炉膛结构对循环流化床气固流动特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床作为一项高效、清洁的燃烧技术近年来有了迅速发展,特别是随着循环流化床机组呈现大型化高参数化的发展趋势,炉膛结构布置对炉内气固流动特性的影响是该技术发展的关键问题之一。本文依托十一五国家科技支撑计划子课题项目《超临界循环流化床锅炉整体布置方案》,开展了炉膛结构对床内气固流动分布特性影响的试验研究和数值模拟计算工作,为研究开发设计具有自主知识产权的600MW超临界循环流化床锅炉提供理论基础。
     本文首先在自行搭建的350m×480m×4.9m的矩形截面冷态循环流化床试验台上,利用高速摄影技术和粒子图像测速(PIV)以及PC6D型光纤颗粒浓度探针,对试验台密相区、过渡区、稀相区段内的颗粒速度浓度分布情况进行了试验测量,着重考察了不同结构布置(不同密相区结构、过渡区后墙台阶、二次风口、稀相区挂屏以及炉膛出口大小,布置位置等)对炉内的局部区域的气固流动分布的影响。
     试验结果表明当密相区采用单侧后墙渐扩型结构时,床内底部颗粒的流动速度及浓度分布在前后墙方向上均呈非中心对称分布,气泡和颗粒向渐扩的后墙方向偏转且返混现象剧烈,后墙附近区域颗粒浓度明显高于前墙;过渡区截面内后墙台阶结构的布置改变了该区域的气固流动分布,在靠近台阶区域,颗粒流动偏转现象明显,台阶结构的上下两端均易出现大量颗粒的聚集和碰撞;稀相区段的气固流动分布则主要受出口效应控制,颗粒速度和浓度的最大值分布于出口位置处。加大炉膛出口尺寸后,稀相区段颗粒相的径向速度增加明显,同时稀相区颗粒浓度略有增加;稀相区屏式过热器的布置增加了该区域的壁面约束,在挂屏间隔区域颗粒流动呈现类似“环核”结构的分布情况,同时在挂屏边壁区域有明显的较高浓度的颗粒回流形成。
     其次本文通过对循环流化床内气固流动数值模拟方法和模型的综述与比较,特别是考虑到前期气固流动模拟中传统曳力模型的局限,引入了基于能量最小多尺度(EMMS)模型的新曳力计算方法,并结合以颗粒动力学理论为基础的双流体模型,利用Fluent6.3计算软件对循环流化床冷态试验台及多结构方案布置的600MW超临界循环流化床锅炉内的气固流动特性进行了数值模拟和分析,重考察了不同出口布置方式,稀相区挂屏布置方式和底部密相区结构等对炉内流动情况的影响。数值模拟计算结果表明:炉内颗粒浓度的轴向分布以裤衩腿高度为分界,在底部裤衩腿区域,颗粒的浓度分布和速度分布在床层径向方向上呈现明显的“w”和“M”形分布;与试验结果相对应,炉膛出口的布置情况决定了稀相区截面内气固流动分布,在采用出口紧凑布置时,炉膛各出口流率分布均匀,波动较小,增加分离器数量有利于出口流率的均匀分布;加入挂屏布置后,稀相区段颗粒浓度整体有所增加,同时在挂屏非均匀布置条件下,炉膛出口流率不均匀性增加,而采用挂屏均匀布置后,各出口流率变化不大,均匀性较好;采用单炉膛密相区结构时,炉膛底部区域的颗粒浓度要略大于双炉膛裤衩腿布置方式,另外受二次风穿透能力影响,单炉膛布置的底部截面中心位置处颗粒的径向混合较差,局部的高浓度和低浓度均有出现。
     最后结合冷态试验和实炉尺寸循环流化床气固流动数值模拟的计算结果,本文给出了600MW超临界循环流化床整体布置方案的设计建议。
As a high effitient and clear coal combustion technology, the circulating fluidiszed bed technology has developed quickly in recent years. At present, the research works are focused on improving the capacity and high steam parameters of CFB boilers.During this largh-scale process, understanding the effects of furnace structure arrangement on gas-solid flow properties has became one of the key technology. By sponsor of the Key Projects in the National Science&Technology Pillar Program during the Eleventh Five-Year Plan Period, in this paper, the experiment and numerical simulation research work on the effects of furnace strcutual feature points on the hydrodynamic characteristics were carried out and this paper also provides reference for the design of600MW supercritical CFB boiler at last.
     In this paper, experiment measurements and analysis were carried out in a plexiglas rectangular cross-section CFB cold model with the cross-section of350×480mm2and the height of4.9m. A high-speed camera combined with the particle image velocimetry (PIV) technology and PC-6D reflective-type optical fiber concentration probe were used to investigate the particles velocity and concentration field distribution under different kinds of operating conditions. The transparent glass bead was used as bed materials. The influences of the structural feature points (as the structure of the dense zone, the structure of the transition zone, the furnace exit position and the screen arrangement) on the gas-solid flow characteristics in the riser were investigated.
