crystals (LLCs) are introduced. Then, the synthesis, self-assemblyand UV-curing behavior of the polymerizable LLCs are also studied. Andin the end we make a prospect of the application probability in membranematerials.
     In this thesis, a polymerizable LLC monomer was preparaed first, andthe self-assembly behavior of the monomer with water in methanol wasdiscussed, followed by UV-curing and nanostructure retention. Finally, theLLC was coated on a PET membrane to form composite membranematerials and the application in membrane materials was proposed. Apolymerizable LLC monomer was synthesized by a convenient routestarting from3,4,5-trihydroxybenzoic acid via esterification followed byetherification, acrylation and finally neutralization and generated atrifunctional group monomer with three branches, and the chemicalstructure and purity were confirmed by IR and1H NMR spectral analysis.We demonstrated the self-organization behavior of monomer1with deionized water in methanol at room temperature based on the theoreticalcalculation of critical packing parameter. And the results revealed that, thefine lamellar (L) phase could be formed when the solution of monomer1/water (8/2) was allowed to equilibrate for at least48h after stirred24h atambient temperature in the presence of methanol (90%of the total amount)as a cosolvent, and the assemblies were confirmed by PLM and XRDanalysis. The preparation of inverted hexagonal (HII) phase was similar tothat of L phase, and the best ratio of monomer1/water we found until nowwas92/8. After that, we added different kind of photoinitiators to the LLCsystem and polymerized by UV-curing. The results show that, the acrylateconversion could reach up to78%when the LLC system containingphotoinitiator Darocur2959was exposed to30mW/cm2365nm UV lightfor30min, under which circumstances both L and HIIphases got retentionto some extent confirmed by XRD and PLM. Finally, the LLC containingphotoinitiator Darocur2959was coated on a nanofibrous PET membraneand polymerized, we could get composite membrane materials withsmooth surface morphology and pore diameter of1μm characterized bySEM images. The composite membrane materials obtained in this wayhave the advantage of uniform pore size, strong controllability, and goodcompatibity between the two layers, which makes it hopeful to exhibit afurther application in water filtration if the mechanical behavior could beimproved by optimizing the preparation technology.
引文
[1]王雨来.液晶及其在日化产品中的作用[J].新技术,新产品,新工艺,2001,4:24-25
    [2]陈东文.液晶化学[J].化学教育,2005,3:1-2
    [3]王良御,廖松生.液晶化学[M].北京:科学出版社,1988,1-5
    [4]Gin D L, Bara J E, Noble R D, etc. Polymerized lyotropic liquid crystal assemblies formembrane applications[J]. Macromol. Rapid Commun.,2008,29:367–389
    [5]李书霞,李干佐,于丽.水相和特殊介质中有序聚集体的结构、性质和应用(Ⅲ)-----溶致液晶[J].日用化学工业(China Surfactant Detergent&Cosmetics),2009,39(2):122-132
    [6]吴芝燕.新型溶致液晶的构建与表征[D].济南:济南大学高分子化学与物理,2010
    [7]崔英敏,吕刚.液晶的历史[J].近代物理知识
    [8]Gin D L, Bara J E, Noble R D, etc. Polymerized Lyotropic Liquid Crystal Assembliesfor Membrane Applications[J]. Macromol. Rapid Commun.,2008,29:367-389.
