PP和PBS基无机纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯材料具有原料来源丰富、价格低廉、性能优良、电绝缘性和化学稳定性好,且易于加工成型的优点,已经被广泛应用于工业、农业、医疗卫生、包装和日常生活等各个领域中,因而也是世界高分子材料中用量最大、增长速度最快的一类产品。聚丁二酸丁二醇酯作为一类典型的生物降解脂肪族聚酯,由于其综合性能优异,性价比合理而备受青睐,成为脂肪族聚酯中发展最快的品种之一。聚丙烯虽然被公认为是最有可能达到工业化和商品化的可生物降解高分子材料,但是其本身在结晶与力学性能方面存在一定局限性,可通过加入其它聚合物、填料及相容剂,达到改善材料性能的目的。聚合物共混合材料研究和应用得到了学术界与工业界的广泛关注和迅速发展。
     (1)以聚丙烯接枝马来酸酐(PP-g-MAH)作为界面增容剂,用表面经过硅烷偶联剂处理的硫酸钙晶须,对聚丙烯增强增韧,研究PP-g-MAH增容剂和稀土β成核剂对聚丙烯复合材料结晶、熔融行为和力学性能影响。结果表明:硫酸钙晶须具有一定的诱导β-晶型的异相成核作用,使聚丙烯结晶温度提高和结晶速率增加。PP-g-MAH提高了结晶温度和晶须成核能力,降低了β-晶型含量,不利于β-晶型生成,并改善了树脂与晶须的界面性能,提高了拉伸强度和冲击性能。稀土β成核剂具有很强的诱导形成β-晶型异相成核效应,有效提高了复合材料的冲击性能。动力学分析表明聚丙烯非等温结晶动力学可以用莫志深描述,结晶度相同的情况下,复合材料需要的冷却速率显著小于纯基体。复合材料的组成与降温冷却速率是熔融行为与结晶形态的决定因素。
     (2)采用镁盐晶须对聚丙烯硅烷增强增韧,镁盐晶须以硅烷偶联剂表面处理,聚丙烯接枝马来酸酐(PP-g-MAH)作为界面增容剂,研究镁盐晶须和增容剂PP-g-MAH对聚丙烯复合材料的结晶行为、熔融行为和力学性能的影响。结果表明:镁盐晶须具有明显的诱导β晶型成核效应,对PP有一定的增强增韧作用,增容剂PP-g-MAH改善了PP与晶须的界面性能,提高了拉伸强度和冲击强度;PP-g-MAH进一步促进了晶须成核作用,但明显抑制了β晶型的生成。等温结晶动力学分析表明遵循Avrami模型,基于Lauritzen-Hoffman成核理论分析,随着镁盐晶须和增容剂的加入,表面自由能σe呈明显下降趋势,表明镁盐晶须填料的加入降低了产生新界面需要的功,加快了结晶速率。非等温结晶的成核活性分析、结晶活化能分析和有效活化能垒分析都得到类似的结果,镁盐晶须和增容剂的加入降低了活化能,增加了成核活性。
     (3)采用Mg-Al水滑石(HT)为聚丁二酸丁二醇酯的改性剂。首先制备聚丁二酸丁二醇酯(PBS),再分别制备不同HT掺量的纳米复合材料混合物,之后对其各项性能指标进行了测试研究。把不同HT纳米粒子含量的纳米复合材料与纯PBS的各项性能指标进行对比,同时对相关机理进行探讨,通过对实验样品的TEM和SEM分析及测试表明HT纳米粒子能够在PBS基体中良好分散,随着HT掺量增加结晶速率逐渐增长,HT纳米粒子对PBS结晶速率增加效果显著。说明HT对PBS基体结晶有异相成核作用,同时促进PBS结晶,但又对PBS的结晶机制和结晶结构没有影响。用Jeziorny、Ozawa和莫志深法分析非等温结晶过程,发现莫志深提出的将Avrami和Ozawa方程联立的方法很好的描述PBS及其纳米复合体系的非等温结晶动力学。加入HT使得PBS成核密度增加,球晶尺寸细化;由于Mg和Al离子对PBS的酯键热分解有催化作用使得PBS的热稳定性有所下降,复合材料的力学性能均有所提高。
     (4)通过溶液复合制备了聚丁二酸丁二醇酯(PBS)/氨基笼型低聚倍半硅氧烷(POSS)纳米复合材料,并研究了POSS的加入对其微观结构、晶体结构、结晶行为、球晶形态和球晶生长速率、力学性能和热稳定性等方面的影响。扫描电镜观察POSS能够均匀纳米级地分散在PBS基体中,呈现良好的界面作用。X-射线衍射仪测试表明加入POSS不影响基体PBS的晶型,且POSS在基体中以晶体形态存在。差示扫描量热测试显示加入POSS反而降低了非等温结晶温度,延长了等温结晶时间,表明POSS的成核能力非常有限,且POSS的加入阻碍了PBS链段的运动,偏光显微镜观察POSS降低了PBS的球晶生长速率。力学性能测试表明POSS提高了PBS的杨氏模量和储能模量,增强效果不显著,降低了PBS断裂伸长率,提高了PBS的玻璃化转变温度。POSS分解温度低于PBS,但不影响基体PBS的热稳定性。综上实验结果分析:POSS分子上的氨基与PBS链段上的羰基形成较强的分子间氢键作用,以及POSS的笼型结构起物理交联点作用在PBS/POSS纳米复合材料中形成三维网络结构,是POSS影响PBS结晶行为和力学性能的主要原因。
Isotactic polypropylene (iPP), as one of the commodity plastics, has been used in manyareas such as packaging, households, and automotives, for its low price, excellentperformance, good electrical insulation and chemical stability, and ease of processing. IPP isa kind of typical biological aliphatic polyester for its degradability, and has a high growthrate. Poly(butylene succinate)(PBS) is one of the most promising materials for theproduction of high-performance, environment-friendly and biodegradable. It has particularlyattracted more commercial interests because of its significant properties, including meltprocessability, thermal and chemical resistance, and biodegradability. However, its softnessand low gas-barrier properties have restricted further applications of PBS. Therefore, addingother polymers, fillers, and the compatibilizing agent can improve the material properties.Up to now, the research and application of nanocomposites have attracted enormous interestsin academia and industry.
