复杂结构声学特性预测的快速多极子边界元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界元法是求解复杂结构声学问题的一种有效数值方法。由于传统边界元法(CBEM)形成满秩的系数矩阵,其计算量、存储量和计算时间为O(N2),限制了其在大尺度声学问题中的应用。相比之下,快速多极子边界元法(FMBEM)具有较高的计算效率,但是无法直接应用于带有薄壁结构以及含有吸声材料的复杂结构内部声场问题的计算。鉴于此,本文发展了两种适用于大尺度声学问题计算的快速算法:(1)适用于阻抗复合结构内部声场计算的子结构快速多极子边界元法(Sub-FMBEM),(2)适用于具有多薄壁元件的复杂抗性结构内部声场计算的快速多极子双重边界元法(FMDBEM)。所做的具体工作如下:
     详细阐述了多级快速多极子边界元法(MLFMBEM)计算内部三维声场问题的理论基础和数值实施过程。研究表明,MLFMBEM的计算量和内存量均能达到O(NlnN)。应用三级FMBEM对简单结构消声器的传递损失进行了数值计算,通过和CBEM比较验证了FMBEM的计算精度及在高网格数时的计算效率。
     将子结构技术应用到FMBEM中,形成了适用于阻抗复合结构内部声场计算的Sub-FMBEM,详细介绍了该方法的基本原理和总体矩阵向量积的计算过程,对不同吸声材料下单级和多级传递关系计算进行了考察。研究表明,展开式截断项数计算参数的选取在一定程度上影响了格林函数展开式的计算,而吸声材料的选取并非是影响其计算精度的主要因素。复波数的引入使展开式计算产生偏差,当复波数虚部与展开点间距的积k i i rLM大于13.5时,展开式值逐渐偏离理论值。因此,当k i i rLM值处于失真范围时,可将展开式中转移因子的值以0来近似,或者应用Sub-FMBEM将大尺寸结构模型划分为若干小尺寸结构分别计算。本文采用ILUT预条件处理技术和Bi-CGSTAB(l)迭代求解器进行Sub-FMBEM的迭代计算。在实际的编程计算中,未知量列向量的构建次序及离散节点编号顺序对迭代法的收敛速度有着重要影响,结合多子结构模型的声场计算给出了Sub-FMBEM整体系数矩阵的构建方法和原则。应用Sub-FMBEM对抗性和阻抗复合型消声器的声学性能进行了计算,通过与Sub-BEM计算结果以及实验测量结果的比较验证了该方法的正确性和计算精度。在计算效率方面,Sub-FMBEM在高网格数时有明显优势,而在低网格数时则略低于Sub-BEM。在迭代收敛特性方面,Sub-FMBEM的预处理时间和迭代计算时间均随着频率的增大而增加,而Sub-BEM随频率基本不变。网格数越多,Sub-FMBEM相对于Sub-BEM能体现高效性的频率范围也越大。无论是预处理阶段还是迭代阶段,Sub-BEM的计算时间随网格数的增长率远远大于Sub-FMBEM,从而验证了FMBEM在大尺度中高频声学问题计算中的优势。此外,吸声材料的引入不但在一定程度上降低了Sub-FMBEM的迭代次数,而且使之随着频率的变化更为稳定。因此,Sub-FMBEM更适合于阻性结构声场的计算。
     由双重边界积分方程出发,推导出了适用于复杂抗性结构内部声场计算的边界积分控制方程,并结合快速多极子算法加速求解,创建了适用于含多薄壁结构的复杂抗性消声器内部声场计算的FMDBEM,给出了具体的求解过程以及超奇异积分的处理方法。FMDBEM的主要优点在于:无需针对薄壁结构划分子结构,并对薄壁边界和虚拟交界面重复离散,只需对所有薄壁结构离散一次,从而减少了网格数量;其缺点在于:不能直接应用于含有吸声材料的阻性消声器声场计算,而且要求抗性消声器中薄壁结构的厚度必须足够小到可以忽略不计。此外,由于控制方程中未知量系数计算存在超奇异积分,需要在计算中进行适当地弱奇异化处理。通过应用FMDBEM、Sub-FMBEM和Sub-BEM对复杂抗性消声器传递损失进行计算,验证了FMDBEM的计算精度和计算效率。在同样的网格尺寸下,由于FMDBEM减少了网格数量,从而在一定程度上节省了计算时间。
     为进一步检验本文所发展的数值方法的正确性,使用阻抗管测量系统结合两负载法测量了直通穿孔管消声器和阻抗复合型消声器的传递损失。比较了实验测量结果与FMBEM的计算结果,它们在较宽频域内吻合良好,从而进一步验证了本文数值方法的正确性和在复杂结构内部声场计算中的适用性。
The boundary element method is a powerful numerical tool for solving the acousticproblems of complex structures. However, the conventional boundary element method(CBEM) is not suitable for the largle acoustic problems since its full-populated systemmatrices and the arising computing cost, memory requirements and computational time oforder N2. By contrast, the fast multipole boundary element method (FMBEM) showsexcellent computational efficiency, but it can not be applied directly to calculate the internalsound field of complex structures with thin wall components and absorbing materials filled.In view of the above facts, two fast approaches are developed for computation of thelarge-scale acustic problems in the present paper:(1) the substructure fast multipole boundaryelement method (Sub-FMBEM) which is suitable for the internal sound field calculation ofhybrid structures,(2) the fast multipole dual boundary element method (FMDBEM) which isapplicable to calculate the inernal sound field of complex reactive structures with thin wallcomponents. The detailed works are described as below:
     The theoretical foundamentals and numerical procedure of the multi-level FMBEM(MLFMBEM) for the calculation of internal three-dimensional sound filed are introduced indetail. The studies indicated that, the computing cost and memory requirements of FMBEMcan achieve O(NlnN). The FMBEM of three levels is employed to calculate the transmissionloss of silencers with simple structure, and its computational accuracy and efficiency for largenumber of meshes are confirmed by comparing with CBEM.