    [9]田晓红,蒋青,谢明贵.溶致液晶的结构及应用研究进展[J].化学研究与应用,2002,14:119
    [10]朱杰,孙润广.物理技术与方法在溶致液晶结构研究中的应用[J].液晶与显示,2005,20(3):240-244
    [11]谭玉英,陈铁红,孙平川.2H NMR研究嵌段共聚物溶致液晶相的结构演化与水分子动力学行为[J].中国科学B辑:化学,2009,39(9):965-970
    [12]Israelachvili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbonamphiphiles into micelles and bilayers[J]. J. Chem. Soc., Faraday Trans.1976,72(2):1525-1567
    [13]Li M H, Yang W L, Fu S K. Phase behavior and polymerization of lyotropic phases. II.A Series of polymerizable amphiphiles with systematically varied critical packingparameters[J]. Polymer Chemistry,2006,5887
    [14]Borisch K, Diele S, Goring P. Tailoring thermotropic cubic mesophases: amphiphilicpolyhydroxy derivatives[J]. J. Mater. Chem.,1998,8:529
    [15]Gin D J, Gu W Q, Pindzola B A, etc. Polymerized lyotropic liquid crystal assembliesfor materials applications[J]. Acc. Chem. Res.,2001,34:973-980
    [16]Zhou W J, Gu W Q, Xu Y J, etc. Assembly of acidic amphiphiles into invertedhexagonal phases using an L-alanine-based surfactant as a structure-directing agent[J].Langmuir,2003,19:6346-6348
    [17]Xu Y J, Gu W Q, Gin D L. Heterogeneous catalysis using a nanostructured solid acidresin based on lyotropic liquid crystals[J]. J. Am. Chem. Soc.,2004,126:1616-1617
    [18]Jin J Z, Nguyen V, Gu W Q, etc. Cross-linked lyotropic liquid crystal-butyl rubbercomposites: promising―breathable‖barrier materials for chemical protectionapplications[J]. Chem. Mater.,2005,17:224-226
    [19]Kerr R L, Miller S A, Shoemaker R K, etc. New type of Li ion conductor with3Dinterconnected nanopores via polymerization of a liquid organic electrolyte-filledlyotropic liquid-crystal assembly[J]. J. Am. Chem. Soc.,2009,131:15972-15973
    [20]Gu W Q, Gin D L. Aromatic side chain-functionalized long chain acid salts: structuralfactors influencing their lyotropic liquid-crystalline behavior[J]. Langmuir,2002,18:7415-7427
    [21]Pindzola B A, Jin J Z, Gin D L. Cross-linked normal hexagonal and bicontinuous cubicassemblies via polymerizable gemini amphiphiles[J]. J. Am. Chem. Soc.,2003,125:2940-2949
    [22]Hatakeyama E S, Wiesenauer B R, Gabriel C J, etc. Nanoporous, bicontinuous cubiclyotropic liquid crystal networks via polymerizable gemini ammonium surfactants[J].Chem. Mater.,2010,22:4525-4527
    [23]Yoshio M, Kagata T, Hoshino K, etc. One-dimensional ion-conductive polymer films:alignment and fixation of ionic channels formed by self-organization of polymerizablecolumnar liquid crystals[J]. J. Am. Chem. Soc.,2006,128:5570-5577
    [24]Kato T, Nakano M, Moteki T, etc. Supramolecular liquid-crystalline side-chainpolymers built through a molecular recognition process by double hydrogen bonds[J].Macromolecules,1995,28,8875-8876
    [25]Kihara H, Kato T, Uryu T, etc. Supramolecular liquid-crystalline networks built byself-assembly of multifunctional hydrogen-bonding molecules[J]. Chem. Mater.,1996,8:961-968
    [26]Shimura H, Yoshio M, Hoshino K, etc. Noncovalent approach to one-dimensional ionconductors: enhancement of ionic conductivities in nanostructured columnar liquidcrystals[J]. J. Am. Chem. Soc.,2008,130:1759-1765