     (1) Polypropylene-graft-maleic anhydride (PP-g-MAH) is used as interfacecompatibilizing agent, and the surface of calcium sulphate whisker is treated with silanecoupling agent to reinforce and toughen polypropylene. The effects of compatibilizerPP-g-MAH and rare earth β-phase nucleating agent have been studied systematically toknow the influence of crystallization, melting behavior and mechanical properties onpolypropylene/calcium sulfate whisker composites. It is found that the calcium sulfatewhisker has a heterogeneous nucleation effect on the polymer matrix and induced theformation of β-crystal, thus increases the peak crystallization temperature and the overallrate of crystallization of PP. PP-g-MAH content improves the interfacial compatibility andtensile strength, which also enhance the nucleation activity of the whisker in the PP matrix,and suppress the formation of β-iPP. The results shows that rare earth β-phase nucleatingagent resulted in dominant β-PP and improved the strength effectively. The analysis of the crystallization process shows that the Mo model can describe the kinetics data ofnonisothermal crystallization successfully. To achieve the identical degree of crystallinity,the composites need a lower cooling rate than pure PP. The results shows that the crystallinestructure and melting behavior of the composites depend on their component and coolingrate. Lower cooling rate is favorable for the formation of β-crystals.
     (2) Crystallization behavior of isotactic polypropylene (iPP)/magnesium salt whisker(MSW) composites modified by compatibilizer PP-g-MAH is studied under both isothermaland nonisothermal conditions. It is observed that the addition of MSW affected thecrystallization rate and melting behavior of iPP/MSW composites remarkably. The additionof MSW and/or PP-g-MAH has strong nucleation activity and accelerates the nucleation rateand the overall crystallization rate. Analysis of the isothermal crystallization shows that theAvrami model successfully described the crystallization process.
     (3) Biodegradable poly(butylene succinate)(PBS) and layered double hydroxide (HT)nanocomposites are prepared. By means of TEM and SEM,conclusions are drawed: HTnanoparticles dispersed well in PBS, PBS crystallization rate has been improved with theaddition of the HT nanoparticles greatly. HT nanoparticles in the PBS/HT nanocompositeshave heterogeneous nucleation effect on crystallization of PBS matrix, through experimentalresults of DSC, and the results show that the crystallization rate increases with the growth ofthe HT content, and the HT nanoparticles act as the heterogeneous nucleation agents topromote the crystallization process. Adding HT to PBS material can not greatly change themechanism of nucleation and crystal growth morphology. Furthermore, The non-isothermalcrystallization processes is analyzed by methods of Jeziorny, Ozawa and Mo, and found thatthe method proposed by Mo could successfully analyze the non-isothermal crystallizationkinetics of PBS and its nanocomposites. The experimental results of POM show that thespherulitic morphologies did not change, but the spherulite size of PBS and itsnanocomposites decreases with the addition of HT nanoparticles.
     (4) Poly(butylene succinate)(PBS) and aminopropylisobutyl polyhedral oligomericsilsesquioxanes (POSS) nanocomposites are prepared by solution-casting method. The effects of POSS on the microstructure, crystal structure, crystallization behavior, spheruliticmorphology and spherulite grow rate, mechanical properties, and thermal stability ofPBS/POSS nanocomposites are investigated with various techniques. Scanning electronmicroscope measurements reveals that POSS particles are well-dispersed uniformly on thenanoscale in the PBS matrix and has a good interfacial interaction with PBS chains.Wide-angle X-ray diffraction patterns shows that the POSS molecules are able to crystallizein PBS matrix, but do not affect the crystalline structure of PBS matrix. Differential scanningcalorimetry results indicate that the incorporation of POSS particles into PBS matrix,unexpectedly, decrease the crystallization temperature during nonisothermal meltcrystallization and prolong the crystallization time during isothermal crystallization. Thenucleation effect of such POSS on the crystallization of PBS is extraordinary limited;furthermore, it hinders the motion of PBS chains and decelerated the spherulite growth rate,as confirmed by polarized optical microscopy. Mechanical properties are evaluated byInstron and dynamic mechanical analysis. The Young’s modules and storage modules of thenanocomposites are enhanced relative to PBS by the addition of POSS, however, the tensilestrength is not much improved and the elongation at break is reduced in the nanocomposites.Glass transition temperature (Tg) of the PBS/POSS nanocomposites increased slightly withincreasing POSS content, which indicated that the molecular mobility of amorphous PBSchains is constrained in the nanocomposites. The above results indicate that the retardedcrystallization of PBS and the effect of mechanical properties of the nanocomposites in thepresence of POSS are ascribed the stronger hydrogen-bonding interactions between thePOSS molecules and the PBS matrix as well as the network formation based on the POSSphysical crosslinking points in the PBS/POSS nanocomposites.