     The Sub-FMBEM which is suitable for the calculation of internal sound fields withhybrid structures is formed by applying the substructure technique to FMBEM, and the basicprinciple and the computational process of entier matrix-vector multiplication are introducedin detail, the single level and multi-level translation relationship calculation for differentsound-absorbing materials are investigated. The studies demonstrated that, the evaluation ofparameter used in calculation of truncation number has influence on the computation ofGreen’s function expansion to a certain degree, and the kind of sound-absorbing materials isnot the main factor to affact the computational accuracy of Green’s function expansion. Theintroduction of complex wavenumber leads to the calculation error of the expansion, and theexpansion value diverge from the theoretical value when the productk i i rLMof imaginary partof wavenumber and distance between expansion points is bigger than13.5. So when the valueofk i i rLMfalls into the distortion range, the value of transfer factor in the expansion should be approximated as zero, or to divide the large structure into several small substructures whichcan be handled respectively. The ILUT preconditioning technique and Bi-CGSTAB(l) solverare employed for the iterative computation of Sub-FMBEM in present paper. For thecalculation in the practical programing, the arrangement order of unknown column vector andthe numbering of nodes have great influence on the speed of convergence, a principle wasproposed for composition of the global coefficient matrix of Sub-FMBEM considering thestudy of the sound field for a multi-substructure model. The Sub-FMBEM is applied topredict the acoustic performance of reactive and hybrid silensers, and its computationalaccuracy is validated by comparing the numerical results from Sub-BEM and experiments. Interms of computational efficiency, the Sub-FMBEM shows obvious advantage at largenumber of meshes, but its computational efficiency is slightly lower than Sub-BEM at thesmall number of meshes. In terms of the character of iterative convergence, the precomputingtime and iterative computational time of Sub-FMBEM are increased as the frequency arising,while the time of Sub-BEM keeps unchanged almost. The freqency range in whichSub-FMBEM exhibits higher efficiency than Sub-BEM will become wider as number ofmeshes arising. Either in the pretreatment or the iteration stage, the growth rate of computingtime versus number of meshes for Sub-BEM is much higher than Sub-FMBEM, so theadvantage in the computational efficiency of FMBEM for large-scale acoustic problem atmedium-high frequency is validated. Besides, the introduction of sound-absorbing materialsnot only decrease number of iterative steps in some degree, but also make the variation moresteady versus the frenquency. Therefore, the Sub-FMBEM is considered as a suitable methodfor the calculation of the sound field in dispative structures.
     The boundary integral governing equations came from the dual boundary integralequations are derived to calculate the internal sound field in the complex reactive structures,and the FMM is used to accelerate the computation, therefor the FMDBEM is created tocalculate the internal sound field in complex reactive silencers with thin wall components,and the detail solving process and the regularization of hypersingular integral equations aregiven. The major advantage of FMDBEM is that it is not necessary to divide subdomain forthe thin wall structure and repeat discretizing the thin boundaries and virtual interfaces, thethin wall components only need to be discretized once (one side surface only), so number ofmeshes is reduced. The disadvantage of FMDBEM is that it is impossible to be applieddirectly to the calculation of sound filed in dissipative silencers with absorbing materials, andit is not suitable if the thickness of the wall components in the reactive silencers is not thinenough to be neglected. In addition, the singularity of hypersingular integrals existed in the governing equations has to be treated properly. By applying the FMDBEM, Sub-FMBEMand Sub-BEM to calculate the transmisson loss of complex reactive silencers, thecomputational accuracy and efficiency of FMDBEM are validated. For the same size ofmeshes, the FMDBEM may save the computational time in some degree since it reducednumber of meshes.
     In order to further examine the correctness of the numetical methods developed in thepresent paper, the transmission loss of straight-through perforated tube silencer and hybridsilencers are measured using the impendance tube measurement system combined withtwo-load method. Comparison of the experimental measurements and the numerical resultsfrom FMBEM demonstrated good agrements in wide frequency range, so the accuracy andapplicability of the numerical methods developed in this paper are further confirmed for thecalculation of internal sound field in complex structures.
引文
[1] Andersson P. Solving the intensity potential problem by using the boundary elementmethod. Proceedings of Inter-Noise. Lisbon, Portugal,2010.
    [2] Chandler-Wilde S. N., Langdon S. A Galerkin boundary element method for highfrequency scattering by convex polygons. SIAM Journal on Numerical Analysis.2008,45(2):610-640.
    [3] Rao S. S. The finite element method in engineering. Burlington, USA: Elsevier,2005.
    [4] Beer G. Programming the boundary element method. New York, USA: John Wiley&Sons Inc.,2000.