    [27]Ichikawa T, Yoshio M, Hamasaki A, etc. Self-organization of room-temperature ionicliquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ionchannel networks[J]. J. Am. Chem. Soc.,2007,129,10662-10663
    [28]Tanabe K, Yasuda T, Yoshio M, etc. Viologen-based redox-active ionic liquid crystalsforming columnar phases[J]. Org. Lett.,2007,9(21):4271-4274
    [29]Seo S H, Chang J Y. Organogels from1H-imidazole amphiphiles: entrapment of ahydrophilic drug into strands of the self-assembled amphiphiles[J]. Chem. Mater.,2005,17:3249-3254
    [30]Seo S H, Tew G N, Chang J Y. Lyotropic columnar liquid crystals based onpolycatenar1H-imidazole amphiphiles and their assembly into bundles at the surfaceof silicon[J]. Soft Matter,2006,2:886-891
    [31]Seo S H, Park J H, Chang J Y. Organogels based on1H-imidazolecarboxamideamphiphiles[J]. Langmuir,2009,25(15):8439-8441
    [32]Lester C L, Colson C D, Guymon C A. Photopolymerization kinetics and structuredevelopment of templated lyotropic liquid crystalline systems[J]. Macromolecules,2001,34:4430-4438
    [33]DePierro M A, Olson A J, Guymon C A. Effect of photoinitiator segregation onpolymerization kinetics in lyotropic liquid crystals[J]. Polymer,2005,46:335-345
    [34]DePierro M A, Guymon C A. Photoinitiation and monomer segregation behavior inpolymerization of lyotropic liquid crystalline systems[J]. Macromolecules,2006,39:617-626
    [35]Sievens-Figueroa L, Guymon C A. Aliphatic chain length effects onphotopolymerization kinetics and structural evolution of polymerizable lyotropic liquidcrystals[J]. Polymer,2008,49:2260-2267
    [36]Sievens-Figueroa L, Guymon C A. Cross-linking of reactive lyotropic liquid crystalsfor nanostructure retention[J]. Chem. Mater.,2009
    [37]Sievens-Figueroa L, Guymon C A. Polymerization kinetics and nanostructureevolution of reactive lyotropic liquid crystals with different reactive group position[J].Macromolecules,2009,42:9243-9250
    [38]Zhou M J, Kidd T J, Noble R D, etc. Supported lyotropic liquid-crystal polymermembranes: promising materials for molecular-size-selective aqueousnanofiltration[J]. Adv. Mater.,2005,17:1850-1853
    [39]Zhou M J, Nemade P R, Lu X Y, etc. New type of membrane material for waterdesalination based on a cross-linked bicontinuous cubic lyotropic liquid crystalassembly[J]. J. Am. Chem. Soc.,2007,129:9574-9575
    [40]Liang X H, Lu X Y, Yu M, etc. Modification of nanoporous supported lyotropic liquidcrystal polymer membranes by atomic layer deposition[J]. Journal of Membranescience,2010,349:1-5
    [41]赵继宽,吉淑梅.溶致液晶模板法制备纳米材料研究进展[J].日用化学工业,2006,36:308-312
    [42]李彦,张庆敏,黄福志,等.表面活性剂溶致液晶体系研究进展[J].大学化学,2000,15:5-9
    [43]Wang L Y, Chen X, Zhan J, etc. Synthesis of gold nano-and microplates in hexagonalliquid crystals[J]. J. Phys. Chem. B2005,109:3189-3194
    [44]Braun P V, Osenar P, Twardowski M, etc. Macroscopic nanotemplating ofsemiconductor films with hydrogen-bonded lyotropic liquid crystals[J]. Adv. Funct.Mater.2005,15:1745-1750