引文
[1]聚丙烯手册,(意)内罗·帕斯奎尼主编胡友良等译,北京:化学工业出版社,2008.
    [2]何阳,黄锐. β晶型聚丙烯研究进展.高分子通报,2008,(1):42-50.
    [3]杨明山.聚丙烯改性及配方.化学工业出版社.2009.331-349.
    [4]聚烯烃共混物,(美)多玛休斯,(美)赛因主编,义建军译.北京:化学工业出版社,2010.
    [5]孙桂香,罗勇等.生物降解PBS聚酯改性研究进展.高分子通报,2011,(2):102-107.
    [6]张世平,宫铭,党媛,史素青,宫永宽.聚丁二酸丁二醇酯的研究进展.高分子通报,2011,(3):86-93.
    [7]王国利,徐军,郭宝华.可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展.高分子通报,2011,(4):99-109.
    [8] Cai LF, Huang XB, Rong MZ, et al. Effect of grafted polymeric foaming agent on thestructure and properties of nano-silical polypropylene composites. Polymer,2006,47(20):7043-7050.
    [9]郑德,冯嘉春,王文治,等.稀土偶联剂在无机刚性粒子增韧聚丙烯中应用及机理研究.塑料加工,2006,41(3):19-25
    [10] Leong YW, Ishak ZA, Mohd AA, et al. Mechanical and thermal properties of talc andcalcium carbonate filled polypropylene hybrid composites. J Appl Polym Sci,2004,91(5):3327-3336.
    [11]高翔,毛立新,田明,等.聚规丙烯/三元乙丙胶/凹凸棒土三元复合体系的力学性能与亚微相态.高分子材料科学与工程,2005,21(4):197-200.
    [12] Huang Z, Lin Z, Cai Z, et al. Physical and mechanical properties of nano-CaCO3/PPcomposites modified with acrylic acid. Plast Rubber Compos,2004,33(8):343-351.
    [13]马传国,容敏智,章明秋.纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响,高分子学报,2003,(3):381-386.
    [14]古菊,熊强,贾德民,罗远芳,程镕时.羟基不饱和脂肪酸改性纳米碳酸钙对聚丙烯微观形态和流变性能的影响,高分子学报,2008,(4):325-331.
    [15] Gu J, Jia D. S., and Cheng R. S. Polypropylene Composite Toughened by a NovelModified Nano-CaCO3. Polym-Plast Technol Eng,2008,47:583-589.
    [16] Papageorgiou G Z, Achilias D S, Bikiaris D N, Karayannidis G P. Crystallizationkinetics and nucleation activity of filler in polypropylene/surface-treated SiO2nanocomposites. Thermochim Acta.2005,427:117-28.
    [17]容敏智,章明秋,潘顺龙, Friedrich K.,表面接枝改性纳米二氧化硅填充聚丙烯的结晶行为,高分子学报,2004,(2):184-190.
    [18]周红军,容敏智,章明秋,阮文红.纳米SiO2/聚丙烯复合材料的反应性增容,高分子学报,2007,(2):158-164.
    [19]周红军,林轩,尹国强,葛建芳.聚丙烯/纳米SiO2复合材料的非等温结晶动力学.中国塑料,2009,23(6):22-26.
    [20]吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究,高分子学报,2000,(1):99-104.
    [21]季光明,陶杰,汪涛,等.纳米TiO2填充改性PP的力学性能研究.复合材料学报,2005,22(5):100-106.
    [22]高俊刚,王东,魏鑫丽,等.聚丙烯/纳米TiO2复合材料的性能研究.塑料工业,2003,31(8):42-45.
    [23] YANG Z, PENG H D, WANG W Z, LIU T X.Crystallization Behavior ofPoly(e-caprolactone)/Layered Double Hydroxide Nanocomposites [J].Journal of AppliedPolymer Science,2010,116:2658-2667.
    [24] HSU S F, WU T M, LIAO C S.Isothermal Crystallization Kinetics ofPoly(3-hydroxybutyrate)/Layered Double Hydroxide Nanocomposites [J].Journal ofPolymer Science,2006,44:3337-3347.
