船用增压锅炉汽包水位预测控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压锅炉在船舶蒸汽动力装置中具有举足轻重的地位,具有尺寸小、重量轻、功率大、经济性以及高可靠性等优点。为推动船舶蒸汽动力的发展,提高船用增压锅炉的自动化水平,开展增压锅炉先进控制方法研究是发展增压锅炉在船舶行业安全、稳定、高效运行的迫在眉睫的研究课题。预测控制作为一种性能优越的控制算法,对模型精度要求不高,在过程控制应用中显示了良好的性能,本文以实际科研项目为课题研究背景,以预测控制理论为基础,围绕船用增压锅炉蒸发系统,以减少算法计算量、提高汽包水位控制算法的实时性为目标,开展了以下的研究工作:
     首先,从建立船用增压锅炉系统仿真平台角度出发,全面分析了船用增压锅炉蒸发系统的工作机理,简化其物理模型,利用汽水两相的质量平衡方程和能量平衡方程建立了蒸发系统的动态机理模型,仿真结果反映了汽包水位在不同工况下的动态响应,符合基本规律和过程机理,为后续的船用增压锅炉汽包水位预测控制方法研究奠定了基础。
     其次,为提高船用增压锅炉汽包水位控制系统的快速性,对串级广义预测控制算法进行了改进,设计了船用增压锅炉汽包水位的串级GGPC(灰色广义预测控制)-PI控制器。该控制器采用简单的灰色预测模型,与广义预测控制中的CARIMA模型相比减小了计算量,实现了对汽包水位特定工况的有效控制。该方法综合了预测控制、串级控制、灰色理论和PID控制的优点,且方法简单易行。
     再次,根据船用增压锅炉大范围变工况的运行特点,提出了汽包水位的RBF神经网络动态补偿多模型预测控制策略,即在典型工作点建立固定模型并结合RBF神经网络动态补偿模型误差,控制器及时实现模型切换,以适应动态特性的变化。该方法充分考虑到单一固定模型不能适应全局大范围工况变化的特点,预测控制与RBF神经网络的结合极大地提高了系统的鲁棒性与稳定性。
     最后,针对船用增压锅炉汽包水位非线性、时变和环境不确定等特性,设计了基于T-S模糊多模型的汽包水位滑模预测控制器。采用具有万能逼近特性的T-S模糊模型作为预测模型,利用滑模变结构的强鲁棒性改善预测控制特性,仿真实验表明所设计的非线性预测控制策略解决了汽包水位非线性不确定性的控制难点,且具有良好的鲁棒性。
Supercharged boiler plays an important role in marine steam power plant and it has the advantages of small size, light weight, big power, economy and high reliability and so on. To promote the development of marine steam power and improve the automation level of supercharged boiler, it is urgent to carry out advanced control method, which will ensure supercharged boiler safety and stability operation in the shipbuilding industry. As a superior control algorithm, predictive control shows good performance in process control applications. The thesis relies on the actual scientific research for the topic research background and is based on the evaporation system of marine supercharged boiler. For reducing the amount of algorithm and improving the real-time behavior, the following research is carried out:
     Firstly, from the establishment of supercharged boiler system simulation platform point of view, working mechanism of the evaporation system is comprehensively analyzed. Simplifying the physical model, dynamic mechanism model is established by using mass balance and energy balance equation of steam and water two-phase. The simulation results reflect dynamic response in the different conditions and accord with basic law and process mechanism for providing the foundation on the follow-up study of drum water level control method.
     Secondly, to improve marine supercharged boiler drum water level system's rapidity, the cascade GPC control algorithm has been improved and a practical cascade generalized predictive control algorithm based on grey predictive model is put forward. The controller uses a simple gray forecasting model which reduces the amount of calculation compared to CARIMA model of generalized predictive control and realizes effective control of a particular condition for drum water level. This method combines the advantages of the predictive control, cascade control, gray theory and PID control, and the method is simple and easily used in real systems.
     Thirdly, according to the operational characteristics of a wide range of variable conditions, multi-model predictive control strategy based RBF neural network dynamic compensation is proposed. The fixed models are established on typical operating points and the RBF neural network model is used to compensate the model error. The models are swiched in time to adapt to the changes of dynamic characteristics. The method fully considers that a single fixed model can not adapt to the changes in a wide range of operating conditions.The combination with predictive control and RBF neural network greatly improves the system robustness and stability.