    [5] Smith I. M., Griffiths D. V. Programming the finite element method. West Sussex,England: John Wiley&Sons Ltd,2004.
    [6] Greengard L., Rokhlin V. A fast algorithm for particle simulations. Journal ofComputational Physics.1987,73(2):325-348.
    [7] Board J., Schulten L. The fast multipole algorithm. Computing in Science&Engineering.2000,2(1):76-79.
    [8] Nishimura N. Fast multipole accelerated boundary integral equation methods. AppliedMechanics Reviews.2002,55(4):299-324.
    [9] Yasuda Y., Sakuma T. Fast multipole boundary element method for large-scalesteady-state sound field analysis. Part II: examination of numerical items. ActaAcustica united with Acustica.2003,89(1):28-38.
    [10] Yasuda Y., Sakuma T. A technique for plane-symmetric sound field analysis in the fastmultipole boundary element method. Journal of Computational Acoustics.2005,13(1):71-86.
    [11] Shen L., Liu Y. J. An adaptive fast multipole boundary element method forthree-dimensional acoustic wave problems based on the Burton–Miller formulation.Computational Mechanics.2007,40(3):461-472.
    [12] Chen Z. S., Waubke H., Kreuzer W. A formulation of the fast multipole boundaryelement method (FMBEM) for acoustic radiation and scattering fromthree-dimensional structures. Journal of Computational Acoustics.2008,16(2):303-320.
    [13]林志良. FMBEM求解直圆柱线性波绕射问题.中国科学:物理学,力学,天文学.2011,41(2):155-160.
    [14] Schneider S. Application of fast methods for acoustic scattering and radiationproblems. Journal of Computational Acoustics.2003,11(3):387-402.
    [15]王雪仁,季振林.快速多极边界元法应用于预测消声器的声学性能.中国科学技术大学学报.2008,38(2):207-214.
    [16] Chen J. T., Chen C. T., Chen K. H., et al. On fictitious frequencies using dual BEM fornon-uniform radiation problems of a cylinder. Mechanics Research Communications.2000,27:685-690.
    [17] Chen J. T., Chung I. L., Chen I. L. Analytical study and numerical experiments for trueand spurious eigensolutions of a circular cavity using an efficient mixed-part dual BEM.Computational mechanics.2001,27(1):75-87.
    [18] Chen J. T. Recent development of dual BEM in acoustic problems. Computer Methodsin Applied Mechanics and Engineering.2000,188(4):833-845.
    [19]王雪仁,季振林.快速多极子声学边界元法及其应用研究.哈尔滨工程大学学报.2007,28(7):752-757.
    [20] Brebbia C. A. Weighted residual classification of approximate methods. AppliedMathematical Modelling.1978,2(3):160-164.
    [21] Jaswon M. A. Integral equation methods in potential theory. I. Proceedings of theRoyal Society of London. Series A. Mathematical and Physical Sciences.1963,275(1360):23.
    [22] Symm G. T. Integral equation methods in potential theory. II. Proceedings of theRoyal Society of London. Series A. Mathematical and Physical Sciences.1963,275(1360):33.
    [23] Adini A. Analysis of plate bending by the finite element method. University Press,1960.
    [24] Watson J. O. The analysis of thick shells with holes, by integral representation ofdisplacement. United Kingdom: University of Southampton,1972.
    [25] Lachat J. C. A further development of the boundary integral technique for elastostatics.United Kingdom: University of Southampton,1975.
    [26] Lachat J. C., Watson J. O. Effective numerical treatment of boundary integralequations: A formulation for three-dimensional elastostatics. International Journal forNumerical Methods in Engineering.1976,10(5):991-1005.
    [27] Cruse T. A. Two-dimensional BIE fracture mechanics analysis (Boundary IntegralEquations). Applied Mathematical Modelling.1978,2:287-293.
    [28] Brebbia C. A. The boundary element method for engineers. London, UK: PentechPress,1978.
    [29] Andersson T., Fredriksson B., Persson B. G. A. The boundary element method appliedto two-dimensional contact problems. Proceedings of the Second International Seminaron Recent Advances in Boundary Element Methods. Southampton, England,1980.
    [30] Andersson T. The boundary element method applied to two-dimensional contactproblems with friction. Proceedings of the Third International Seminar in BoundaryElement Methods. Irvine, California,1981.
    [31] Crouch S. L., Starfield A. M., Rizzo F. J. Boundary element methods in solidmechanics. Journal of Applied Mechanics.1983,50(3):704-705.
    [32] Ghosh N., Rajiyah H., Ghosh S., et al. A new boundary element method formulationfor linear elasticity. Journal of Applied Mechanics.1986,53:69.
    [33] Seybert A. F., Cheng C. Y. R. Application of the boundary element method to acousticcavity response and muffler analysis. Journal of Vibration, Acoustics, Stress, andReliability in Design.1987,109(1):15-21.
    [34] Cunefare K. A., Koopmann G., Brod K. A boundary element method for acousticradiation valid for all wavenumbers. Journal of the Acoustical Society of America.1989,85(1):39-48.
    [35] Yoon B. J., Lenhoff A. M. A boundary element method for molecular electrostaticswith electrolyte effects. Journal of Computational Chemistry.1990,11(9):1080-1086.
    [36] Liu Y. J. Analysis of shell-like structures by the boundary element method based on3-D elasticity: formulation and verification. International Journal for NumericalMethods in Engineering.1998,41(3):541-558.