    [25] LONKAR S P, MORLAT-THERIAS S, CAPERAA N, LEROUX F,.GARDETTE J L,SINGH R P. Preparation and nonisothermal crystallization behavior ofpolypropylene/layered double hydroxide nanocomposites [J].Polymer,2009,50:1505-1515.
    [26] DAGNON K L, CHEN H H, INNOCENTINI-MEI L H, D’SOUZA N A. Poly
    [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]/layered double hydroxide nanocomposites[J].Polym Int,2009,58:133-141.
    [27] PAN P, ZHU B, DONG T, INOUE Y. Poly(L-Lactide)/Layered Double HydroxidesNanocomposites: Preparation and Crystallization Behavior [J].Journal of PolymerScience,Part B: Polymer Physics,2008,46:2222-2233.
    [28] Escud N C, Chen E Y X. Stereoregular Methacrylate-POSS Hybrid Polymers:Syntheses and Nanostructured Assemblies [J]. Chemistry of Materials,2009,21:5743-5753.
    [29] Guo X X, Wang W P, Liu L. A novel strategy to synthesize POSS/PS composite andstudy on its thermal properties.[J]. Polymer Bulletin,2010,64:15-25.
    [30] Ciolacu F C L, Choudhury N R, Dutta N, et al. Molecular Level Stabilization ofPoly(ethylene terephthalate) with Nanostructured Open Cage Trisilanolisobutyl-POSS [J].Macromolecules,2007,40:265-272.
    [31] Misra R, Fu B X, Morgan S E. Surface energetics, dispersion, and nanotribomechanicalbehavior of POSS/PP hybrid nanocomposites [J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:2441-2455.
    [32] Chan K L, Sonar P, Sellinger A. Cubic silsesquioxanes for use in solution processableorganic light emitting diodes (OLED)[J]. Journal of Materials Chemistry,2009,19:9103-9120.
    [33] Fina A, Tabuani D, Frache A, et al. Polypropylene-polyhedral oligomericsilsesquioxanes (POSS) nanocomposites [J]. Polymer,2005,46(19):7855-7866.
    [34] Fina A, Abbenhuis H C L, Tabuani D, et al. Metal functionalized POSS as fireretardants in polypropylene[J]. Polymer Degradation and Stability,2006,91(10):2275-2281.
    [35] Zhou Z Y, Cui L M, Zhang Y, et al. Preparation and properties of POSS graftedpolypropylene by reactive blending [J]. European Polymer Journal,2008,44(10):3057-3066.
    [36]孟季茹,赵磊,梁国正,贾巧英.无机晶须在聚合物中的应用.化工新型材料,2001,29(12):1-6.
    [37]李凝,高诚辉,林有希.无机盐晶须增强树脂基复合材料研究进展.无机盐工业,2006,38(6):8-11.
    [38]陈尔凡,陈东.晶须增强增韧聚合物基复合材料机理研究进展.高分子材料科学与工程,2006,22(2):20-24.
    [39]尚文宇,谢大荣,刘庆峰,等.晶须状碳酸钙填充聚合物材料性能的研究.中国塑料,2000,14(3):24-27.
    [40]张立群,耿海萍,刘月星,等, CaSO4晶须与EPDM/PP共混型热塑性弹性体复合材料的研究.合成橡胶工业,1998,21(2):80-83.
    [41]刘玲,殷宁,亢茂青,等. CaSO4晶须补强增韧聚氨酯弹性体复合材料力学性能的研究.高分子材料科学与工程,2001,17(6):90-93.
    [42]沈惠玲,赵梓年,倪丽琴.界面改性剂及硫酸钙晶须对PP复合材料结晶性能的影响.塑料,2001,30(4):59-62.
    [43]廖明义,隈学札.镁盐晶须增强聚丙烯力学性能研究.工程塑料应用,2000,28(1):12-14.
    [44]范文春,鄢润德,成核剂和镁盐晶须复合改性聚丙烯研究.化工新型材料,2004,32(5):36-38.
    [45]吕通建,于洋,范平,等.碱式硫酸镁晶须增强阻燃聚丙烯的研究.中国塑料,2001,15(9):66-68.
    [46]刘喜军,马文辉,王佳祥,等.聚丙烯/纤维级Mg(OH)2/P复合材料研究.中国塑料,2001,15(12):40-43.
    [47]多组分聚合物结构与性能,王国建,邱军编著,北京:化学工业出版社,2010年
    [48]王晓丽,朱一民,韩跃新,等.表面处理剂对硫酸钙晶须/聚丙烯复合材料的增韧.东北大学学报:自然科学版,2008,29(10):1494-1497.
    [49] Bao SP, Tjong SC. Impact essential work of fracture of polypropylene/montmorillonitenanocomposites toughened with SEBS-g-MA elastomer. Composites A,2007,38(2):378-387.
    [50] Kusmono, Mohd Ishak ZA, Chow WS, et al. Influence of SEBS-g-MA on morphology,mechanical, and thermal properties of PA6/PP/organoclay nanocomposites. Eur Polym J,2008,44(4):1023-1039.
