图像去噪问题中的几类非光滑数值方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的发展,图像处理问题在日常生活中扮演着越来越重要的角色.然而,由于图像在形成、传输、生成的过程中受外界因素的影响而导致质量的降低,因此有效地复原退化图像是图像处理中一个基本任务.一般地,图像复原方法可以归结为三类:基于小波的方法、基于概率统计的方法和基于偏微分方程的方法.其中,基于偏微分方程的图像复原模型由于具有自适应性比较强、贴近图像特性等优点,因而最近十几年来得到了快速地发展,已经扩展到几乎所有的图像处理领域.
     通常情况下,由于图像复原问题是一个不适定的反问题,因此需要在正则化意义下建立一个适定的模型.为了使所建模型能更好地描述图像的特性,经常要求模型满足一定的数学性质,这样就增加了数值难度,所以寻求快速有效的数值算法是图像处理领域内一个重要的研究课题.由于图像去噪是图像复原问题中的一个重要环节,因此本论文主要研究基于偏微分方程的两个基本而又重要的图像去噪模型—Rudin-Osher-Fatemi(ROF)模型和Lysaker-Lundervold-Tai(LLT)模型及其快速的数值方法.我们的主要工作和创新成果如下:
     由于ROF模型和LLT模型的对偶问题的最优性条件包含有非线性互补问题,因而我们可以利用Fisher-Burmeister NCP函数的一些数学性质将这个最优性条件转化为一个半光滑方程组.为了使算法达到全局收敛性,通过引入一个价值函数,我们提出用阻尼修正高斯牛顿法解这个半光滑方程组.另外,在算法中,我们引入一个修正参数使得搜索的步长增加,并且用预处理共轭梯度法来提高计算速度.同时,也给出了算法的全局收敛性及Q-超线性收敛速度的理论分析.
     由于增广拉格朗日方法结合了拉格朗日方法和罚方法的优点,因此被广泛地应用到求解非光滑凸优化问题.对于LLT模型,我们首先将其转换为一个约束问题,然后基于增广拉格朗日方法得到该约束问题的最优性条件,并且指出这个最优性条件可以看作投影梯度法.因此,我们提出用投影梯度法解离散的LLT模型,并且指出经典的半隐式梯度下降法可以由投影梯度法得到.同时,我们还将投影梯度法推广到解纹理提取问题的混合模型(ROF模型和LLT模型).此外,我们将增广拉格朗日方法应用到非负约束图像去模糊问题,提出了一个积极集方法,并且证明了这个积极集方法可以归结到半光滑牛顿法.
     最近,利用Bregman算法的思想,Goldstein和Osher提出了分裂Bregman算法解图像复原问题.在此基础上,我们把分裂Bregman方法推广到解各向异性LLT模型和LOT模型的第二步.虽然分裂Bregman方法具有一定的优势,但是由于该方法的每一次迭代都需要解一个偏微分方程,从而使得计算量大大增加.为了克服这种缺陷,利用投影算子和压缩算子的性质,我们提出一个新的快速有效的算法一投影算法.为了说明该算法的有效性,我们将本算法应用到解各向异性LLT模型,并且给出了此算法的收敛性的理论分析.特别地,我们指出基于分裂Bregman方法的投影算法可以归结到FBS算法的框架中.
With the development of computer technology, image processing problems play an increasingly important role in daily life. However, in the course of the image formation, transmission and generation, some external factors led to de-crease in the image quality, so it is one of important research topics in image processing to effectively restore degraded image. Normally, the image restoration methods can be summarized into three categories:wavelet-based methods, based on probability and statistics methods, and methods based on partial differential equations (PDEs). Among these approaches, the image restoration models based on the PDEs have some advantages such as relatively strong self-adaptability, close to the image characteristics, etc., so that this class of approaches has been rapid development over the past ten years and has been extended to almost all fields in image processing.