     The experiment results showed that:the gas-solid flow pattern in the dense zone was significantly affected by the structure of the dense region. Particles movement was dominated by bubble wake and inclined to the rear wall on the influence of expanding cross-section of rear wall, and the radial distribution of solid concentration was asymmetry, the partical local volumn concentration near the rear wall was higher than that near the front wall. The gas-solid flow pattern in the transition region was typical core-anuular distribution, and the projection section in transition region decreased the flow area and increased the particle lateral velocity.In the dilute region the furnace hydrodynamics was controlled by the furnace extit effect, the particles local velocity and volumn concentration reached the maxim near the exit poisiton. The size of the furnace exit affected the solid radial velocity distinctly and the influence on axial velocity distribution was limited. The superheater screen arrangement increased the wall boundary control in the dilute region, and the particles movement in the area was controlled by the gas flow and the constrain of the screen wall. High particle concentration areas and solid back-flow were more easily formed near the screen.
     At last, under the support of the Fluent computationl software, this paper simulated the hydrodynamic characteristics of the CFB cold-model bed and6kinds of600MW supercritical CFB boilers with different structural features using Two-Fluid Model (TFM) combined with the Kinetic Theory of Granular Flow (KTGF). Concidering the defects of the tradial drag coefficient correlations, a new based on EMMS model drag coefficient computational method was adapted. According to the simulation results, the influence of furnace outlet arrangement, the superheater screen and the dense region structure on the gas-solid flow pattern were investigated.
     The simulaition results show that:along the axial height of the furnace, dense reigon existed stably under the height of the pant-legs and the solids volumn concentration and velocity radial distribution in this area were typical "W" and "M" shape; The gas-solid two phase flow pattern in the up diliute region were controlled by the outlets arrangement.When the outlets arrangement were compact mode, the fluctuation of the furnace outlet rate increased apparently, but when increasing the number of the oulets, the fluctuation decreased; after the addition of the super-heater screens, the solid concentration in the whole dilute region and the flunctuation of the outlet rate increased correspondingly. Considering the penetration of the secondary air, when single furnace bottom mode was adapted, the solids mixing and uniforimity condition in the bottom region was worse than that in the pant-legs bottom structure..
引文
[1]江泽民.对中国能源问题的思考[J].中国石油和化工经济分析.2008,42(6):4-16.
    [2]中华人民共和国国务院新闻办公室.中国的能源状况与政策[Z].2008.
    [3]刘耀东.我国煤炭工业的现状问题及其调整对策[J].中国能源.2008,30(11):5-13.
    [4]俞珠峰.洁净煤技术发展及应用[M].化学工业,2004.
    [5]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].中国水利水电出版社,2003.
    [6]Steve. Integration of the Benson Vertical OTU technology and the compact CFB boiler[C]. Orlando,Florida: 2000.
    [7]曹坤龙,王志伟,魏高升.从法国Gardanne 250MW CFB锅炉看循环流化床燃烧技术的发展[J].东北电力学院学报.2001,21(1):6-10.
    [8]周一工.增压流化床联合循环发电技术[J].洁净煤技术.1996(4):39-42.
    [9]Wen-Ching Y. Fluidization,Solids Handling,and Processing-Industrial Applications[M]. U.S.A:Noyes Publications,1998.
    [10]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1999.
    [11]屈卫东,杨建华,杨义波,等.循环流化床锅炉设备及运行[M].郑州:河南科学技术出版社,2004.
    [12]骆仲浃,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程.2004,24(6):761-767.
    [13]K K, E N, S R. Producer Gad Cleaning Techniques[C]. Jacksonville,Florida,USA:2003.
    [14]W N. Design and Operation Experience of 230MWe CFB Boiler at Turow Power Plant in Poland[C]. NewYork,USA:1999.
    [15]Thierry L G. Fuel Flexibility and Petroleum Coke Combustion at Provence 250MWe CFB[C]. Jacksonville,Florida,USA:2003.
    [16]F B. Update of Operating Experience of B&W IR-CFB Coal-Fired Boilers[C]. New York,USA:1999.
    [17]F B, M M. The Babcock and Wilcox CFB boilers-design and experience[C]. New York,USA:2001.
    [18]J G, L G, N N Y. An Alstom vision of future CFB technology based power plant concepts[C]. Toronto,Canada:2005.
    [19]S J G, Z F. Integration of Ultra-Supercritical OUT and CFB Boiler Technologies[C]. Vienna,Austria:2006.
    [20]S J G, T H, K K. CFB Boiler Design and Operation Using the INTREXTM Heat Exchanger[C]. Wiirzburg,Germany:1999.
    [21]I V, R P.460 MWe Supercritical CFB Boiler Design for Lagisza Power Plant[C]. Barcelona,Spain:2004.
    [22]Pk C. Operating Experience of Pyroflow Boiler in a 250MW[J]. Unit.Fluidized Bed combustion.1995,1095.