    [51] Shen H, Wang YH, Mai KC, et al. Non-isothermal crystallization behavior ofPP/Mg(OH)2composites modified by different compatibilizers. Thermochimica Acta,2007,457(1-2):27-34.
    [52]周彤辉,阮文红,王跃林,等.原位接枝改性纳米二氧化硅/聚丙烯复合材料I:结构表征.复合材料学报,2006,23(2):71-76.
    [53]周彤辉,阮文红,王跃林,等.原位接枝改性纳米二氧化硅/聚丙烯复合材料II:性能测试.复合材料学报,2007,24(3):45-51.
    [54] Zhou XP, Xie XL, Yu ZZ, et al. Intercalated structure of polypropylene/in-situpolymerization-modified talc composites via melt compounding. Polymer,2008,48(12):3555-3564.
    [55] Chen W, Moon LK, Wunderlich B. Study of crystallization kinetics bytemperature-modulated DSC. Polymer,2001,41:4119-4125
    [56] Di. Lorenzo ML, SiIvestre C. Non-isothermal crystallization of polymers. Prog PolymSci,1999,24:917-950.
    [57] Radhakrishnan S, Saujanya C. Structure development in PP/CaCO3composites: Part IIEffect of filler on crystallization and morphology. J Mater Sci,1998,33(4):1069-1074.
    [58]马继盛,漆宗能,李革,胡友良.聚丙烯/蒙脱土纳米复合材料的等温结晶研究,高分子学报,2001,(5):589-593.
    [59] Ozawa, T. Kinetics of non-isothermal crystallization. Polymer,1971,12:150-158.
    [60] Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallizationof poly(ethylene terephthalate) determined by d.s.c. Polymer,1978,19:1142-1144..
    [61] Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallizationkinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci,1997,37(3):568-575.
    [62]徐卫兵,戈明亮,何平笙,聚丙烯/蒙脱土纳米复合材料非等温结晶动力学的研究,高分子学报,2001,(5):584-588.
    [63]葛铁军,杨洪毅,韩跃新.硫酸钙晶须复合增强聚丙烯性能研究.塑料科技,1997,(1):16-19.
    [64]邹敏,王琪琳. CaSO4晶须/纳米TiO2/PP-R树脂复合材料的制备及性能.材料科学与工程学报,2008,26(6):891-895.
    [65]王晓丽,朱一民,韩跃新等.表面处理剂对硫酸钙晶须/聚丙烯复合材料的增韧(I).东北大学学报.2008,29(10):1494-1497.
    [66] Wang XL, Zhu YM, Han YX, et al. Toughening of Polypropylene with Calcium SulfateWhiskers Treated by coupling Agents. Adv Mater Res,2009,58:225-229.
    [67]张立群,耿海萍,刘月星,等, CaSO4晶须与EPDM/PP共混型热塑性弹性体复合材料的研究.合成橡胶工业,1998,21(2):80-83.
    [68]沈惠玲,赵梓年,倪丽琴.界面改性剂及硫酸钙晶须对PP复合材料结晶性能的影响.塑料,2001,30(4):59-62.
    [69] Menyhard A, Varga J. The effect of compatibilizers on the crystallisation, melting andpolymorphic composition of β-nucleated isotactic polypropylene and polyamide6blends.Eur Polym J.2006,42:3257-3268.
    [70]廖明义,隈学札.镁盐晶须增强聚丙烯力学性能研究.工程塑料应用,2000,28(1):12-14.
    [71] Zhang PY, Liu XX, Li YQ. Influence of β-nucleating agent on the mechanics andcrystallization characteristics of polypropylene. Mater Sci Eng A.2006,434:310-313.
    [72]莫志深.一种研究聚合物非等温结晶动力学的方法.高分子学报,2008,(7):656-661
    [73] Kissinger HE, Res J. Variation of peak temperature with heating rate in differentialthermal analysis. J Res Natl Bur Stand.1956,57:217-221.
    [74]李凝,高诚辉,林有希.无机盐晶须增强树脂基复合材料研究进展.无机盐工业,2006,38(6):8-11.
    [75] Lu HD, Hu Y, Yang Z, Wang ZZ, Chen ZY, Fan WC. Study of the fire performance ofmagnesium hydroxide sulfate hydrate whisker flame retardant polyethylene. MacromolMater Eng.2004;289:984-989.
    [76] Liu B, Zhang Y, Wan CY, Zhang YX, Li RX, Liu GY. Thermal stability, flameretardancy and rheological behavior of ABS filled with magnesium hydroxide sulfatehydrate whisker. Polym Bull.2007;58:747-755.
    [77] Ouyang YX, Sui GX, Yang R, Zhuang GS. Preparation and mechanical properties ofmagnesium salt whisker/ABS composites. Mater Manuf Process.2006;21:191-197.
    [78] Fang SL, Hu Y, Song L, Zhan J, He QL. Mechanical properties, fire performance andthermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant siliconerubber. J Mater Sci.2008;43:1057-1062.
    [79] Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kineticsand nucleation activity of filler in polypropylene/surface-treated SiO2nanocomposites.Thermochim Acta.2005;427:117-28.