    [45]Yamauchi Y, Momma T, Fuziwara M, etc. Unique microstructure of mesoporous Pt(HI-Pt) prepared via direct physical casting in lyotropic liquid crystalline media[J].Chem. Mater.2005,17:6342-6348
    [46]Albayrak C, Soylu A M, Dag O. Lyotropic liquid-crystalline mesophases of
    [Zn(H2O)6](NO3)2-C12EO10-CTAB-H2O and [Zn(H2O)6](NO3)2-C12EO10-SDS-H2Osystems[J]. Langmuir,2008,24:10592-10595
    [47]Takai A, Saida T, Sugimoto W, etc. Preparation of mesoporous Pt-Ru alloy fibers withtunable compositions via evaporation-mediated direct templating (EDIT) methodutilizing porous anodic alumina membranes[J]. Chem. Mater.2009,21:3414-3423
    [48]Yoshio M, Mukai T, Ohno H, etc. One-dimensional ion transport in self-organizedcolumnar ionic liquids[J]. J. Am. Chem. Soc.2004,126:994-995
    [49]Washiro S, Yoshizawa M, Nakajima H, etc. Highly ion conductive flexible filmscomposed of network polymers based on polymerizable ionic liquids[J]. Polymer,2004,45:1577-1582
    [50]Yazaki S, Funahashi M, Kagimoto J, etc. Nanostructured liquid crystals combiningionic and electronic functions[J]. Am. Chem. Soc.,2010,132:7702-7708
    [51]Chu B, Hsiao B S. The role of polymers in breakthrough technologies for waterpurification[J]. J. Polym. Sci. Part B: Polym. Phys.,2009,47:2431-2435
    [52]赵河立,尹建华,初喜章,等.水处理膜的应用现状及发展趋势[J].电力设备,2006,7:104-105
    [53]王薇.纳滤膜在水处理中的最新应用进展[J].高分子通报,2009,(10):24-29
    [54]江小林,李俊.纳滤膜技术在废水处理中的应用与发展趋势[J].广西轻工业,2009,(4):28-29
    [55]Yoon K, Hsiao B S, Chu B. Functional nanofibers for environmental applications[J]. J.Mater. Chem.,2008,18:5326-5334
    [56]孙复钱,李新松.含氟聚合物纳米多孔纳米纤维膜的制备[J].化工新型材料,2006,34(6):12-14
    [57]李婷婷,舒红英,徐佩.电纺纳米纤维的研究及应用[J].江西化工,2008,(3):48-50
    [58]朱淑飞,钱钰,鲁学仁.我国纳滤膜技术的研究进展[J].水处理技术,2002,28:12-16
    [59]Wang X F, Chen X M, Yoon K, etc. High flux filtration medium based on nanofibroussubstrate with hydrophilic nanocomposite coating[J]. Environ. Sci. Technol.2005,39:7684-7691
    [60]Wang X F, Fang D F, Yoon K, etc. High performance ultrafiltration compositemembranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrouspoly(vinyl alcohol) scaffold[J]. Journal of Membrane Science,2006,278:261-268
    [61]Tang Z H, Wei J, Yung L, etc. UV-cured poly(vinyl alcohol) ultrafiltration nanofibrousmembrane based on electrospun nanofiber scaffolds[J]. Journal of Membrane Science,2009,328:1-5
    [62]Yoon K, Kim K, Wang X F, etc. High flux ultrafiltration membranes based onelectrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer,2006,47:2434-2441
    [63]Yoon K, Hsiao B S, Chu B. High flux ultrafiltration nanofibrous membranes based onpolyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating[J].Journal of Membrane Science,2009,338:145-152
    [64]Ma H Y, Yoon H, Rong L X, etc. Thin-film nanofibrous composite ultrafiltrationmembranes based on polyvinyl alcohol barrier layer containing directional waterchannels[J]. Ind. Eng. Chem. Res,2010
    [65]Ma H Y, Hsiao B S, Chu B. Thin-film nanofibrous composite membranes containingcellulose or chitin barrier layers fabricated by ionic liquids[J]. Polymer,2011,52:2594-2599