    [23]赵翠萍.国外循环流化床(CFB)锅炉技术特点分析[J].山东煤炭科技.2002:32-33.
    [24]Nowak W. Clean coal fluidized 2bed technology in poland [J]. Applied Energy.2003,74:405-413.
    [25]刘德昌,吴正舜,张世红,等.我国循环流化床锅炉的发展现状和建议[J].动力工程.2003,23(3):2377-2379.
    [26]钟辉,王晓严.循环流化床燃烧技术的发展[J].发电设备.2005,19(2):130-134.
    [27]牛天况,顾凯棣.上海锅炉厂有限公司循环流化床锅炉技术发展的现状[J].锅炉技术.2000,31(6):1-6.
    [28]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术.2002,33(7):1-6.
    [29]于龙.哈锅循环流化床过路的发展历程[J].锅炉制造.2005:1-2.
    [30]肖立川,薛国新,王政伟,等.循环流化床锅炉的特点、现状以及在我国的发展前景[J].江苏工业学院学报.2004,3:61-64.
    [31]吕俊复,岳光溪.水冷异型分离循环流化床燃烧技术[J].洁净煤技术.1998,4(4):31-35.
    [32]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电.2004,33(9):1-3.
    [33]张缠保,石勇,武瀚.循环流化床锅炉发展概况及前景[J].山西电力.2005(2):66-68.
    [34]Rajaram S. Next generation CFBC[J]. Chemical Engineering Science.1999,54:5565-5571.
    [35]静刘,王勤辉,骆仲泱,等.600 MWe超临界循环流化床锅炉的设计研究[J].动力工程.2003,23(1):2179-2184.
    [36]Buris J M, Lafanechere L, Jestin L. Basic design studies for a 600 MW CFB boiler(270bar,2×600℃)[C]. Wurzhing Germany:1999.
    [37]吕俊复,刘宝珠,等.超临界循环流化床锅炉的可行性[J].锅炉制造.2002,4(4):1-5.
    [38]熊天柱,田子平,李俊,等.循环流化床锅炉的大型化[J].锅炉技术.2004,35(2):1-6.
    [39]马志刚.无烟煤循环流化床内流动、燃烧与磨损的研究[D].杭州:浙江大学学位论文,2007.
    [40]漆小波.循环流化床提升管气固两相流动力学研究[D].四川大学学位论文,2003.
    [41]Brereton C M H, Stromeberg L. Some Aspects of the Fluid Behavior of Fast Fluidized Beds[Z]. Toronto: 1986133-143.
    [42]Bai D, Shibuy E, Masuda Y, et al. Flow Structure in a Fast Fluidized Bed[J]. Chemical Engineering Science. 1996,51:957-966.
    [43]Brereton C M H, Grace J R. Microstructural Aspects of the Behavior of Circulating Fluidized Beds[J]. Chemical Engineering Science.1993,48:2565-2572.
    [44]Rhodes M J, Sollaart M, Wang X S. Flow Structure in a Fast Fluid Bed[J]. Powder Technology.1998,99: 194-200.
    [45]Issangaya A S, Bai D R, Bi H T, et al. Suspension Densities in a High-Density Circulating Fluidized Bed Riser[J]. Chemical Engineering Science.1999,54:5450-5451.
    [46]Issangya A S, Bai D R, Grace J R, et al. Flow Behavior in the Riser of a High-Density Circulating Fluidized Bed[J]. AIChE Symp.1997,93(317):25-30.
    [47]Issangya A S, Grace J R, Bai D R, et al. Further Measurements of Flow Dynamics in a High-Density Circulating Fluidized Bed Riser[J]. Powder Technology.2000,111(104-113).
    [48]Bolton L W, Davidson J F. Recirculation of Particles in Fast Fluidized Risers[Z]. Oxford:1988139-146.
    [49]Johnsson F, Svensson A, Leckner B. Fluidization Regimes in Circulating Fluidized Bed Bolilers[Z]. New York:Engineering Foundation,1992471-478.
    [50]Lim K S, Zhu J X, Grace J R. Hydrodynamics of Gas Fluidization[J]. Int.J.Mulitiphase Flow.1995,21: 141-193.
    [51]Schlichthaerle P, Werther J. Solids Mixing in the Bottom Zone of a Circultating Fluidized Bed[J]. Powder Technology.2001,120:21-33.
    [52]Schouten J C, Zijerveld R C, Vanden B C M. Scale-up of Bottom-Bed Dynamics and Axial Solids-Distribution in Circulating Fluidized Beds of Geldart-B Particles[J]. Chemical Engineering Science.1999, 54:2103-2112.
    [53]Schichthaerle P, Werther J. Axial pressure profiles and solids concentration distributions in the CFB bottom zone[J]. Chemical Engineering Science.1999,54:5485-8493.