    [37]杜庆华,岑章志,嵇醒.边界积分方程方法—边界元法.北京:高等教育出版社,1989.
    [38]杜庆华,姚振汉,岑章志.我国工程中边界元法研究的十年.力学与实践.1989,11(1):3-7.
    [39]姚振汉,段小华.边界元法软件及其在工程与教学中的应用.重庆建筑大学学报.2000,22(6):84-87.
    [40]姚振汉,蒲军平,尹欣,等.边界元法应用的若干近期研究.力学季刊.2001,22(1):10-17.
    [41] Chen L. H., Schweikert D. G. Sound radiation from an arbitrary body. Journal of theAcoustical Society of America.1963,35(10):1626-1632.
    [42] Chertock G. Sound radiation from vibrating surfaces. Journal of the Acoustical Societyof America.1964,36(7):1305-1313.
    [43] Copley L. G. Integral equation method for radiation from vibrating bodies. Journal ofthe Acoustical Society of America.1967,41(4A):807-816.
    [44] Schenck H. A. Improved integral formulation for acoustic radiation problems. Journalof the Acoustical Society of America.1968,44(1):41-58.
    [45] Waterman P. C. New formulation of acoustic scattering. Journal of the AcousticalSociety of America.1969,45(6):1417-1429.
    [46] Burton A. J., Miller G. F. The application of integral equation methods to thenumerical solution of some exterior boundary-value problems. Proceedings of theRoyal Society of London. Series A, Mathematical and Physical Sciences.1971,323(1553):201-210.
    [47] Ursell F. On the exterior problems of acoustics. Cambridge Univ Press,1973.
    [48] Seybert A. F., Soenarko B., Rizzo F. J., et al. Application of the BIE method to soundradiation problems using an isoparametric element. Journal of Vibration, Acoustics,Stress, and Reliability in Design.1984,106(3):414-420.
    [49] Seybert A. F., Soenarko B., Rizzo F. J., et al. An advanced computational method forradiation and scattering of acoustic waves in three dimensions. Journal of theAcoustical Society of America.1985,77(2):362-368.
    [50] Cheng C. Y. R., Seybert A. F., Wu T. W. A multidomain boundary element solutionfor silencer and muffler performance prediction. Journal of Sound and Vibration.1991,151(1):119-129.
    [51] Jia Z. H., Mohanty A. R., Seybert A. F. Numerical modeling of reactive perforatedmufflers. Proceedings of the Second International Congress on Recent Developmentsin Air-and Structure-Borne Sound and Vibration. Alabama.1992.
    [52] Wang C. N., Tse C. C., Chen Y. N. A boundary element analysis of a concentric-tuberesonator. Engineering Analysis with Boundary Elements.1993,12(1):21-27.
    [53] Ji Zhenlin, Ma Qiang, Zhang Zhihua. Application of the boundary element method topredicting acoustic performance of expansion chamber mufflers with mean flow.Journal of Sound and Vibration.1994,173(1):57-71.
    [54] Ji Zhenlin, Ma Qiang, Zhang Zhihua. A boundary element scheme for evaluation offour-pole parameters of ducts and mufflers with low mach number non-uniform flow.Journal of sound and vibration.1995,185(1):107-117.
    [55]季振林,葛蕴珊.用边界元法与四负载法联合预测排气消声器的插入损失.声学学报.1996,21(002):116-122.
    [56] Ji Z.L., Wang X.R. Application of dual reciprocity boundary element method topredict acoustic attenuation characteristics of marine engine exhaust silencers. Journalof Marine Science and Application.2008,7(2):102-110.
    [57]王雪仁,季振林.双倒易边界元法应用于预测三维势流管道和消声器声学特性.声学学报.2008,33(1):76-83.
    [58] Wu T. W., Cheng C. Y. R., Zhang P. A direct mixed-body boundary element methodfor packed silencers. Journal of the Acoustical Society of America.2002,111(6):2566-2572.
    [59] Wu T. W., Cheng C. Y. R., Tao Z. Boundary element analysis of packed silencers withprotective cloth and embedded thin surfaces. Journal of Sound and Vibration.2003,261(1):1-15.
    [60] Rizzo F. J. An integral equation approach to boundary value problems of classicalelastostatics. Quart. Appl. Math.1967,25(1):83-95.
    [61] Cruse T. A., Rizzo F. J. A direct formulation and numerical solution of the generaltransient elastodynamic problem. I. Journal of Mathematical Analysis and Applications.1968,22(1):244-259.
    [62] Cruse T. A. A direct formulation and numerical solution of the general transientelastodynamic problem. II. Journal of Mathematical Analysis and Applications.1968,22(2):341-355.
    [63] Cruse T. A. An improved boundary-integral equation method for three dimensionalelastic stress analysis. Computers&Structures.1974,4(4):741-754.
    [64] Hong H. K., Chen J. T. Generality and special cases of dual integral equations ofelasticity. Journal of the Chinese Society of Mechanical Engineers.1988,9(1):1-9.
    [65] Hadamard J. Lectures on Cauchy's problem in linear partial differential equations.New York: Dover Publications,2003.
    [66] Mangler K. W., Britain G. Improper integrals in theoretical aerodynamics. London:Her Majesty's Stationery Office,1952.