     Finally, for the drum water level with the non-linear, time-varying and uncertain environment, sliding mode variable structure predictive control strategy based on T-S fuzzy model is designed. The method uses T-S fuzzy model for approaching the nonlinear model of the system and applies the strong robustness of sliding variable structure control to enhance the control behavior of predictive control. The simulation results reflect the new nonlinear predictive control strategy has a very good robustness.
引文
[1]吉桂明,李汇文.应用于海军舰船的增压主锅炉.锅炉制造.1999(1):23-30页
    [2]刘长河.船用增压锅炉技术的新进展.热能动力工程.1999,14:241-245页
    [3]吉桂明.舰用主蒸汽锅炉在固定式动力工程中的应用.锅炉技术.1998(10):15-18页
    [4]李章.舰用增压锅炉装置.北京:海潮出版社,2002
    [5]沈志刚.增压锅炉热力计算方法研究.哈尔滨工程大学硕士学位论文.2003:92-96页
    [6]牛克华.增压锅炉在舰船上的应用与发展.中国修船.2007,20(5):17-19页
    [7]沈志刚,邹积国,姜任秋,陈起铎.增压锅炉机组重要热工参数的选择.热能动力工程.2003,1(18):27-29页
    [8]张丽剑,姜任秋,李彦军,孙宝芝.增压锅炉经济器结构与热力计算研究.哈尔滨工程大学学报.2004,25(2):229-231页
    [9]韩静.舰用增压锅炉热平衡及动态仿真研究.哈尔滨工程大学硕士论文.2006
    [10]王建志,吴少华,季清洲.船用增压锅炉热平衡计算.热能动力工程.2006,21(5):470-472页
    [11]王建志,王永堂,吴少华,秦裕琨.船用增压锅炉旋流蒸汽机械喷油器的雾化特性.热能动力工程.2007,22(3):306-309页
    [12]张静巧,朱齐丹.一种新的增压锅炉空气流量的控制方法.哈尔滨工程大学学报.2008,29(7):692-697页
    [13]Thomas D.Younkins,Joe H.Chow.Multivariable feedwater control design for a steam geneator.IEEE Control System Magazine.1988,4:77-80P
    [14]李玲玲,葛曼玲,赵全明.工业锅炉水位三冲量控制系统的改进.河北工业大学学报.2000,12:97-100页
    [15]潘维加.汽包锅炉状态前馈-反馈给水控制.动力工程.2001,21(1):1552-1554页
    [16]杨献勇.热工过程自动控制.北京:清华大学出版社,2000
    [17]K.B.Lee.Application of a Fuzzy logic based self-tuning PID controller to the control of drum water level of a boiler for a power generating plant. IEE 2nd International Conference on Advances in Power System Control, Operation and Management.1993, (12):849-854P
    [18]杨少峰,郭庆祝.船用锅炉汽包水位Fuzzy-PID控制器策略理论研究.中外船舶科技.2005,1:21-24页
    [19]付晓刚.锅炉汽包水位模糊免疫PID的应用研究.锅炉技术.2006,37(4):24-27页
    [20]俞海斌,褚健.CFB锅炉汽包水位的专家PID控制.机电工程.2000,(3):103-106页
    [21]孙俊.船舶锅炉汽包水位及其专家PID控制系统仿真.计算机仿真.2007,24(4):162-169页
    [22]Yu Nanhua, Ma Wentong, Su Ming. Application of adaptive grey predictor based algorithm to boiler drum level control.Energy Conversion and Management.2006,47:2999-3007P
    [23]彭道刚,张浩,杨平,王勇.锅炉汽包水位系统的免疫PID-免疫P串级控制.信息与控制.2006,35(6):765-768页
    [24]程启明,郑勇,杜许峰,郭润清.自抗扰控制器串级三冲量汽包水位控制系统.热能动力工程.2008,23(1):69-72页
    [25]杨平,彭道刚,王志萍,杨艳华.电站锅炉汽包水位的CMAC神经网络与PID复合控制.动力工程.2004,24(6):805-808页
    [26]刘国才.大型船舶锅炉汽包水位控制系统的设计与研究.哈尔滨工程大学硕士论文.2006
    [27]A.L.Elshafei, M.Abde-Magied, H.Rashad and A.Bahagat.Design and implementation of a Laguerre self-tuner for boiler drum-level control. Proceedings of the American Control Conference Seattle, Washington, 1995:2024-2028P
    [28]王东风,韩璞,王国玉.锅炉汽包水位系统的预测函数控制.华北电力大学学报.2003,(5):44-47页
    [29]刘红军,韩璞,王东风.锅炉汽包水位系统DMC-PID串级控制仿真研究.系统仿真学报.2004,13(6):450-453页
    [30]邹涛,刘红波,李少远.锅炉汽包水位非自衡系统的预测控制.控制理论与应用.2004,21(3):386-390页
    [31]Min Xu, Shaoyuan Li,Wenjian Cai. Cascade generalized predictive control strategy for boiler drum level.ISA Transactions.2005,44 (3):399-411P