    [54]Malcus S, Chaplin G, Pugsley T. The Hydrodynamics of the High-Density Bottom Zone in a CFB Riser Analyzed by Means of Electrical Capacitance Tomography(ECT)[J]. Chemical Engineering Science.2000,55: 4138-4139.
    [55]Li Y, Kwauk M. The Dynamics of Fast Fluidization [Z]. New York:Plenum Press,1980537-544.
    [56]Hartge E U, Li Y, Werther J. Flow Structures in Fast Fluidized Beds[Z]. New York:Engineering Foundation, 1986345-352.
    [57]Schnitzlein M G, Weinstein H. Flow Characterization in High Velocity Fluidization Using Pressure Fluctuation[J]. Chemical Engineering Science.1988,43:2605-2614.
    [58]Yerushalmi J, Avidan A. High-Velocity Fluidization[Z]. London:Academic Press,1985225-291.
    [59]Arena U, Cammarota A, Massimilla L, et al. The Hydrodynamic Behaviour of Two Different Circulating Fluidized Bed Units of Different Sizes[Z]. oxford:Pergamon,1988223-230.
    [60]Harris B. J. D J F, Xue Y. Axial and Radial Variation of Flow in Circulating Fluidized Bed Risers[Z]. New York:AIChE,1994103-110.
    [61]Hirama M. T H, Chiba T. On the Definition of Fast Fluidization in a Circulating Fluidized Bed Riser[Z]. New York:Engineering Foundation,1992313-320.
    [62]Mastellone M. L. A U. The Effect of Particle Size and Density on Solids Distribution along the Riser of a Circulating Fluidized Bed[J]. Chemical Engineering Science.1999,54:5383-5391.
    [63]Wong R. P T, F B. Modelling the Axial Voidage Profile and Flow Structure in Risers of Circulating Fluidized Beds[J]. Chemical Engineering Science.1992,47:2301-2306.
    [64]Bai D. K K. Generalized Correlations of Solids Holdups at Dense and Dilute Regions of Circulating Fluidized Beds[Z]. Tokyo,Japan:1994137-144.
    [65]白丁荣,易江林,金涌,等.循环流化床内颗粒的加速作用及气固两相间的动量交换[J].化学反应工程与工艺.1991,7(3):260-270.
    [66]白丁荣,易江林,金涌,等.快速流化床入口结构对床层流动特性影响的研究[J].化工机械.1995,22(2):10-14.
    [67]Weinstein H, Li J. An Evaluation of the Actual Density in the Acceleration Section of Vertical Risers[J]. Powder Technology.1989,57:77-79.
    [68]杨勇林,金涌.低密度循环流化床局部颗粒速度的轴径向分布的研究[J].高校化学工程学报.1991,5(2):121-128.
    [69]Zhang H, Xie Y S, Shang Y M. An Evaluation of Solids Behavior in the Acceleratiion Section of Fast Fluidized Beds[Z]. Beijing:Chem.Ind.Press,1994113-120.
    [70]Huang W X, Zhu J X. An Experimental Ivestigation on Solids Acceleration Length in the Riser of a Long Circulating Fluidized Bed[J]. Chinese J. of Chem.Eng.2001,9(1):70-76.
    [71]黄卫星,祝京旭,等.气固两相上行流动中颗粒加速行为的研究[J].化学反应工程与工艺.2001,17(2):101-106.
    [72]Qin S, Liu D. Application of Optical Fibers to Measurement and Display of Fluidized Systems[Z]. Beijing: Science Press,1982258-266.
    [73]Dry R J. Radial Concentration Profiles in a Fast Fluidized Bed[J]. Powder Technology.1986,49:37-44.
    [74]Weinstein H, Meller M, Shao M J, et al. The Effect of Particle Density on Holdup in a Fast Fluid Bed[J]. AIChE Symp.Ser.1984,80(234):52-59.
    [75]Weinstein H, Shao M, Schnitzlein M. Radial Variation in Solid Density in High Velocity Fluidization[Z]. Toronto:Pergamon Press,1986201-206.
    [76]Weinstein H, Shao M, Schnitzlein M, et al. Radial Variation in Void Fraction in a Fast Fluidized Bed[Z]. New York:Engineering Foundation,1986329-336.
    [77]Nakamura K, Capes O E. Vertical Pneumatic Conveying:A Theoretical Study of Uniform and Annular Particle Flow Models[J]. Can.J.of Chem.Eng.1973,51:39-46.
    [78]Zhang W, Tung Y, Johnsson J E. Radial Velocity Profiles in Fast Fluidized Beds of Different Diameters[J]. Chemical Engineering Science.1991,46:3045-3052.
    [79]Werther J. Mechanics of Large-Scale CFB Units[Z]. New York:AIChE,19941-14.
    [80]Wei F, Lin H F, Cheng Y. Profiles of Particle Velocity and Solids Fraction in a High Density Riser[J]. Powder Technology.1998,100(183-189).