     The image restoration problem is usually an ill-posed inverse problem so that a well-posed model is needed to build in the sense of the regularization. In order to build a model consistent with the characteristics of the image, the model is often required to satisfy certain mathematical properties so that the numerical difficulty is increased, therefore it is an important research topic in image processing to look for some rapid and effective numerical algorithms. Since the image denoising is an important part in the image restoration, in this dissertation, we focus on two basic and important denoising models—Rudin-Osher-Fatemi (ROF) model and Lysaker-Lundervold-Tai (LLT) model, and their rapid numerical methods. Our main work and the innovations are as follows:
     Since the optimality conditions for the dual problem of the ROF model or the LLT model contain a nonlinear complementarity problem(NCP), we can apply some mathematics qualities of the Fisher-Burmeister NCP function to transform this optimality condition into a system of semismooth equations. In order to deduce global convergence of the proposed algorithm, by introducing a merit func-tion, we propose to use the damped modified Gauss-Newton method to solve the system of semi-smooth equations. In addition, in the algorithm, we introduce a modified parameter to increase the search step length and use the preconditioned conjugate gradient method to improve the calculation speed. At the same time, we also give theoretical analyses about the global convergence and the Q-superlinear convergence rate for the proposed algorithm.
     Since the augmented Lagrangian approach combines the advantage of the Lagrangian method and penalty method, it is widely applied to solve the nons-mooth convex optimization problems. For the LLT model, we first convert it into a constrained problem and then attain the optimality conditions of the constrained problem based on the augmented Lagrangian approach. Moreover, we point out that the optimality conditions can be seen as a projected gradient method. So we propose to use the projected gradient method to solve the discretization LLT model and point out that the classic semi-implicit gradient descent method can be deduced from the projected gradient method. At the same time,, we extend the projected gradient method to solve a mixed model (mixing the ROF model and the LLT model) for texture extraction. In addition, we also apply the augmented Lagrange method to the image deblurring problem with nonnegative constraints and propose an active set strategy. Furthermore, we prove that the active set method can be fell into the framework of semismooth Newton methods.
     Recently, by using the ideas of the Bregman iterative algorithm, Goldstein and Osher proposed a split Bregman method to solve the image restoration problems. On this basis, we extend the split Bregman method to solve the anisotropic LLT model and the second step of the LOT model. Although the split Bregman method has certain advantages, it has to suffer from solving a PDE at each iterative so that the computation costs are increased. In order to overcome this drawback, based on the properties of the projection operator and the shrink operator, we propose a new rapid and efficient algorithm—the projection algorithm. In order to illustrate the effectiveness of the projection algorithm, we apply this algorithm to solve the anisotropic LLT model. Furthermore, the theoretical analysis about the convergence of this algorithm is also given. In particular, we point out that the projection algorithm based on the split Bregman method can be fell into the framework of the FBS algorithm.
     The dissertations is supported by the National Natural Science Foundation of China (No.60872129).
引文
[1]Chan T F, Shen J H. Theory and computation of variational image deblurring. IMS Lecture Notes,2006
    [2]Koenderink J J. The structure of images. Biological Cybernetics,1984,50(5): 363-370
    [3]Witkin A P. Scale-space filtering. In 8th Int. Joint Conf. Artificial Interlligence, 1983,2:1019-1022
    [4]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-rithms. Physica D,1992,60:259-268
    [5]Paragios N, Chen Y M, Faugeras O. Handbook of mathematical models in com-puter vision. Heidelberg:Springer,2005
    [6]Aubert G, Kornprobst P. Mathematical problems in image processing:partial differ ential equations and the calculus of variations. New York:Springer,2002