    [67] Mi Y., Aliabadi M. H. Dual boundary element method for three-dimensional fracturemechanics analysis. Engineering Analysis with Boundary Elements.1992,10(2):161-171.
    [68] Chen J. T., Hong H. K. Application of integral equations with superstrong singularityto steady state heat conduction. Thermochimica Acta.1988,135:133-138.
    [69] Chen J. T., Hong H. K. Singularity in Darcy flow around a cutoff wall. Advances inBoundary Elements.1989,2:15-27.
    [70] Wang C. S., Chu S., Chen J. T. Boundary element method for predicting store airloadsduring its carriage and separation procedures. Computational Engineering withBoundary Elements.1990,1:305-317.
    [71] Wu T. W., Wan G. C. Numerical modeling of acoustic radiation and scattering fromthin bodies using a Cauchy principal integral equation. Journal of the AcousticalSociety of America.1992,92(5):2900-2906.
    [72] Chen J. T., Hong H. K. Dual boundary integral equations at a corner using contourapproach around singularity. Advances in Engineering Software.1994,21(3):169-178.
    [73] Liang M. T., Chen J. T., Yang S. S. Error estimation for boundary element method.Engineering Analysis with Boundary Elements.1999,23(3):257-265.
    [74] Chen J. T., Liang M. T., Yang S. S. Dual boundary integral equations for exteriorproblems. Engineering Analysis with Boundary Elements.1995,16(4):333-340.
    [75]何祚镛.声学逆问题—声全息场变换技术及源特性判别.物理学进展.1996,16(3):600-612.
    [76]毕传兴,陈剑,周广林,等.分布源边界点法在声场全息重建和预测中的应用.机械工程学报.2003,39(8):81-85.
    [77]舒歌群,陈达亮,梁兴雨,等.基于逆边界元法的内燃机噪声源识别方法.天津大学学报.2008,41(5):563-568.
    [78] Kim B. K., Ih J. G. On the reconstruction of the vibro-acoustic field over the surfaceenclosing an interior space using the boundary element method. Journal of theAcoustical Society of America.1996,100(5):3003-3016.
    [79] Williams E. G., Houston B. H., Herdic P. C., et al. Interior near-field acousticalholography in flight. Journal of the Acoustical Society of America.2000,108(4):1451-1463.
    [80] Jeon I. Y., Ih J. G. On the holographic reconstruction of vibroacoustic fields usingequivalent sources and inverse boundary element method. Journal of the AcousticalSociety of America.2005,118(6):3473-3482.
    [81] Martinus F., Herrin D. W., Han D. J. Identification of an aeroacoustic source using theinverse boundary element method. Noise Control Engineering Journal.2010,58(1):83-92.
    [82] Terao M., Sekine H. On substructure boundary element techniques to analyze acousticproperties of air-duct components. Proceedings of Inter-Noise. Beijing, China,1987.
    [83]季振林.直通穿孔管消声器声学性能计算及分析.哈尔滨工程大学学报.2005,26(3):302-306.
    [84]季振林.穿孔管阻性消声器消声性能计算及分析.振动工程学报.2005,18(4):453-457.
    [85]季振林,宋希庚.内燃机排气消声系统声学特性的数值预测.内燃机工程.1998,19(3):7-12.
    [86] Brebbia C. A., Nardini D. A new approach to free vibration analysis using boundaryelements. Proceedings of the Fourth International Seminar on Boundary ElementMethods in Engineering (Ed. CA Brebbia), Southampton, England.1982.
    [87] Partridge P. W., Brebbia C. A. Computational implementation of the BEM dualreciprocity method for the solution of general field equation. Communications inApplied Numerical Methods.1990,6(2):83-92.
    [88] Partridge P. W., Brebbia C. A., Wrobel L. C. The dual reciprocity boundary elementmethod. Southampton, UK: Computational Mechanics Publications,1992.
    [89]刘静,卢文强.求解生物传热热波模型的双倒易边界元方法.航天医学与医学工程.1997,10(6):391-395.
    [90]卢文强,曾蕴涛.微重力平行通道模拟热管融化起动过程的双倒易边界元分析.工程热物理学报.1999,20(4):472-476.
    [91]王文青.双协边界元方法及面向对象的边界元软件技术研究.上海:同济大学,1997.
    [92]王文青,嵇醒.弹性薄板小挠度弯曲内力的DRM边界元解法.重庆建筑大学学报.2000,22(6):62-66.
    [93] Rokhlin V. Rapid solution of integral equations of classical potential theory. Journal ofComputational Physics.1985,60(2):187-207.
    [94] Liu Y. Fast multipole boundary element method: theory and applications inengineering. Cambridge, England: Cambridge University Press,2009.
    [95] Darve E. The fast multipole method: numerical implementation. Journal ofComputational Physics.2000,160(1):195-240.
    [96] Pincus M. R., Scheraga H. A. An approximate treatment of long-range interactions inproteins. Journal of Physical Chemistry.1977,81(16):1579-1583.
    [97] Barnes J., Hut P. A hierarchical O(NlogN) force-calculation algorithm. Nature.1986,324(4):446-449.
    [98] Selmi H., Elasmi L., Ghigliotti G., et al. Boundary integral and fast multipole methodfor two dimensional vehicle sets in Poiseuille flow. Discrete and ContinuousDynamical Systems-Series B (DCDS-B).2011,15(4):1065-1076.