    [66]Ma H Y, Burger C, Hsiao B S, etc. Ultrafine polysaccha ride nanofibrous membranesfor water purification[J]. Biomacromolecules,2011,12:970-976
    [67]Ye J J, Abiman P, Crossley A, etc. Building block syntheses of gallic acid monomersand tris-(o-gallyl)-gallic acid dendrimers chemically attached to graphite powder: acomparative study of their uptake of al (iii) ions[J]. Langmuir,2010,26(3):1776-1785
    [68]Takaoka S, Takaoka N, Minoshima Y, etc. Isolation, synthesis, and neuriteoutgrowth-promoting activity of illicinin A from the flowers of Illicium anisatum[J].Tetrahedron,2009,65:8354-8361
    [69]Sreedhar E, Kumar R S C, Reddy G V, etc. The first total synthesis of neohelmanticinsA–D, amino derivatives of the1,2-dihydroxypropane core and biological evaluation[J].Tetrahedron:Asymmetry,2009,20:440–448
    [70]Zou J, Tao F G, Jiang M. Optical switching of self-assembly and disassembly ofnoncovalently connected amphiphiles[J]. Langmuir,2007,23:12791-12794
    [71]Alam A, Takaguchi Y, Ito H, etc. Multi-functionalization of gallic acid towardsimproved synthesis of a-and b-DDB[J]. Tetrahedron,2005,61:1909–1918
    [72]Ximenes V F, Lopes M G, Petronio M S, etc. Inhibitory effect of gallic acid and itsesters on2,2-azobis (2-amidinopropane)hydrochloride (aaph)-induced hemolysis anddepletion of intracellular glutathione in erythrocytes[J]. J. Agric. Food Chem.,2010,58:5355–5362
    [73]李若琦,陈育平,伍混贤.没食子酸甲醋合成工艺改进[J].贵州化工,2002,27(1):12-13
    [74]薄采颖,毕良武,赵振东,等.没食子酸酯的合成方法综述[J].现代化工,2008,28(2):393-397
    [75]伍贤,李敏谊,陈琳,等.没食子酸酯合成方法改进及其抗血小板聚集作用[J].精细化工,1998,15(4):9-12
    [76]孟庆民,张爱黎,潘政华.用十二烷基苯磺酸催化合成没食子酸正丙酯[J].抚顺石油学院学报,1999,19(1):25-27
    [77]Li M H, Yang W L, Qian J, etc. Synthesis of polymerizable amphiphiles with criticalpacking parameters systematically varied[J]. Polym. Adv. Technol.,2006,17:562-570
    [78]杜新语.增亮膜用双端丙烯酸酯类液晶化合物的合成与表征[D].济南:山东轻工业学院应用化学系,2009
    [79]曹翠,乔卫红.一种丙烯酸酯型可聚合乳化剂的合成及其应用[J].研发前沿,2009,17(15):22-25
    [80]彭晓春,彭晓宏,林裕卫,等.聚氧乙烯链封端的聚酰胺2胺树状聚合物的合成与表征[J].精细化工,2010,27(6):525-528
    [81]李国防,刘铁良,赵东.丙烯酸三溴苯酯的制备[J].河南化学,2003,21(6):710-712
    [82]蒋艾兵,程博闻,任元林,等. O, O—二乙基丙烯酰基膦酸酯的合成、表征及应用[J].精细化工,2009,26(2):105-108
    [83]Israelachvili J N. Intermolecular and Surface Forces[M]. London: Academic Press,1991
    [84]Minofar B, Jungwirth P, Das M R, etc. Propensity of formate, acetate, benzoate, andphenolate for the aqueous solution/vapor interface: surface tension measurements andmolecular dynamics simulations[J]. J. Phys. Chem. C2007,111:8242-8247
    [85]Malcolmson C, Lawrence M J. Three-component non-ionic oil-in-watermicroemulsions using polyoxyethylene ether surfactants[J]. Colloids and Surfaces B:Biointerfaces,1995,4:97-109
    [86]Elbro H S, Fredenslund A, Rasmussen P. Group contribution method for the predictionof liquid densities as a function of temperature for solvents, oligomers, andpolymers[J]. Ind. Eng. Chem. Res.,1991,30(12):2576-2582
    [87]马国章,吴建兵,许并社.紫外光固化暗反应过程中C=C双键转化率的红外光谱研究[J].光谱学与光谱分析,2010,30(7):1780-1784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700