    [32]D.Li, T.Chen, H.J.Marquez, R.K.Gooden.Life extending control of boiler-turbine systems via model predictive methods.Control engineering practice.2006 (14):319-326P
    [33]Ade Haryanto, Keum-Shik Hong, and Chung Hwan Jeon.Nonlinear Model Predictive Control of an Oxy-Fuel Combustion Boiler for Regulating the Excess Oxygen Percentage in the Flue Gas. SICE Annual Conferece. Japan.2008:2112-2117P
    [34]费景洲,马修真,张寅豹.基于阶梯式广义预测的船用锅炉汽包水位控制.船海工程.2009,32(2):89-93页
    [35]Rouhani R,Mehra R K.Model algorithmic control(MAC):basic theoretical properties.Automatica.1982,18 (4):401-414P
    [36]Cutler C R,Ramaker B L.Dynamic matrix control-a computer control algorithm.In:Proceedings of the Joint Automatic Control Conference.San Francisco,USA:AACC,1980.WP5-B
    [37]Clarke D W, Mohtadi C,Tuffs P S.Generalized predictive control. Automatica.1987,23 (2):137-160P
    [38]席裕庚.预测控制.北京:国防科技出版社,1993
    [39]诸静.智能预测控制及其应用.第1版.浙江大学出版社,2002
    [40]丁宝苍.预测控制的理论与方法.北京:机械工业出版社,2008
    [41]Kwon, W H, A E Pearson. A modified quadratic cost problem and feedback stabilization of a linear system.IEEE Trans. Automat Controll.1977,22(5): 838-842P
    [42]Kwon, W H, A E Pearson. On feedback stabilization of time-varying discrete linear systems.IEEE TRANS Automat Control,1978,23 (3) 479-481P
    [43]Rawlings J B and K R Muske.The stability of constrained rededing horizon control.IEEE Trans Automat Control.1993,38 (10):1512-1516P
    [44]Kothare M V, V Balakrishnan,M Morari.Robust constrained model predictive control using linear matrix inequalities.Automatica.1996,32 (10):1361-1379P
    [45]Mayne D Q, Rawling J B, Rao C V, Scokaert P O M.Constrained model predictive control:stability and optimality.Automatica.2000,36(6):789-814P
    [46]Lee J W.Exponential stability of constrained receding horizon control with terminal ellipsoid constraints.IEEE Transactions on Automatic Control.2000,45(1):83-88P
    [47]耿晓军,席裕庚.基于HM非线性模型的滚动时域H∞控制设计.控制与决策.2000,15(2):149-152页
    [48]Casavola A, Famularo D,Franz G.. Robust constrained predictive control of uncertain norm-bounded linear systems. Automatica.2004,40(11): 1865-1876P
    [49]Manye D Q,Seron M M, Rakovic S V.Robust model predictive control of constrained linear systems with bounded disturbances.Automatica.2005, 41 (2):219-224P
    [50]Manye D Q,Rakovic S V,Findeisen R,Allgower F.Robust output feedback model predictive control of constrained linear systems.Automatica.2006, 42 (7):1217-1222P
    [51]Rakovi S V,Kerrigana E C,Mayne D Q,Kouramas K I.Optimized robust control invariance for linear discrete-time systems:theoteticalfoundations. Automatica.2007,43 (5):831-841P
    [52]Fukushima H,Bitmead R R.Robust constrained predictive control using comparison model.Automatica.2005,41 (1):97-106P
    [53]Mosca.E.Predictive switching supervisory control of persistently disturbed input-saturated plants.Automatica.2005,41 (1):55-67P