    [81]Tung Y, Li J, Kwauk M. Radial Voidage Profile in a Fast Fluidized Bed[Z]. Beijing:Science Press, 1988139-145.
    [82]Patience G S, Chaouki J. Solids Hydrodynamics in the Fully Developed Region of CFB Risers[Z]. New York: Engineering Foundation,199633-40.
    [83]Issangaya A S, Grace J R, Bai D R, et al. Radial Voidage Variation in CFB Risers [J]. Can.J.of Chem.Eng. 2001,79:279-286.
    [84]Herb B, Tuzla K, Chen J C. Distribution of Solid Concentrations in Circulating Fluidized Bed[Z]. New York: Engineering Foundation,198965-72.
    [85]白丁荣,金涌,俞芷青.循环流态化(II),气-固流动规律[J].化学反应工程与工艺.1991,7(3):303-317.
    [86]Herb B, Dou S, Tuzla K, et al. Solid Mass Flux in Circulating Fluidized Beds[J]. Powder Technology.1992, 70:197-205.
    [87]Hartge E U, Rensner D, Werther J. Solids Concentration and Velocity Patterns in Circulating Fluidized Beds.[Z]. Oxford:Pergamon Press,1988165-180.
    [88]Yang Y, Lin Y, Yu Z, et al. Local slip Behaviour in the Circulating Fluidized Bed[J]. AIChE Symp. Ser. 1993,89(296):81-90.
    [89]漆小波,黄卫星,祝京旭,等.循环流化床提升管中颗粒速度的横向分布及其沿轴向的发展[J].高校化学工程学报.2002,16(2):]68-173.
    [90]白丁荣,蒋大洲,金涌,等.循环流化床颗粒内循环流动结构的实验研究[J].武汉华中理工大学.1993:1-7.
    [91]王勤辉,高琼,石惠娴,等.循环流化床中的颗粒团形成、结构及其运动[J].浙江大学学报(工学版).2006,40(1):118-122.
    [92]王勤辉,赵晓东,石惠娴,等.循环流化床内颗粒运动的PIV测试[J].热能动力工程.2003,18(4):378-381.
    [93]Bai D, Jin Y, Yu Z, et al. The Axial Distribution of the Cross2Sectionally Averaged Voidage in Fast Fluidized Beds[J]. Powder Technology.1992,92:155-161.
    [94]Issangaya A S. Flow Dynam Ics in High Density Circulating Fluidized Beds[D]. V ancouver:U niversity of British Columbia,1998.
    [95]Tanner H, Li J, Reh L. Radial Profiles of Slip Velocity Between Gas and Solids in Circulating Fluidized Beds[J]. AIChE Symp Ser.1994,90(301):105-113.
    [96]W N,S K. Flow Regimes and Axial Pressure Profiles in a Cfb[J]. Chemical Engineering Science.1999,72: 245-252.
    [97]黄卫星,漆小波,潘永亮,等.气固循环床提升管内的局部颗粒浓度及流动发展[J].高校化学工程学报.2002,16(6):626-631.
    [98]孔春林,黄卫星,等.提升管气固两相流中颗粒速度的实验研究[J].四川大学学报:工程科学版.2002,34(3):41-45.
    [99]林良周浩生陆继东刘德昌.循环流化床稀相区流动结构的实验研究[J].燃烧科学与技术.1998,4(4):391-395.
    [100]黄素华,陆继东.矩形平壁循环流化床冷态流动特性研究[J].热能动力工程.1995,10(3):144-148.
    [101]K A C. Gas Mixing in Fast Fluidized Bed[Z]. Toronto:Pergamon Press,1988299-306.
    [102]Sterneus J, Johnsson F, Leckner B. Gas Mixing in Circulating Fluidised-Bed Risers[J]. Chemical Engineering Science.2000,55:129-148.
    [103]Haosheng Z, Jidong L, Liang L. Turbulence structure of the solid phase in transition region of a circulating fluidized bed[J]. Chemical Engineering Science.2000,55:839-847.
    [104]Noymer P D, Hyre M R, Glicksman L R. The influence of bed diameter on hydrodynamics and heat transfer in circulating fluidized beds[J]. AICHE Annual Mtg.1995.
    [105]Zhang W, Johnsson F, Leckner B. Characteristics of lateral particle distribution in circulating fluidized bed boilers[Z]. New York:AIChE,1994266-273.
    [106]Beaud F, Louge M. Similarity of radial profiles of solids volume fraction in a circulating fluidized bed[Z]. New York:Engineering Foundation,1995.
    [107]Bi H T, Zhou J, Grace J R. Annular wall layer thickness in circulating fluidized bed risers[J]. Can.J.Chem.Eng.1996,74:811-814.
    [108]Vander M J H, Thorpe R B, Davidson J F. The influence of exit geometry and corners in a square cross-sectional riser[Z].1996.
    [109]Andreas J, Johnssona F, Bo L. Solids back-mixing in CFB boilers[J]. Chemical Engineering Science.2007, 62:561-573.