    [80] Menyhárd A, Varga J. The effect of compatibilizers on the crystallisation, melting andpolymorphic composition of β-nucleated isotactic polypropylene and polyamide6blends.Eur Polym J.2006;42:3257-3268.
    [81] Shen H, Wang Y, Mai K. Non-isothermal crystallization behavior of PP/Mg(OH)2composites modified by different compatibilizers. Thermochim Acta.2007;457:27-34.
    [82] Ning N, Luo F, Wang K, Du R, Zhang Q, Chen F, Fu Q. Interfacial enhancement byshish-calabash crystal structure in polypropylene/inorganic whisker composites. Polymer.2009;50:3851-3856.
    [83] Galeski A. Strength and toughness of crystalline polymer systems. Prog Polym Sci.2003;28:1643-99.
    [84]廖明义,隈学札.镁盐晶须增强聚丙烯力学性能研究.工程塑料应用,2000,28(1):12-14.
    [85] Avrami M, Kinetics of phase change. I. General theory. J Chem Phys.1939;7:1103-1112.
    [86] Lauritzen JI, Hoffman JD. Extension of theory of growth of chain-folded polymercrystals to large undercoolings. J Appl Phys.1973;44:4340-4352.
    [87] Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding inpolyethylene fractions revisited: theory and experiment. Polymer.1997;38:3151-3212.
    [88] Papageorgiou GZ, Achilias DS, Bikiaris DN. Macromol. Crystallization kinetics ofbiodegradable poly(butylene succinate) under isothermal and non-Isothermal conditions.Macromol Chem Phys.2007;208:1250-1264.
    [89] Varga J. Crystallization, melting and supermolecular structure of isotacticpolypropylene. In "Polypropylene: structure, blends and composites". Vol. I. Structure andmorphology, Ed. J. Karger-Kocsis, Chapman and Hall. London,56-115.1995.
    [90] Zhang Y-F, Xin Z. Isothermal and nonisothermal crystallization kinetics of isotacticpolypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J ApplPolym Sci.2006;101:3307-3316.
    [91] Nitta KH, Asuka KZ, Liu BP, Terano M. The effect of the addition of silica particles onlinear spherulite growth rate of isotactic polypropylene and its explanation by lamellarcluster model. Polymer.2006;47:6457-6463.
    [92] Wang K, Wu J, Zeng H-M. Crystallization and melting behaviour ofpolypropylene/barium sulfate composites. Polym Int.2004;53:838-843.
    [93] Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation ofglass-forming melts.1. theory. J Non-Cryst Solids.1993,162:1-12.
    [94] Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation ofglass-forming melts. II. Experimental evidence. J Non-Cryst Solids.1993;162:13-25.
    [95] Kissinger HE, Res J. Variation of peak temperature with heating rate in differentialthermal analysis. J Res Nat Bur Stand.1956;57:217-221.
    [96] Vyazovkin S, Is the Kissinger equation applicable to the processes that occur on cooling?Macromol Rapid Commun.2002;23:771-775.
    [97] Friedman H. J. Kinetics of thermal degradation of char-forming plastics fromthermogravimetry. J Polym Sci Part C.1964;6:183-186.
    [98] Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy-amine cure studied bydifferential scanning calorimetry. J Phys Chem B.2003;107:882-888.
    [99] Ray SS, and Okamoto M. Polymer/layered silicate nanocomposites: a review frompreparation to processing[J]. Prog Polym Sci2003,28:1539-1641.
    [100] Ray SS, Okamoto K, Okamoto M. Structure-property relationship in biodegradablepoly(butylene succinate)/layered silicate nanocomposites[J]. Macromolecules2003,36,2355-2367.
    [101] Ray SS, Okamoto K, Okamoto M. Structure and properties of nanocomposites basedon poly(butylene succinate) and organically modified montmorillonite[J]. J Appl Polym Sci2006,102:777-785.
    [102] Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC. Biodegradable nanocomposites basedon poly(butylene succinate)/organoclay[J]. J Polym Environ2007,15:151-158.
    [103] Sorrentino A, Gorrasi G, Tortora M, et al. Incorporation of Mg-Al hydrotalcite into abiodegradable Poly(ε-caprolactone) by high energy ball milling[J]. Polymer2005,46:1601-1608.
    [104] Yang Z, Peng H, Wang W, Liu T. Crystallization behavior ofpoly(ε-caprolactone)/layered double hydroxide nanocomposites[J]. J Appl Polym Sci2010,116:2658-2667.
    [105] Hsu S-F, Wu T-M, Liao C-S. Isothermal crystallization kinetics ofpoly(3-hydroxybutyrate)/layered double hydroxide nanocomposites[J]. J Polym Sci Part B:Polym Phys2006,44:3337-3347.
    [106] Zubitur M, Mugica A, Areizaga J, Cortázar M. Morphology and thermal propertiesrelationship in poly(p-dioxanone)/layered double hydroxides nanocomposites[J]. ColloidPolym Sci2010,288:809-818.