    [54]Cuzzola F C,Geromel J C,Morari M.An improved approach for constrained robust model predictive control.Automatica.2002,38 (7) 1183-1189P
    [55]Mao W J.Robust stabilization of uncertain time-varying discrete systems and comments on "an improved approach for constrained robust model predictive control".Automatica.2003,39 (6):1109-1112P
    [56]Lee Y I, Kouvaritakis B.Robust receding horizon predictive control for systems with uncertain dynamics and input saturation. Automatica.2000,36 (10):1497-1504P
    [57]Lee Y I, Kouvaritakis B.A linear programming approach to constrained robust predictive control.IEEE Transactions on Automatic Control.2000, 45 (9):1765-1770P
    [58]Lee Y I, Kouvaritakis B.Superposition in efficient robust constrained predictive control.Automatica.2002,38 (5):875-878P
    [59]Cannon M,Deshmukh V,Kouvaritakis B.Nonlinear model predictive control with polytopic invariant sets.Automatica.2003,39(8):1487-1494P
    [60]Pluymers B,Rossiter J A,Suykens J A K,De Moor B.The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty.Proccedings of American Control Conference.Portland,USA: IEEE,2005:804-809P
    [61]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状.自动化学报.2008,34(10):1225-1234页
    [62]杜晓宁,席裕庚.预测控制优化变量的集结策略.控制与决策.2002,17(5):563-566页
    [63]张群亮.约束预测控制的设计方法研究.上海交通大学博士学位论文.2006
    [64]Li D W, Xi YG. The geneal framework of aggregation strategy in model predictive control and stability analysis.Proceedings of the 11th IFAC Symposium on Large Scale Systems Theory an Applications. Gdansk, Poland,2007
    [65]李德伟,席裕庚,秦辉.预测控制等效集结优化策略的研究.自动化学报.2007,33(3):302-308页
    [66]Garcia C E.Quadratic Dynamic Matrix Control of Nonlinear Process.An Application to a Batch Reactor Processes,AICHE Annual Meeting,San Francisco,1984
    [67]Lee J H, Ricker N L.Extended Kalman Filter Based Nonlinear Model PPredictive Control[J].Ind.Eng.Chem.Res.,1994,33:1530-1541P
    [68]Rani K Y, Gangiah K.Nonlinear Dynamic Matrix Control of Open-Loop Unstable Process with Least Squares Miinimization for Constraints. Chem.Eng.Sci.1991,46:1520-1525P
    [69]张新民,荣岗.间歇反应过程的预测函数控制.信息与控制.1999,28(增刊):102-106页
    [70]Doyle F J, Ogunnaike B A, Pearson R K.Nonlinear model-based control using second-order Volterra models.Automatica,1995,31(5):697-714P
    [71]Norquay S J,Palazoqulu A,Romaqnoli J A.Model predictive control based on Wiener models.Chemical Engineering Science,1998,53(1):75-84P
    [72]Ania L C,Osvaldo E,Agamennoni J L.A nonlinear model predictive control system based on Wiener piecewise linear models.Journal of process control,k2003,13:655-666P
    [73]席裕庚,王凡.非线性系统预测控制的多模型方法.自动化学报.1996,22(4):456-460页
    [74]薛美盛,孙德敏,吴刚.火电厂锅炉主蒸汽压力的阶梯式广义预测控制.中国科学技术大学学报.2002,32(6):685-689页
    [75]杨青,李树荣.基于Backstepping设计的不确定非线性系统的预测控制.控制理论与应用.2007,24(4):525-529页
    [76]刘志林.分段仿射系统的控制器设计及预测控制方法研究.哈尔滨工业大学工学博士学位论文.2007:84-96页
    [77]Eelco Scholte,Mark E.Campbell.Robust Nonlinear Model Predictive Control With Partial State Information.IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2008,16 (4):636-651P