    [110]Leckner B, Werther J. Scale Up of Circulating Fluidized Bed Combustion[J]. Energy & Fuels.2000,14: 1286-1292.
    [111]Johnsson F, Leckner B. Vertical Distribution of Solids in a Cfb Furnace[Z]. New York:ASME,1995671.
    [112]Johnsson F, Zhang W, Leckner B. Characteristics of the Formation of Particle Wall-Layers in Cfb-Boilers[Z]. Kyoto:199525.
    [113]Bi H T, Ellis N, Abba I A, et al. A State-of-the-Art Review of Gas-Solid Turbulent Fluidization[J]. Chemical Engineering Science.2000,55:1825-4789.
    [114]Johansson A. Solids Flow Pattern in Circulating Fluidized-Bed Boilers[D]. Chalmers University of Technology,2005.
    [115]Werther J. Fluid dynamics, temperature and concentration fields in large-scale CFB combustors[Z]. Hangzhou:2005950.
    [116]Yu S, Teplitskii, E F N. Mixing of Particles in a Circulating Fluidized Bed[J]. Journal of Engineering physics and Thermophysics.2002,75(2):529-539.
    [117]Brereton C M H, Grace J R. End Effects in Circulating Fluidized Bed Hydrodynamics[Z]. New York:AICHE, 199470-76.
    [118]Lackermeier U, Hartge E U, Werther J. Influence of the Exit On Gas and Solids Flow in the Cfb Top Region[Z]. Beijing:2002193-200.
    [119]Pugsley T, Lapointe D, Hirschberg B, et al. Exit Effects in Circulating Fluidized Bed Risers[J]. Can.J.Chem.Eng.1997,75:1001-1010.
    [120]夏亚沈,董元吉,郭慕孙.快速流化床进出口结构对流动的影响[J].化工冶金.1988,9(3):14-24.
    [121]Y J, Yu Z Q, Qi C M, et al. The influence of Exit Structure on the Axial Distribution of Voidage in Fast Fluidized Bed[Z]. Beijing:1988165-173.
    [122]Aijie Y, J H P R, Jing-Xu Z. Flow properties in the entrance and exit regions of a high-flux circulating fluidized bed riser[J]. Powder Technology.2003,131:256-263.
    [123]Zhou J, J R G, C J L, et al. Particle velocity profiles in a circulating fluidized bed riser of square cross-section[J]. Chemical Engineering Science.1995,50(2):237-244.
    [124]Zhou J, J R G, S Q, et al. Voidage profiles in a circulating fluidized bed of square cross-section[J]. Chemical engineering science.1994,49(19):3217-3226.
    [125]Harris A T, Davidson J F, Thorpe R B. The influence of the riser exit on the particle residence time distribution in a circulating fluidised bed riser[J]. Chemical Engineering Science.2003,58:3669-3680.
    [126]Harris A T, Davidson J F, Thorpe R B. Particle residence time distributions in circulating fluidised beds[J]. Chemical Engineering Science.2003,58:2181-2202.
    [127]马志刚,方梦祥,骆仲泱,等.矩形截面流化床内颗粒运动可视化试验研究[J].中国电机工程学报.2007, 27(14):24-30.
    [128]Vander M J H, Thorpe R B, Davidson J F. Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design[J]. Chemical Engineering Science.2000,55:4079-7099.
    [129]Bu J J, Zhu J X. Influence of Ring-Type Internals On Axial Pressure Distribution in Circulating Fluidized Bed[J]. Can.J of Chem.Eng.1999,77(1):26-34.
    [130]Davies C E, Graham K H. Pressure Drop Reduction by Wall Baffles in Vertical Pneumatic Conveying Tubes[Z]. Sydney:1988644-651.
    [131]Salah M, Zhu J X, Y M, et al. Effect of Internals On the Hydrodynamics of Circulating Fluidized Bed Reactors[Z]. Beijing:1996.
    [132]刘会娥,杨艳辉,等.内构件对于提升管中颗粒混合行为的影响[J].化学反应工程与工艺.2002,18(2):109-114.
    [133]刘会娥,魏飞,金涌.环形截面提升管内颗粒的运动行为[J].高校化学工程学报.2003,17(5):497-502.
    [134]魏飞,杨艳辉.内构件对于高密度提升管流体力学行为的影响[J].化工学报.2000,51(6):806-809.
    [135]王翠苹,李定凯,吕子安,等.方截面循环悬浮床内构件对气固混合行为的影响[J].高校化学工程学报.2006,20(2):169-174.
    [136]白建基.基于图像法的带埋管鼓泡流化床内气固两相流体动力学研究[D].浙江大学,2005.
    [137]Wu R L, Lim C J, Grace J R, et al. Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed[J]. Int.J.Heat Mass Transfer.1991,34:2019-2027.