    [99] Tornberg A. K., Greengard L. A fast multipole method for the three-dimensionalStokes equations. Journal of Computational Physics.2008,227(3):1613-1619.
    [100] Liu Y. J., Nishimura N. The fast multipole boundary element method for potentialproblems: a tutorial. Engineering Analysis with Boundary Elements.2006,30(5):371-381.
    [101] Cheng H., Crutchfield W. Y., Gimbutas Z., et al. A wideband fast multipole method forthe Helmholtz equation in three dimensions. Journal of Computational Physics.2006,216(1):300-325.
    [102] Coifman R., Rokhlin V., Wandzura S. The fast multipole method for the wave equation:A pedestrian prescription. Antennas and Propagation Magazine.1993,35(3):7-12.
    [103] Engheta N., Murphy W. D., Rokhlin V., et al. The fast multipole method (FMM) forelectromagnetic scattering problems. Antennas and Propagation.1992,40(6):634-641.
    [104] Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions.Journal of Computational Physics.1990,86(2):414-439.
    [105] Rokhlin V. Diagonal forms of translation operators for Helmholtz equation in threedimensions. Applied and Computational Harmonic Analysis.1993,1(1):82-93.
    [106] Epton M. A., Dembart B. Multipole translation theory for the three-dimensionalLaplace and Helmholtz equations. SIAM Journal on Scientific Computing.1995,16:865.
    [107] Koc S., Chew W. C. Calculation of acoustical scattering from a cluster of scatterers.Journal of the Acoustical Society of America.1998,103(2):721-734.
    [108] Greenbaum A., Greengard L., Mcfadden G. B. Laplace's equation and theDirichlet-Neumann map in multiply connected domains. Journal of ComputationalPhysics.1993,105(2):267-278.
    [109] Nabors K., Korsmeyer F. T., Leighton F. T., et al. Preconditioned, adaptive,multipole-accelerated iterative methods for three-dimensional first-kind integralequations of potential theory. SIAM Journal on Scientific Computing.1994,15(3):713-735.
    [110] Yamada Y., Hayami K. A multipole boundary element method for two dimensionalelastostatics. Notes on numerical fluid mechanics.1998,54:255-267.
    [111] Zhao J. S., Chew W. C. MLFMA for solving boundary equations of2Delectromagnetic scattering from static to electrodynamic. Microwave Opt. Technol.Lett.1999,20(5):306-311.
    [112] Gomez J. E., Power H. A parallel multipolar indirect boundary element method for theNeumann interior Stokes flow problem. International Journal for Numerical Methodsin Engineering.2000,48(4):523-543.
    [113] Nishimura N., Yoshida K., Kobayashi S. A fast multipole boundary integral equationmethod for crack problems in3D. Engineering Analysis with Boundary Elements.1999,23(1):97-105.
    [114] Peirce A. P., Napier Jal. A spectral multipole method for efficient solution oflarge-scale boundary element models in elastostatics. International Journal forNumerical Methods in Engineering.1995,38(23):4009-4034.
    [115] Fukui T., Katsumoto J. Fast multipole algorithm for two dimensional Helmholtzequation and its application to boundary element method. Proceedings of14th JapanNational Symposium on Boundary Element Methods. Japan,1997.
    [116] Fukui T., Katsumoto J. Analysis of two dimensional scattering problems by fastmultipole boundary element method. Proceedings of14th Japan National Symposiumon Boundary Element Methods. Japan,1997.
    [117] Kosaka Y., Sakuma T. Application of the fast multipole BEM to calculation ofscattering coefficients of architectural surfaces in a wide range of frequencies.Proceedings of Inter-Noise. Rio de Janeiro,2005.
    [118] Sakuma T., Yasuda Y. Fast multipole boundary element method for large-scalesteady-state sound field analysis. Part I: setup and validation. Acta Acustica united withAcustica.2002,88(4):513-525.
    [119] Gumerov N. A., Duraiswami R. Computation of scattering from N spheres usingmultipole reexpansion. Journal of the Acoustical Society of America.2002,112(6):2688-2701.
    [120] Fischer M., Gauger U., Gaul L. A multipole Galerkin boundary element method foracoustics. Engineering Analysis with Boundary Elements.2004,28(2):155-162.
    [121] Shen L., Liu Y. J. An adaptive fast multipole boundary element method forthree-dimensional acoustic wave problems based on the Burton–Miller formulation.Computational Mechanics.2007,40(3):461-472.
    [122] Masumoto Takayuki, Gunawan Arief, Oshima Takuya, et al. Coupling analysisbetween FMBEM-based acoustic and modal based structural models-convergencebehavior of iterative solutions. Proceedings of Inter-Noise. Shanghai, China,2008.
    [123] Yasuda Y., Sakuma T. Analysis of sound fields in porous materials using the fastmultipole BEM. Proceedings of Inter-Noise. Shanghai, China,2008.
    [124] Yasuda Y., Oshima T., Sakuma T., et al. Fast multipole boundary element method forlow-frequency acoustic problems based on a variety of formulations. Journal ofComputational Acoustics.2010,18(4):363-395.
    [125] Yasuda Y., Oshima T., Sakuma T., et al. The fast multipole BEM for low-frequencyacoustic problems based on degenerate boundary formulation. Proceedings of20thInternational Congress on Acoustics. Sydney, Australia,2010.