    [78]徐祖华,ZH U Yucai,赵均,钱积新.新一代的自适应模型预测控制器.化工学报.2008,59(5):1207-1215页
    [79]曾静,薛定宇,袁德成.非线性系统的多模型预测控制方法.东北大学学报.2009,30(1):26-29页
    [80]李少远.基于模糊推理和广义预测的组合控制.南开大学学报.1997,30(2):20-24页
    [81]金和平,常黎.水轮发电机组功率智能预测控制策略研究.华北电力.1998,11(1):17-19页
    [82]Hadjili M L, Wertz V.Generalized predictive control using Takagi-Sugeno fuzzy models.Proceedings of the IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics,1999,15-17P
    [83]Mahfoufa M,Kandiahb S,Linkensa D A.Fuzzy model-based predictive control using an ARX structure with feedforward.Fuzzy Sets and Systems,2002,125:39-59P
    [84]王寅,荣冈,王树青.基于模糊模型的非线性预测控制策略.控制理论与应用.2002,19(4):599-603页
    [85]Sarimveis H, Bafas G.Fuzzy model predictive control of non-linear processe using genetic algorithms.Fuzzy Sets and Systems,2003, 139:59-80P
    [86]Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear processes using genetic algorithms.Fuzzy Sets and Systems.2003,139(1): 59-80P
    [87]邢宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究.控制与决策.2005,20(5):495-499页
    [88]Qiang Li, Baochu Qu. Shady of Fuzzy Generalized Predictive Control Algorithm on Nonlinear Systems. Proceedings of the First international Conference on Innovative Computing, Information and Control,2006, Beijing, China. USA:IEEE Computer Society,2006:437-440P
    [89]吴科,吕剑虹,向文国.ALSTOM气化炉的模糊增益调度预测控制.动力工程.2008,28(2):229-237页
    [90]于传强,郭晓松,马长林,张安.导弹起竖过程的非线性预测控制.兵工学报.2008,29(11):1400-1404页
    [91]周立芳,张赫男.基于聚类多模型建模的多模态预测控制.化工学报.2008.59(10):2546-2552页
    [92]Galvan I.M.Zaldivar J M.Application of Recurrent Neural Networks in Batch Reactors Part LNARMA Modeling of the Dynamic Behavior of the Heat Transfer Fluid Temperature.Chemical Engineering and Processing. 1997,36(6):505-518P
    [93]Bongards M.Improving the Efficiency of a Waster Water Treatment Plant by Fuzzy Control and Neural Networks.Water Science and Technology, 2001,43(11):189-196P
    [94]H. Jazayeri-Rad.The nonlinear model predictive control of a chemical plant using multiple neural networks.Neural Comput&Applic,2004, 13(1):2-15P
    [95]石宇静,柴天佑.基于神经网络与多模型的非线性自适应广义预测解耦控制.控制理论与应用.2008,25(4):634-640页
    [96]Weimin Zhong,Daoying Pi,Youxian Sun. Study on SVM Based Model Predictive Control.Proceedings of 5th World Congress on Intelligent Control and Automation,2004,Hangzhou,China.2004:607-610P
    [97]王宇红,黄德先,高东杰等.基于LS-SVM的非线性预测控制技术.控制与决策.2004,19(4):383-387页
    [98]Juan Solis, Doris Saez, Pablo A Estevez.Partical Swarm Optimization based Fuzzy Predictive Control Strategy.2006 IEEE International Conference on Fuzzy Systems.2006:1866-1871P
    [99]Yo-Ping Huang, Sheng-Fang Wang.Identifying the fuzzy grey prediction model by genetic algorithms.Proceedings of IEEE Interational Conferenc on Evolutionary Computation,1996:720-725P
    [100]杨青.非线性预测控制器设计及其应用.中国石油大学工学博士学位 论文.2006:42-52页
    [101]董陵,沈炯,李益国.基于免疫原理的模型预测控制方法及其在过热气温控制中的应用.自动化与仪器仪表.2005,1:27-31页