    [138]Golriz M R. Influence of wall geometry on local temperature distribution and heat transfer in circulating fluidized bed boilers[Z]. New York:AIChE,1994693-700.
    [139]Lockhart C, Zhu J, Brereton C M H, et al. Local heat transfer,solids concentration and erosion aroud membrane tubes in a cold model circulating fluidized bed[J]. Int.J.Heat Mass Transfer.1995,38:2403-2410.
    [140]Zhou J, Grace J R, Brereton C M H, et al. Influence fo membrane walls on voidage profiles and particle motion in a circulating fluidized bed[J]. AIChE.J.1996.
    [141]钱诗智,陆继东.循环流化床壁面的几何结构对床层气固流动特性的影响[J].化工学报.1996,47(6):706-711.
    [142]黄素华,陆继东.循环床锅炉膜式壁附近颗粒浓度的动态特性[J].工程热物理学报.1996,17(3):357-361.
    [143]Glicksman L R, Westphalen D. Woloshum K, et al. Experimental scale models of circulating fluidized bed combustors[Z]. New York:ASME,19911169-1176.
    [144]Zhou J, Grace J R, Brereton C M H, et al. Influence of wall roughness on the hydrodynamics in a circulating fluidized bed[Z].19961153-1156.
    [145]Dingrong B, Nobuyoshi N, Eiji S, et al. AXIAL DISTRIBUTION OF SOLID HOLDUPS IN BINARY SLOLIDS CIRCULATING FLUIDIZED BEDS[J]. Journal of Chemical Engineering of Japan.1994,27(3): 271-275.
    [146]Kyu K W, Wojciech N, Hitoki M, et al. Presure Fluctuations in a Multi-Solid Fluidized Bed[J]. Journal of Chemical Engineering of Japan.1994,27(2):152-157.
    [147]Kyu K W, Wojciech N, Hitoki M, et al. TRANSPORT VELOCITY OF COARSE PARTICLES IN MULTI-SOLID FLUIDIZED BED[J]. Journal of Chemical Engineering of Japan.1995,28(5):535-540.
    [148]B H, J W. Factors Affecting Solids Segregation in Circulating Fluidized Bed Riser[J]. AIChE Journal.1998, 44(1):25-34.
    [149]P B, A M, P S, et al. Segregation and Attrition of Polydisperse Solids in a Circulating Fluidized [Z]. Hangzhou:2005.
    [150]Maria L M, Umberto A. The E!Ect of Particle Size and Density On Solids Distribution Along the Riser of a Circulating Fluidized Bed[J]. Chemical Engineering Science.1999,54:5383-5391.
    [151]Mitali D, Meenakshi B, R K S. Segregation and mixing effects in the riser of a circulating fluidized bed[J]. Powder Technology.2007,178:182-189.
    [152]孙国刚,李静海.粒径分布对循环流化床内颗粒速度分布的影响[J].粉体技术.1998,4(1):1-5.
    [153]祝媛,张济宇,谢克昌.二元颗粒混合物在下行床反应器中局部颗粒速度的分布[J].化工学报.2004,55(11):1777-1786.
    [154]Noubuyoshi N, Dingrong B, Eiji S, et al. SEGREGATION OF PARTICALES IN BINARY SOLIDS CIRCULATING FLUIDIZED BEDS[J]. Journal of Chemical Engineering of Japan.1994,27(2):194-198.
    [155]P B, Y M, A D, et al. Behaviour of single solids and their binary mixtures in a circulating fluidized bed[Z]. NY:Engineering Foundation,1996270.
    [156]Murat K. Gas mixing and flow dynamics in circulating fluidized beds with secondary air injection[D]. Canada:Dalhousie University,2001.
    [157]Wang X. S. G B M. Hydrodynamics of a Circulating Fluidized Bed with Secondary Air Injection.[Z]. Toronto:Pergamon Press,1991225-230.
    [158]Kang Y, Song P S, Yun S J, et al. Effects of Secondary Air Injection On Gas-Solid Flow Behavior in Circulating Fluidized Beds[J]. Chem. Eng. Comm.2000,177:31-47.
    [159]Pecora A A B, L J G. a Fluid Dynamics Study of a Circulating Fluidized Bed with Secondary Air Injection[J]. Proceedings of ASME Heat Transfer Division.1996,334(3):287-292.
    [160]Ersoy L E. Effect of Secondary Air Injection on the Hydrodynamics of CFBs[D]. Dalhousie University, 1998.
    [161]Cho Y J, Namkung W, S D K, et al. Effect of Secondary Air Injection on Axial Solid Holdup Distribution in a Circulating Fluidized Bed[J]. J. Chem. Eng. Japan.1994,27(2):158-164.
    [162]Ilias S, Ying S, Mathur G D, et al. Studies on a Swirling Circulating Fluidized Bed[Z]. Toronto:Pergamon Pres,1988537-546.
    [163]Weinell C S E, Johansen K D, Johnsson J E. Single-particle behaviour in circulating fluidized beds[J]. Powder Technology.1997,92:241-252.