    [7]王大凯,侯瑜青等.图像处理的偏微分方程方法.北京:科学出版社,2008
    [8]冯象初,王卫卫.图像处理的变分和偏微分方程方法.北京:科学出版社,2009
    [9]Tai X C, Lie K A, Chan T F, Osher S. Image processing based on partial differential equations. Heidelberg:Springer,2006
    [10]Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems. Washington:Winston and Sons,1977
    [11]Strong D H, Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems,2003,19(6):165-187
    [12]Dobson D, Vogel C R. Convergence of an iterative method for total variation denoising. SIAM Journal on Numerical Analysis,1997,34(5):1779-1791
    [13]Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numerische Mathematik,1997,76(2):167-188
    [14]Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion(Ⅱ). SIAM Journal on Numerical Analysis,1992,29(3):845-866
    [15]Chambolle A. Image segmentation by variational methods:Mumford and Shah functional and the discrete approximations. SIAM Journal on Applied Mathemat-ics,1995,55(3):827-863
    [16]You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Transactions on Image Processing,2000,9(10):1723-1730
    [17]Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H1 norm. SIAM Multiscale Modeling and Simulation,2003, 1(3):349-370
    [18]Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM Journal on Scientific Computing,2000,22(2):503-516
    [19]Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial dif-ferential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing,2003,12(12):1579-1590
    [20]Yi. D, Lee S. Fourth-order partial differential equations for image enhancement. Applied Mathematics and Computation,2006,175:430-440
    [21]Li F, Shen C M, et al. Image restoration combining a total variational filter and a fourth-order filter. Journal of Visual Communication and Image Representation, 2007,18(4):322-330
    [22]Meyer Y. Oscillating patterns in image processing and nonlinear evolution equa-tions. Boston:AMS,2001
    [23]Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surface fitting. IEEE Transactions on Image Processing,2004,13(10):1345-1357
    [24]Osher S, Burger M, Goldfarb D, Xu J, et al. An iterative regularization method for total variation-based image restoration. SIAM Multiscale Modeling and Simu-lation,2005,4(2):460-489
    [25]Aujol J F, Aubert G, Blanc-Feraud, et al. Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imag-ing and Vision,2005,22(1):71-88
    [26]Vese L, Osher S. Modeling textures with total variation minimization and oscil-lating patterns in image processing. J. Science Computing,2003,19(1-3):553-572
    [27]Nikolovaa M. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision,2004,12(1-2):99-120
    [28]Chan T, Esedoglu S. Aspect of total variation regularized L1 function approxima-tion. SIAM Applied Mathematics,2005,65(5):1817-1837
    [29]Lieu L H, Vese L A. Image restoration and decomposition via bounded total varia-tion and negative Hilbert-Sobloev space. Applied Mathematics and Optimization, 2008,58(2):167-193
    [30]Garnett J B, Le T M, Meyer Y, et al. Image decompositions using bounded varia-tion and generalized homogeneous Besov spaces. Applied and Computational Har-monic Analysis,2007,23(1):25-56
    [31]Perona P, Malik J. Scale-space and edge detection using anistropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence,1990,12(7):629-639
    [32]Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge-detection by nonlinear diffusion. SIAM Joumal on Numerical Analysis,1992,29(1):182-193
    [33]Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart:B.G. Teubner, 1998
    [34]Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. SIAM Multiscale Modeling and Simulation,2005,4(2):490-530
    [35]Gilboa G, Osher S. Nonlocal operators with applications to image processing. SIAM Multiscale Modeling and Simulation,2008,7(3):1005-1028
    [36]Lou Y F, Zhang X Q, Osher S, et al. Image Recovery via Nonlocal Operators. Journal of Scientific Computing,2010,42(2):185-197
    [37]Gilboa G, Osher S. Nonlocal linear image regularization and supervised segmen-tation. SIAM Multiscale Modeling and Simulation,2007,6(2):595-630
    [38]Bougleux S, Elmoataz A, Melkemi M. Local and nonlocal discrete regularization on weighted graphs for image and mesh processing. International Journal of Computer Vision,2009,84(2):220-236
    [39]Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. International Journal of Computer Vision,2008,76(2):123-139