    [107] Pan P, Zhu B, Dong T, Inoue Y. Poly(L-Lactide)/layered double hydroxidesnanocomposites: Preparation and crystallization behavior[J]. J Polym Sci Part B: PolymPhys2008,46:2222-2233.
    [108] Chiang M-F, Wu T-M. Synthesis and characterization of biodegradablepoly(L-lactide)/layered double hydroxide nanocomposites[J]. Compos Sci Technol2010,70:110-115.
    [109] OZAWA T. Kinetics of Nonisothermal Crystallization[J].Polymer,1971,12:150-158.
    [110] JEZIORNY A. Parameters Characterizing kinetics of the NonisothermalCrystallization of Poly (ethylene terephthalate) Determined by d.s.c[J].Polymer,1978,19:1142-1144.
    [111] LONKAR S P, MORLAT-THERIAS S, CAPERAA N, LEROUX F,.GARDETTE J L,SINGH R P. Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites [J].Polymer,2009,50:1505-1515.
    [112] AVRAMI M. Kinetics of phase change:I General Theory[J].Journal of ChemicalPhysics,1939,7:1103-1112.
    [113] LIU T, MO Z. Nonisothermal Melt and cold Crystallization Kinetics of poly(aryletherether ketone)[J].Polym Engineering and Science,1997,37:568-575.
    [114] CHEN G X, YOON J S. Nonisothermal Crystallization Kinetics of Poly(butylenesSuccinate) Composites with a Twice Functionalized Organoclay[J].Journal of PolymerScience: Part B: Polymer Physics,2005,43:817-826.
    [115] VYAZOVKIN S. Is the Kissinger equation applicable to the processes that occur oncooling [J] Macromolecular Rapid Communications.2002,23(13):771-775.
    [116] HOFFMAN J D, WEEKS J J. Melting Process and Equilibrium Melting Temperatureof Polychlorotrifluoroethylene[J].Journal of Research of the National Bureau of StandardsSectiona-physics and Chemistry,1962,66:13-28
    [117] Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites[J]. J Appl Polym Sci2010,116:2655-2667.
    [118] CAM D, MARUCCI M. Influence of residual monomers and metals on poly(L-lactide)thermal stability [J]. Polymer,1997,38:1879-84
    [119]徐永祥,徐军,孙元碧,刘德华,郭宝华,谢续明.高分子学报,聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究.2006,(8):1001~1006.
    [120] Xu J, Guo B-H. Poly(butylene succinate) and its copolymers: Research, developmentand industrialization. Biotechnology Journal.2010,5:1149~1163.
    [121] Ray SS, Okamoto K, Okamoto M. Structure-property relationship in biodegradablepoly(butylene succinate)/layered silicate nanocomposites. Macromolecules,2003,36:2355~2367.
    [122]罗发亮,张秀芹,李荣波,傅东升,甘志华,季君辉,王笃金.聚丁二酸丁二酯/纳米二氧化硅共混体系的结晶和动态力学性能研究.高分子学报,2009,(10):1043~1049.
    [123]唐义祥,楼白杨,梁多平.聚丁二酸丁二酯/纳米高岭土共混体系结晶及力学性能研究.高分子学报,2011,(5):516~521.
    [124] Wei Z, Chen G, Shi Y, Song P, Zhan M, Zhang W. Isothermal crystallization andmechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites.J Polym Res,2012,19: Article No.9930.
    [125] Zhan M, Chen G, Wei Z, Shi Y, Zhang W. Nonisothermal crystallization andmorphology of poly(butylene succinate)/layered double hydroxide nanocomposites. ChineseJ Polym Sci,2013,31:187~200.
    [126] Wu J, Mather PT. POSS Polymers: Physical Properties and Biomaterials Applications.Polymer Reviews,2009,49:25~63.
    [127] Kuo S, Chang F. POSS related polymer nanocomposites. Prog Polym Sci,2011,36:1649~1696.
    [128] Pan H, Qiu Z. Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanesnanocomposites: Enhanced crystallization, mechanical properties, and hydrolyticdegradation. Macromolecules,2010,43:1499~1506.
    [129] Qiu Z, Pan H. Preparation, crystallization and hydrolytic degradation of biodegradablepoly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposite. Compos Sci Technol,2010,70:1089~1094.
    [130] Turan D, Sirin H, Ozkoc G. Effects of POSS particles on the mechanical, thermal, andmorphological properties of PLA and Plasticised PLA. J Appl Polym Sci,2011,121:1067~1075.
    [131] Yu J, Qiu Z. Preparation and Properties of Biodegradable Poly(L-lactide)/Octamethyl-Polyhedral Oligomeric Silsesquioxanes Nanocomposites with Enhanced Crystallization Ratevia Simple Melt Compounding. Appl Mater Interfaces,2011,3:890~897.
    [132] Yu J, Qiu Z. Isothermal and Nonisothermal Cold Crystallization Behaviors ofBiodegradable Poly(L-lactide)/Octavinyl-Polyhedral Oligomeric SilsesquioxanesNanocomposites. Ind Eng Chem Res,2011,50:12579~12586.