    [164]Won N, Sang D K. Radial gas mixing in a circulating fluidized bed[J]. Powder Technology.2000,113: 23-29.
    [165]岑可法,樊建人,吴小华.循环流化床中加入切向二次风后气固多相流研究[J].工程热物理学报.1990,11(4):444-447.
    [166]郑成航,程乐鸣,周星龙,等.300I-单炉膛循环流化床锅炉二次风射程的数值模拟[J].动力工程.2009,29(9):801-805.
    [167]J X Z, G Z L, S Z Q, et al. Direct measurements of particle velocities in gas-solids suspension flow using a novel five-fiber optical probe. Powder Technology [J]. Powder Technology.2001,115:184-192.
    [168]卢天雄.流化床反应器[M].北京:化学工业出版社,1986.
    [169]Zhou J, Grace J R, Lim C J, et al. PARTICLE CROSS-FLOW, LATERAL MOMENTUM FLUX AND LATERAL VELOCITY IN A CIRCULATING FLUIDIZED-BED[J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING.1995,73(5):612-619.
    [170]马健,王恩禄,张伟,等.循环流化床锅炉内颗粒速度测量技术的分析比较[J].锅炉技术.2005,36(2):33-36.
    [171]刘会娥,魏飞,等.气固循环流态化研究中常用的测试技术[J].化学反应工程与工艺.2001,17(2):165-173.
    [172]康琦.全场测速技术进展[J].力学进展.1997,27(1):106-121.
    [173]Boyer C, Fanget B. Measurement of liquid flow distribution in trickle bed reactor of large diameter with a new gamma-ray tomographic system [J]. Chmecial Engineering Science.2002,57:1079-1089.
    [174]董峰,徐立军,刘小平,等.用电阻层析成像技术实现两相流流型识别[J].仪器仪表学报.2001,22(3):416-417.
    [175]Wiesendorf V, Werther J. Capacitance probes for solids volume concentration and velocity measurements in industrial fluidized bed reactors [J]. POWDER TECHNOLOGY.2000,110(1-2Sp. Iss. SI):143-157.
    [176]林海波,孔春林,等.气固循环流化床提升管颗粒速度和浓度的测量技术[J].四川轻化工学院学报.2002,15(4):28-33.
    [177]Hong J, Tomita Y. MEASUREMENT OF DISTRIBUTION OF SOLIDS CONCENTRATION ON HIGH-DENSITY GAS-SOLIDS FLOW USING AN OPTICAL-FIBER PROBE SYSTEM[J]. POWDER TECHNOLOGY.1995,83(1):85-91.
    [178]Zhang H, Johnston P M, Zhu J X, et al. A novel calibration procedure for a fiber optic solids concentration probe[J]. POWDER TECHNOLOGY.1998,100(2-3):260-272.
    [179]石惠娴.循环流化床流动特性PIV测试和数值模拟[D].浙江大学,2003.
    [180]张延平,王立.气固流化床中气泡分布的实验研究[J].河北理工学院学报.2004,26(2):1-4.
    [181]Zhong W, Zhang M, Jin B, et al. Experimental investigation of particle mixing behavior in a large spout-fluid bed[J]. Chemical Engineering and Processing:Process Intensification.2007,46(10):990-995.
    [182]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique.1979, 29(1):47-65.
    [183]Hartge E, Ratschow L, Wischnewski R, et al. CFD-simulation of a circulating fluidized bed riser[J]. Particuology.2009(7):283-296.
    [184]蔡杰,凡凤仙,袁竹林.循环流化床气固两相流颗粒分布的数值模拟[J].中国电机工程学报.2007,27(20):71-75.
    [185]Ibsen C H, Helland E, Hjertager B H, et al. Comparison of multifluid and discrete particle modelling in numerical predictions of gas particle flow in circulating fluidised beds[J]. Powder Technology.2004,149(1):29-41.
    [186]Chapman S., Cowing T. G非均匀气体的数学理论[M].北京:科学出版社,1990.
    [187]Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal. 1990,39:1-23.
    [188]Lu H L, Liu W T, Bie R S, et al. Kinetic theory of fluidized binary granular mixtures with unequal granular temperature[J]. PHYSICA A.2000,284(1-4):265-276.
    [189]刘阳,陆慧林,刘文铁,等.循环流化床多组分颗粒气固两相流动模型和数值模拟[J].化工学报.2003(8):1065-1071.
    [190]Gao J S, Chang J, Lu C X, et al. Experimental and computational studies on flow behavior of gas-solid fluidized bed with disparately sized binary particles[J]. PARTICUOLOGY.2008,6(2):59-71.
    [191]Li J H, Cheng C L, Zhang Z D, et al. The EMMS model-its application, development and updated concepts[J]. CHEMICAL ENGINEERING SCIENCE.1999,54(22):5409-5425.
    [192]李静海,欧阳洁,高士秋.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700