    [126] Wang H. T., Yao Z. H. A new fast multipole boundary element method for large scaleanalysis of mechanical properties in3D particle-reinforced composites. ComputerModeling in Engineering&Sciences.2005,7(1):85-95.
    [127] Wang P., Yao Z., Wang H. Fast multipole BEM for simulation of2-D solids containinglarge numbers of cracks. Tsinghua Science&Technology.2005,10(1):76-81.
    [128] Zhao L., Yao Z. Fast multipole BEM for3-D elastostatic problems with applicationsfor thin structures. Tsinghua Science&Technology.2005,10(1):67-75.
    [129] Lei T., Yao Z., Wang H., et al. A parallel fast multipole BEM and its applications tolarge-scale analysis of3-D fiber-reinforced composites. Acta Mechanica Sinica.2006,22(3):225-232.
    [130] Liu D. Y., Shen G. X., Yu C. X., et al. Study of the multipole boundary elementmethod for three-dimensional elastic contact problem with friction. Proc. of the4thInternational Conference on BeTeQ. Spain,2003.
    [131] Yu C. X., Shen G. X., Liu D. Y. Program-pattern multipole boundary element methodfor frictional contact. Acta Mechanica Solida Sinica.2005,18(1):76-82.
    [132] Cui X. B., Ji Z. L. Application of the fast multipole boundary element method toanalysis of sound fields in absorbing materials. ASME. Florida, USA,2009.
    [133]崔晓兵,季振林.子结构FMBEM在消声器声场计算中的迭代收敛.噪声与振动控制.2011,31(1):145-148.
    [134]崔晓兵,季振林.阻性消声器声学性能预测的快速多极子边界元法.哈尔滨工程大学学报.2011,32(4):428-433.
    [135]崔晓兵,季振林.消声器声学性能预测的子结构快速多极子边界元法.计算物理.2010,27(5):711-716.
    [136]孟文辉,崔俊芝. Application of fast multi-pole boundary element method to2Dacoustic scattering problem.中国科学技术大学学报.2008,38(11):1332-1340.
    [137]李善德,黄其柏,张潜.快速多极边界元方法在大规模声学问题中的应用.机械工程学报.2011,47(7):82-89.
    [138] Li S., Huang Q. An improved form of the hypersingular boundary integral equation forexterior acoustic problems. Engineering Analysis with Boundary Elements.2010,34(3):189-195.
    [139] Wu H., Jiang W., Liu Y. Analysis of numerical integration error for Bessel integralidentity in fast multipole method for2D Helmholtz equation. Journal of ShanghaiJiaotong University.2010,15(6):690-693.
    [140] Barra Lps, Coutinho A., Mansur W. J., et al. Iterative solution of BEM equations byGMRES algorithm. Computers&Structures.1992,44(6):1249-1253.
    [141] Kane J. H., Keyes D. E., Prasad K. G. Iterative solution techniques in boundaryelement analysis. International Journal for Numerical Methods in Engineering.1991,31(8):1511-1536.
    [142] Prasad K. G., Kane J. H., Keyes D. E., et al. Preconditioned Krylov solvers for BEA.International Journal for Numerical Methods in Engineering.1994,37(10):1651-1672.
    [143] Benzi M., Tuma M. A comparative study of sparse approximate inverse preconditioners.Applied Numerical Mathematics.1999,30(2):305-340.
    [144] Benzi M. Preconditioning techniques for large linear systems: a survey. Journal ofComputational Physics.2002,182(2):418-477.
    [145] Vavasis S. A. Preconditioning for boundary integral equations. SIAM Journal onMatrix Analysis and Applications.1992,13(3):905-925.
    [146] Alléon G., Benzi M., Giraud L. Sparse approximate inverse preconditioning for denselinear systems arising in computational electromagnetics. Numerical Algorithms.1997,16(1):1-15.
    [147] Chen K. On a class of preconditioning methods for dense linear systems from boundaryelements. SIAM Journal on Scientific Computing.1999,20(2):684-698.
    [148] Chen K., Harris P. J. Efficient preconditioners for iterative solution of the boundaryelement equations for the three-dimensional Helmholtz equation. Applied numericalmathematics.2001,36(4):475-489.
    [149] Nishida T., Hayami K. Application of the fast multipole method to the3D BEManalysis of electron guns. Boundary elements XIX.1997,19:613-622.
    [150] Epton M. A., Dembart B. Multipole translation theory for the three-dimensionalLaplace and Helmholtz equations. SIAM Journal on Scientific Computing.1995,16(4):865-897.
    [151] Tong M. S., Chew W. C. Multilevel fast multipole algorithm for elastic wave scatteringby large three-dimensional objects. Journal of Computational Physics.2009,228(3):921-932.
    [152] Gumerov N. A., Duraiswami R. Recursions for the computation of multipoletranslation and rotation coefficients for the3-D Helmholtz equation. SIAM Journal onScientific Computing.2004,25(4):1344-1381.
    [153] Greengard L., Huang J., Rokhlin V., et al. Accelerating fast multipole methods for theHelmholtz equation at low frequencies. Computational Science&Engineering, IEEE.1998,5(3):32-38.