    [133] Yu J, Qiu Z. Effect of low octavinyl-polyhedral oligomeric silsesquioxanes loadings onthe melt crystallization and morphology of biodegradable poly(L-lactide). Thermochim Acta,2011,519:90~95.
    [134] Song L, Xuan S, Wang X, Hu Y. Flame retardancy and thermal degradation behaviorsof phosphate in combination with POSS in polylactide composites. Thermochim Acta,2012,527:1~7.
    [135] Liu Y, Yang X, Zhang W, Zheng S. Star-shaped poly(ε-caprolactone) with polyhedraloligomeric silsesquioxane core. Polymer,2006,47:6814~6825.
    [136] Ni Y, Zheng S. Melting and crystallization behavior of polyhedral oligomericsilsesquioxane-capped poly(ε-caprolactone). J Polym Sci Part B: Polym Phys,2007,45:2201~2214.
    [137] Pan H, Yu J, Qiu Z. Crystallization and Morphology Studies of BiodegradablePoly(ε-caprolactone)/Polyhedral Oligomeric Silsesquioxanes Nanocomposites. Polym EngSci,2011,51:2159~2165.
    [138] Guan W, Qiu Z. Isothermal Crystallization Kinetics, Morphology, and DynamicMechanical Properties of Biodegradable Poly(ε-caprolactone) and Octavinyl-PolyhedralOligomeric Silsesquioxanes Nanocomposites. Ind Eng Chem Res,2012,51:3203~3208.
    [139] Lee KS, Chang Y-W. Thermal and mechanical properties of poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites. Polym Int,2013,62:64~70.
    [140] Zhou W, Yuan S, Tan L, Chen Y, Huang Y. Crystallization, Morphology, andMechanical Properties of Poly(butylene succinate)/Poly(ethylene oxide)-PolyhedralOligomeric Silsesquioxane Nanocomposites. Polym Eng Sci,2012,52:2063~2070.
    [141] Wang X, Hu Y, Song L, Yang H, Yu B, Kandola B, Deli D. Comparative study on thesynergistic effect of POSS and graphene with melamine phosphate on the flame retardanceof poly(butylene succinate). Thermochim Acta,2012,543:156~164.
    [142] www.hybridplastics.com.
    [143] POSS-based Supramolecules. J Phys Chem C,2010,114:12855~12862.
    [144] Nurkhamidah S, Woo EM, Huang I-H, Su CC. Phase behavior and crystal morphologyin poly(ethylene succinate) biodegradably modified with tannin. Colloid Polym Sci,2011,289:1563~1578.
    [145]罗发亮,张秀芹,甘志华,季君辉,王笃金.分子间氢键的形成对聚丁二酸丁二酯结晶熔融及动态力学行为的影响.高分子学报,2011,(2):132~138.
    [146] Miltner HE, Watzeels N, Gotzen NA, Goffin AL, Duquesne E, Benali S, Ruelle B,Peeterbroeck S, Dubois P, Goderis B, Van Assche G, Rahier H, Van Mele B. The effect ofnano-sized filler particles on the crystalline-amorphous interphase and thermal properties inpolyester nanocomposites. Polymer,2012,53:1494~1506.
    [147] Liang Y, Yang F, Qiu Z. Miscibility and crystallization behavior of biodegradablepoly(ε-caprolactone)/tannic acid blends. J Appl Polym Sci,2012,124:4409~4415.
    [148] Wang K, Wu JS, Zeng HM. Radial growth rate of spherulites in polypropylene/bariumsulfate composites. Eur Polym J,2003,39:1647~1652.
    [149] Chan C-M, Wu JS, Li J-X, Cheung Y-K. Polypropylene/calcium carbonatenanocomposites. Polymer,2002,43:2981~2992.
    [150] Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q. Crystallization behavior and mechanicalproperties of polypropylene/halloysite composites. Polymer,2007,48:7374~7384.
    [151] He Y, Zhu B, Kai WH, Inoue Y, Nanoscale-confined and fractional crystallization ofpoly (ethylene oxide) in the interlamellar region of poly (butylene succinate).Macromolecules,2004,37:3337~3345.
    [152] He Y, Zhu B, Kai WH, Inoue Y, Effects of crystallization condition of poly (butylenesuccinate) component on the crystallization of poly (ethylene oxide) component in theirmiscible blends. Macromolecules,2004,37:8050~8056.
    [153]Shih YF, Chen LS, Jeng RJ. Preparation and properties of biodegradablePBS/multi-walled carbon nanotube nanocomposites. Polymer,2008,49:4602~4611.
    [154] Wang X, Yang H, Song L, Hu Y, Xing W, Lu H. Morphology, mechanical and thermalproperties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos SciTechnol,2011,72:1~6.
    [155] Chen GX, Kim ES, Yoon JS. Poly(butylene succinate)/twice functionalized organoclaynanocomposites: Preparation, characterization, and properties. J Appl Polym Sci,2005,98:1727~1732.
    [156] Song L, Qiu Z. Influence of low multi-walled carbon nanotubes loadings on thecrystallization behavior of biodegradable poly(butylene succinate) nanocomposites. PolymAdv Technol,2011,22:1642~1649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700