    [102]曾德良,赵征,陈彦桥等.500MW机组锅炉模型及试验分析.中国电机工程学报.2003,23(5):149-152页
    [103]田亮,曾德良,刘吉臻等.简化的330MW机组非线性动态模型.中国电机工程学报.2004,24(8):180-184页
    [104]Astrom K J, Bell R D. Drum-boiler dynamics. Automatica,2000,36: 363-378P
    [105]V.Kecman.Nonlinearity of dynamic processes in a drum boiler circulation loop.C.Maffezzoni ed.IFAC Modelling and Control of Electric Power Plants.Como,Italy.1983:21-27P
    [106]史达明,马文智.自然循环锅炉蒸发区动态数学模型.中国电机工程学报.1990,10(1):68-72页
    [107]陈立甲,马克茂,王子才.电站锅炉燃烧系统和蒸发系统仿真模型的建立.发电设备.2001(4):20-24页
    [108]陈立甲,王子才.自然循环锅炉汽水系统两相区数学模型的建立.系统仿真学报.2001,13(3):370-372页
    [109]高建强,常喜茂,苏志恒.自然循环锅炉蒸发系统的工程模块化仿真模型.华北电力大学学报.1999,26(4):39-43页
    [110]Liu Changliang, Liu Jizhen, Niu Yuguang.Nonlinear boiler model of 300MW power unit for system dynamic performance studies.Proceedings ISIE IEEE International Symposium on Industrial Electronics,2001,2: 1296-1300P
    [111]姚受广.舰船中压锅筒式锅炉蒸发系统运行特性及仿真.热能动力工程.2000,15(88):399-402页
    [112]曹占伟.船用增压锅炉汽水系统建模与动态仿真.哈尔滨工程大学硕士论文.2007
    [113]齐治国.船用锅炉汽水系统数学建模及仿真的研究.哈尔滨工程大学硕士学位论文.2003:47-48页
    [114]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1998
    [115]王伟.广义预测控制理论及其应用.北京:科学出版社,1998
    [116]钱积新,赵均,徐祖华.预测控制.北京:化学工业出版社,2007
    [117]李少远.全局工况系统预测控制及其应用.北京:科学出版社,2008
    [118]曹健,王俊凯,吴盛林,李尚义.动态矩阵(DMC)-PID串级预测控制策略在新型叶片连续回转马达位置伺服系统中的应用.宇航学报.2006.7(27):625-629页
    [119]D W Clarke. Application of generalized predictive control to industrial processes. IEEE Control Systems Magazine,1988,122:49-55P
    [120]邓聚龙.灰色控制系统(第二版).武汉:华中理工大学出版社,1993
    [121]刘金琨.先进PID控制MATLAB仿真(第二版).北京:电子工业出版社,349-350页
    [122]沈继红.灰色系统理论预测方法研究及其在舰船运动预报中的应用.哈尔滨工程大学博士学位论文.2001.12:29-48页
    [123]罗开元,高峰,胡俐蕊.灰色广义预测控制算法及仿真研究.控制理论与应用.2002,19(2):207-210页
    [124]王天堃,周黎辉,韩璞,徐大平.基于灰色广义预测控制的网络化控制系统丢包补偿.信息与控制.2007,36(3):322-327页
    [125]陶永华.新型PID控制及其应用.北京.机械工业出版社,2005:236-237页
    [126]岳俊红.复杂工业过程多模型预测控制策略及其应用研究.华北电力大学工学博士学位论文.2007
    [127]任洪亮.多模型控制理论在AUV运动控制中的应用研究.哈尔滨工程大学工学硕士学位论文.2004
    [128]郭启刚.热工过程多模型控制理论与方法的研究.华北电力大学工学博士学位论文.2007
    [129]孙维,李晓理,王伟.基于多模型的非线性系统自适应最小方差控制.控制理论与应用.2002,19(4):639-643页
    [130]翟军勇.基于多模型切换的智能控制研究.东南大学博士学位论文.2006
    [131]Narendra K S, Balakrishnan J, Ciliz M K.Adaptation and learning using multiple models,switching and tuning.IEEE Control Systems Magazine, 1995,15 (1):37-51P
    [132]Narendra K S, Balakrishnan J.Improving Transient Response of Adaptive Control Systems using Multiple Models and Swiching.IEEE Transactions on Automatic Control,1994,39 (9):1861-1866P
    [133]Narendra K S, Balakrishnan J.Adaptive control using multiple models.IEEE Transactions on Automatic Control,1997,42 (2):171-187P
    [134]Narendra K S,Cheng X.Adaptive control of discrete-time systems using multiple models.IEEE Transactions on Autonmatic Control,2000,45 (9) 1669-1686P
    [135]Tamas Keviczky, Gary J. Balas.Receding horizon control of an F-16 aircraft:A comparative study. Control ENGINEERING PRACTICE.2006 (14):1023-1033P
    [136]罗四维.大规模人工神经网络理论基础.北京:清华大学出版社,2004