    [40]Scherzer O. Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing,1998,60(1):1-27
    [41]Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97
    [42]Chen H Z, Song J P, Tai X C. A dual algorithm for minimization of the LLT model. Advances in Computational Mathematics,2009,31(1-3):115-130
    [43]Ng M, Qi L Q, Yang Y F, Huang Y M. On semismooth Newton's methods for total variation minimization. Journal of Mathematical Imaging and Vision,2007, 27(3):265-276
    [44]Ito K, Kunisch K. Augmented Lagrangian methods for nonsmooth, convex opti-mization in Hilbert space. Nonlinear Analysis,2000,41(5-6):591-616
    [45]Ito K, Kunisch K. An active set strategy based on the augmented Lagrangian for-mulation for image restoration. Mathematical Modelling and Numerical Analysis, 1999,33(1):1-21
    [46]Heitermuller M, Ito K, Kunisch K. The primal-dual active as a semismooth Newton method. SIAM Journal on Optimization,2003,13(3):865-888
    [47]Goldstein T, Osher S. The Split Bregman method for 11 regularized problem. SIAM Journal on Imaging Sciences,2009,2(2):323-343
    [48]Combettes P L, Pesquet J C. A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE Journal of Selected Topics in Signal Pro-cessing,2007,1(4):564-574
    [49]Setzer S. Splitting methods in image processing:[PhD], Mannheim:University of Mannheim,2009
    [50]Lu L Z, Ng M, Lin F R. Approximation BFGS methods for nonlinear image restora-tion. Journal of Computational and Applied Mathematics,2009,226(1):84-91
    [51]Chang Qi S, Tai X C, Xing L L. A compound algorithm of denoising using second-order and fourth-order partial differential equations. Numerical Mathematics:The-ory, Methods and Applications,2009,2(4):353-376
    [52]Chen K, Tai X. C. A nonlinear multigrid method for total variation minimization from image restoration, Journal of Scientific Computing,2007,33(2):115-138
    [53]Adams R. Sobolev spaces. New York:Academic Press, Inc,1975
    [54]张恭庆,林源渠.泛函分析讲义.北京:北京大学出版社,2004
    [55]李董辉,童小娇,万中.数值最优化.北京:科学出版社,2005
    [56]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2001
    [57]Nocedal J, Wight S J. Numerical optimization. New York:Springer,1999
    [58]Ekeland I, Temam R. Convex analysis and variational problems. Oxford:North-Holland Publishing Company,1976
    [59]冯德兴.凸分析基础.北京:科学出版社,1995
    [60]Evans L C, Gariepy R F. Measure theory and fine properties of functions. Boca Raton:CRC Press,1992
    [61]Guiusti E. Minimal surfaces and functions of bounded variation. Switzerland: Birkhauser Boston Inc.,1984
    [62]Qi L, Sun D. Nonsmooth equations and smoothing methods. Dordrecht:Kluwer Academic Publisher,1999
    [63]Clason C, Jin B, Kunisch K. A semismooth Newton method for L1 data fitting with automatic choice of regularization parameters and noise calibration. SFB-Reoprt 2009-015
    [64]Clarke F H. Optimization and nonsmooth analysis. New York:John Wiley & Sons, 1983,34-89
    [65]Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM Journal on Control and Optimization,1977,15(6):959-972
    [66]Qi L Q, Sun J. A nonsmooth version of Newton's method. Mathematical Program-ming,1993,58(1-3):353-367
    [67]Chen B, Chen X, Kanzow C. A penalized Fischer-Burmeister NCP function. Math-ematical Programming,2000,88(1):211-216
    [68]Qi L Q. Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research,1993,18(1):227-244
    [69]Jiang H, Ralph D. Global and local superlinear convergence analysis of Newton-type methods for semismooth equations with smooth least squares. In Reformula-tion:Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Dor-drecht:Kluwer Acad. Publ.1998,181-209
    [70]Carter J L. Dual method for total variation based image restoration. CAM-Report 2002-13
    [71]Glowinski R, Tallec P L. Augmented Lagrangians and operator-splitting methods in nonlinear mechanics. Philadelphia:SIAM,1989
    [72]Bertsekas D P. Constrained optimization and Lagrange multiplier methods. New York:Academic Press,1982
    [73]Tai X C, Wu C L. Augmented Lagrangian method, dual methods and split Breg-man iteration for ROF model. CAM-Report 2009-05
    [74]Wu C L, Tai X C. Augmented Lagrangian method, dual methods, and split Breg-man iteration for ROF, vectorial TV, and high order models. CAM Report 2009-76
    [75]Wu C L, Zhang J Y, Tai X C. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. CAM Report,2009-82