    [154] Chaillat S., Bonnet M., Semblat J. F. A multi-level fast multipole BEM for3-Delastodynamics in the frequency domain. Computer Methods in Applied Mechanicsand Engineering.2008,197(49-50):4233-4249.
    [155] Cheng H., Crutchfield W. Y., Gimbutas Z., et al. A wideband fast multipole method forthe Helmholtz equation in three dimensions. Journal of Computational Physics.2006,216(1):300-325.
    [156] Gumerov N. A., Duraiswami R. A broadband fast multipole accelerated boundaryelement method for the three dimensional Helmholtz equation. Journal of theAcoustical Society of America.2009,125(1):191-205.
    [157] Yasuda Y. Application of the fast multipole boundary element method to sound fieldanalysis using a domain decomposition approach. Proceedings of Inter-Noise.Honolulu,2006.
    [158]季振林.消声器声学性能预测的边界元法.哈尔滨:哈尔滨船舶工程学院,1993.
    [159] Wu T. W. A direct boundary element method for acoustic radiation and scattering frommixed regular and thin bodies. Journal of the Acoustical Society of America.1995,97(1):84-91.
    [160]李自强,季振林.具有高阶模态的消声器声学性能研究.全国振动工程及应用学术会议.沈阳:2010.
    [161] Lee I., Selamet A., Huff N. T. Impact of perforation impedance on the transmission lossof reactive and dissipative silencers. Journal of the Acoustical Society of America.2006,120(6):3706-3713.
    [162] Selamet A., Ji Z. L. Acoustic attenuation performance of circular expansion chamberswith extended inlet/outlet. Journal of Sound and Vibration.1999,223(2):197-212.
    [163] Abramowitz M., Stegun I. A. Handbook of mathematical functions with formulas,graphs, and mathematical tables. Dover Publications,1964.
    [164] Rokhlin V. Diagonal forms of translation operators for the Helmholtz equation in threedimensions. Applied and Computational Harmonic Analysis.1998,5:36-67.
    [165] Darve E. The fast multipole method I: Error analysis and asymptotic complexity. SIAMJournal on Numerical Analysis.2001,38(1):98-128.
    [166] Carrier J., Greengard L., Rokhlin V. A fast adaptive multipole algorithm for particlesimulations. SIAM Journal on Scientific and Statistical Computing.1988,9(4):669-686.
    [167] Bapat M. S., Liu Y. J. A new adaptive algorithm for the fast multipole boundaryelement method. Computer Modeling in Engineering&Sciences.2010,58(2):161-184.
    [168]刘丽媛.增压器噪声控制与进气消声器设计研究.哈尔滨工程大学,2010.
    [169] Delany M. E., Bazley E. N. Acoustical properties of fibrous absorbent materials.Applied Acoustics.1970,3(2):105-116.
    [170] Utsuno H., Tanaka T., Fujikawa T., et al. Transfer function method for measuringcharacteristic impedance and propagation constant of porous materials. Journal of theAcoustical Society of America.1989,86(2):637-643.
    [171] Lee I. J., Selamet A., Huff N. T. Acoustic impedance of perforations in contact withfibrous material. Journal of the Acoustical Society of America.2006,119(5):2785-2797.
    [172] Van der Vorst H. A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CGfor the solution of nonsymmetric linear systems. SIAM Journal on Scientific andStatistical Computing.1992,13(2):631-644.
    [173] Bank R. E., Chan T. F. A composite step bi-conjugate gradient algorithm fornonsymmetric linear systems. Numerical Algorithms.1994,7(1):1-16.
    [174] Freund R. W., Gutknecht M. H., Nachtigal N. M., et al. An implementation of thelook-ahead Lanczos algorithm for non-Hermitian matrices. SIAM Journal on ScientificComputing.1990,14(1):137-158.
    [175] Sleijpen G. L. G., Fokkema D. R. BiCGSTAB(l) for linear equations involvingunsymmetric matrices with complex spectrum. Electronic Transactions on NumericalAnalysis.1993,1:11-32.
    [176] Saad Y. ILUT: A dual threshold incomplete LU factorization. Numerical LinearAlgebra with Applications.1994,1(4):387-402.
    [177] Saad Y. Iterative methods for sparse linear systems. PWS Pub. Co.,1996.
    [178] Melling T. H. The acoustic impendance of perforates at medium and high soundpressure levels. Journal of Sound and Vibration.1973,29(1):1-65.
    [179] Bauer A. B. Impedance theory and measurements on porous acoustic liners. Journal ofAircraft.1977,14:720-728.
    [180] Ingard U. On the theory and design of acoustic resonators. Journal of the AcousticalSociety of America.1953,25(6):1037-1061.
    [181] Ji Z. L. Boundary element acoustic analysis of hybrid expansion chamber silencers withperforated facing. Engineering Analysis with Boundary Elements.2010,34(7):690-696.
    [182] Sullivan J. W., Crocker M. J. Analysis of concentric-tube resonators havingunpartitioned cavities. Journal of the Acoustical Society of America.1978,64(1):207-215.
    [183] Terai T. On calculation of sound fields around three dimensional objects by integralequation methods. Journal of Sound and Vibration.1980,69(1):71-100.
    [184] Krishnasamy G., Schmerr L. W., Rudolphi T. J., et al. Hypersingular boundary integralequations: some applications in acoustic and elastic wave scattering. Journal of AppliedMechanics.1990,57(2):404-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700