    [137]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006
    [138]Simon Haykin著,叶世伟,史忠植译.神经网络原理.北京:机械工业出版社,2004
    [139]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2005
    [140]韩力群.人工神经网络理论、设计及应用.北京:化学工业出版社,2007
    [141]董长虹.Matlab神经网络与应用.北京:国防工业出版社,2005
    [142]李彦琴.RBF型神经网络预测控制在卫星姿态仿真系统中的应用技术研究与试验,北京化工大学工学硕士学位论文,2003
    [143]J M Maciejowski. Predictive Control with Constraints. Prentice Hall,2002
    [144]高为炳.变结构控制的理论与设计方法.科学出版社,1996
    [145]胡跃明.变结构控制理论与应用.科学出版社,2003
    [146]余南华,刘永文,张会生,马文通.余热锅炉汽包水位波动的不确定性成分研究.中国电机工程学报.2005,25(7):18-23页
    [147]Corradini, M.L.,Orlando,G.A VSC algorithm based on generalized predictive control.Automatica,1997,33(5):927-932P
    [148]周建锁,刘志远,裴润.一种非线性连续预测变结构控制方案.电机与控制学报.2000.4(4):228-238页
    [149]雎刚,徐治皋.一种基于变结构的预测控制算法及其应用研究.中国电机工程学报.2001.21(7):111-114页
    [150]周建锁,刘志远,裴润.约束非线性系统的滑模预测控制方法.控制与决策.2001.16(2):208-210页
    [151]周建锁,刘志远,裴润.带终端滑模约束的非线性模型预测控制方法.控制与决策.2001.16(4):473-476页
    [152]宋立忠,李红江,陈少昌.滑模预测离散变结构控制用于船-舵伺服系统.中国电机工程学报.2003,23(11):160-163页
    [153]宋立忠,陈少昌,姚琼荟.滑模预测离散变结构控制.控制理论与应用.2004,21(5):826-829页
    [154]Lingfei xiao,Hongye Su,xiaoyu Zhang,Jian Chu.A new discrete variable strkucture control algorithm based on sliding mode prediction,2005 American Control Conference, USA,4643-4648P
    [155]Kenneth R.Muske, Hashem Ashrafiuon and Mehdi Nikkhah. A Predictive and Sliding Mode Cascade Controller.Proceedings of the 2007 American Control Conference,New York City, USA, July 11-13,2007,4540-4545P
    [156]肖玲斐.基于预测控制策略的离散滑模控制研究.浙江大学工学博士学位论文.2008
    [157]Winston Garcia-Gabin, Darine Zambrano, Eduardo F.Camacho.Sliding mode predictive control of a solar air conditioning plant. Control Engineering Practice. Vol.17.2009:652-663P
    [158]Mercedes Perez de la Parte, Eduardo F.Camacho.Application of a predictive sliding mode controller to a heat exchanger.Proceedings of the 2002 IEEE International Conference on Control Applications, September 18-20,2002,Glasgow,Scotland,U.K.1219-1224P
    [159]Mercedes Perez de la Parte,Oscar Camacho,Eduardo F.Camacho. Development of a GPC-based sliding mode controller[J]. ISA TRANSACTIONS. Vol41, 2002:19-30P
    [160]Wang L X.Fuzzy systems are universal approximators.IEEE Int.Conf.Fuzzy Systems.San Diego, CA,1992:1163-1170P
    [161]Zeng X J and Singh M G.Approximation theory of fuzzy systems MIMO case.IEEE Traps.On Fuzzy Systems,1995,3(2):219-235P
    [162]李少远,李柠.复杂系统的模糊预测控制及其应用.北京:科学出版社,2003
    [163]Hao Ying. Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequence.IEEE Traps.Syst,Man,Cybern,1998(28):515-521P
    [164]肖建,白裔峰,于龙.模糊系统结构辨识综述.西南交通大学学报.2006,41(2):135-142页
    [165]Mohan B M, Sinha A. Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing,2008.8(1):749-758P
    [166]H.Eliasi,H.Davilu,M.B.Menhaj.Adaptive fuzzy model based predictive control of nuclear steam generators.Nuclear Engineering and Design,2007, 237:668-676P
    [167]Chiu S L.Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700