    [76]Koko J, Jehan-Besson S. An augmented Lagrangian method for TVg+L1-norm minimization. LIMOS Report,2009-07
    [77]Pazy A. Semigroups of nonlinear contractions and their asymptotic behaviour. Heriot-Watt Smp:Pitman Research Notes in Math.,1979
    [78]韩继业,修乃华,戚厚铎.非线性理论与算法.上海:上海科技出版社,2006
    [79]Chambolle A. Total variation minimization and a class of binary MRF models. EMMCVPR.,2005,3757:136-152
    [80]Aujol J. Some first-order algorithms for total variation based image restoration. Journal of Mathematical Imaging and Vision,2009,34(3):307-327
    [81]Bermudez A, Moreno C. Duality methods for solving variational inequalities. Com-puters and Mathematics with Applications,1981,7(1):43-58
    [82]Zhang Z. Matrix theory:Basic results and techniques. New York:Springer Verlag, 1999
    [83]Chan T, Esedoglu S, Park F. Image decomposition combining staircase reduction and texture extraction. Journal Visual Communication and Image Representation, 2007,18(6):464-486
    [84]Ho K, Beling C, et al. Deconvolution of coincidence doppler broadening spectra using iterative projected Newton method with non-negativity constrains. Review of Scientific Instruments,2007,74:4779-4787
    [85]Vogel C R. Computational methods for inverse problems. Philadelphia:SIAM, 2002
    [86]Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for (?)1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,2008,1(1):143-168
    [87]He L, Chang T C, Osher S, et al. MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods. CAM Report,2006-35
    [88]Burger M, Gilboa G, Osher S, et al. Nonlinear inverse scale space methods. Com-munications in Mathematical Sciences,2006,4(1):175-208
    [89]Cai J F, Osher S, Shen Z W. Linearized Bregman Iterations for compressed sensing. Mathematics of Compution,2009,78:1515-1536
    [90]Cai J F, Osher S, Shen Z W. Split Bregman methods and frame based image restorartion. CAM Report,2009-28
    [91]Goldstein T, Bresson X, Osher S. Geometric applications of the split Bregman method:Segmentation and surface reconstruction. CAM Report,2009-06
    [92]Bioucas-Dias J, Figueiredo M. Multiplicative noise removal using variable splitting and constrained optimization. Submitted to the IEEE International Conference on Image Processing,2009
    [93]Setzer S, Steidl G, Teuber T. Deblurring poissonian images by split Bregman techniques. Journal of Visual Communication and Image Representation,2010, 21(3):193-199
    [94]Douglas J, Rachford H. On the numerical solution of heat conduction problems in two and three space variables. Transctions American Mathematical Society,1956, 82,421-439
    [95]Byrne C. Applied iterative methods. Massachusetts:A K Peters Ltd,2007
    [96]Combettes P, Wajs V. Signal recovery by proximal forward-backward splitting. SIAM Multiscale Modeling and Simulation,2005,4(4):1168-1200
    [97]Steidl G, Teube T. Removing multiplicative noise by Douglas-Rachford splitting methods. Journal of Mathematical Imaging and Vision,2010,36(2):168-184
    [98]Combettes P L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization,2004,53(5-6):475-504
    [99]Moreau J J. Proximite et dualite dans un espace hilbertien. Bulletin de la Societe Mathematique de France,1965,93:273-299
    [100]Tseng P. Applications of a splitting algorithm to decomposition in convex pro-gramming and variational inequalities. SIAM Journal on Control and Optimiza-tion,1991,29(1):119-138
    [101]Bregman L. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math, and Math. Phys.,1967,7:200-217
    [102]Chen G, Teboulle M. Convergence analysis of a proximal-like minimization al-gorithm using Bregman functions. SIAM Journal on Optimization,1993,3(3): 538-543
    [103]Candes E J, Recht B. Exact matrix completion via convex optimization. Founda-tions of Computational Mathematics,2009,9(6):717-772
    [104]Engl H W, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht: Kluwer Academix Publishers,1996
    [105]Esser E. Applications of Lagrangian-based alternating direction methods and con-nections to split Bregman. CAM Report,2009-31
    [106]Jia R Q, Zhao H Q, Zhao W. Convergence analysis of the Bregman method for the variational model of image denoising. Applied and Computional Harmonic Analysis,2009,27(3):367-379
    [107]Jia R Q, Zhao H Q. A fast algorithm for the total variation model of image denoising. Advances in Computational Mathematics,2009, preprint

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700