序批式膜生物反应器处理城市生活污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源短缺,生活污水作为一种稳定可靠、可再生利用的水资源,对其回收利用是有效节约水资源的重要手段之一,是解决城市缺水问题的有效途径。本研究采用自行设计和加工的序批式膜生物反应器(SMBR),以人工配制的模拟生活污水为处理对象,探求SMBR工艺的最佳运行参数、污染物去除特性及膜污染的形成与控制方法。以实现SMBR稳定高效运行、出水水质达回用标准的同时,减少膜污染的发生。主要的研究结果有:
     采用连续培养加周期培养的污泥培养驯化方式,活性污泥经24天驯化完成。活性污泥生长较快,MLSS浓度从2000mg/L增至6200mg/L,污泥产率为0.37kg(MLSS)/kg(CODCr)。硝化细菌生长较慢,污泥培养中后期通过降低进水中的CODCr浓度,使异养菌的增殖减慢,为硝化菌的生长提供更好的环境。
     SMBR的最佳运行参数为:每周期6小时,其中缺氧1小时、好氧5小时;出水体积交换比为0.3,即每周期出水9L;MLSS浓度为8000mg/L;曝气量为0.3 m3/h,DO维持在2mg/L左右。在此条件下,既能使系统维持较高的污染物去除率又能节约能耗。
     系统在最佳运行条件下运行40天。当进水pH为7~9时,SMBR对污染物有较高的去除率。CODCr平均去除率为98.01%,NH4+-N平均去除率为96.51%,TN平均去除率为73.38%,TP平均去除率为73.21%,浊度平均去除率为99.56%,色度平均去除率为92.2%。SMBR对进水水质的抗负荷冲击能力强,出水水质达到城市杂用水水质标准(GB/T 18920-2002)。当进水pH降至6时,对CODcr的去除率影响不大,平均去除率仍达95.14%,NH4+-N平均去除率下降至76.85%,TN平均去除率降至61.42%,TP平均去除率降至62.87%,浊度和色度去除率基本不受进水pH影响,去浊率仍保持在99%以上,说明低进水pH不利于系统脱氮除磷。
     测定了SMBR在五种不同MLSS浓度及三种不同曝气强度下的临界通量。结果表明,在一定MLSS浓度范围内(<10000mg/L),适当增大曝气强度能提高系统临界通量;MLSS浓度较小时(<4000mg/L),曝气强度有一个临界值,大于此值临界通量并不会随曝气量增加进一步增加;MLSS浓度过大时(>10000mg/L),增大曝气强度以延缓膜污染的作用已不明显。
     系统在合适的污泥浓度和曝气强度下(MLSS浓度为8000mg/L、曝气量为0.3m3/h),采用间歇进出水、间歇曝气,缺氧-好氧交替的序批方式在次临界通量下运行,膜污染发展平稳,没有出现急剧的TMP跃升,膜污染速率为0.126KPa/d,说明该工艺能有效控制膜污染。投加粉末活性炭(PAC)能改善混合液性质,进一步延缓膜污染,当MLSS浓度为8000mg/L、PAC的投加量为1.5g/L时,膜污染速率降为0.04KPa/d。
There is a shortage of water resources in China. Domestic wastewater as a stable and reliable, renewable water resources, their recycling is an important and effective means of conserving water resources. In this work, a sequencing batch membrane bioreactor (SMBR) which designed and manufactured by the writer had been operated using synthetic domestic wastewater as feed in an anaerobic/aerobic process. There were several contents, including defining the optimal operating parameters, characteristics of pollutants removal, formation and control of membrane fouling, which were investigated to obtain stable and efficient system performance and the effluent can reach the standard of recycling while slowed membrane fouling simultaneously. The main results of study were as follows:
     Sludge acclimation were used the method of continuous and intermittent cultivating for 24 days. The activated sludge bred quickly in sludge acclimation. Mixed liquor suspended solids (MLSS) concentration was from 2000 mg/L to 6200mg/L. The sludge yield rate was 0.37 kg(MLSS)/kg(COD). Nitrate bacteria's growth was slow. In the later of sludge acclimation, by reducing the CODCr concentration of raw water to slow down the growth of heterotrophic bacteria and provide a better growth environment for nitrate bacteria.
     The optimal operating parameters of this SMBR were:period time was 6 hours which contained 1 hour anoxic,5 hours aerobic; volume exchange ratio was 0.3, that means each period yielded effluent 9L; MLSS concentration was 8000mg/L; aeration rate was 0.3 m3/h, DO maintained at 2mg/L or so. In this condition, SMBR both can maintain high pollutants removal rates and save energy.
     SMBR ran for 40 days under the optimal operating condition. The experimental results showed that:when raw water pH values were among 7-9, SMBR had a higher pollutants removal rate. The average removal efficiency of CODCr, NH4+-N, TN and TP were 98.01%,96.51%,77.38% and 73.21% respectively. Turbidity and chromaticity average removal rate were 99.56% and 92.2%. SMBR had a stronger resistance of load capability. Effluent quality can reach the standard of urban miscellaneous water quality (GB/T 18920-2002).When raw water pH value declined to 6, CODCr average removal rate could still reach 95%. NH4+-N, TN and TP average removal rates declined to 75.34%,61.42% and 62.87% respectively. Turbidity and chromaticity average removal rate was almost not affected. The results indicated that low-water pH is not conducive to biological nutrient removal.
     Critical fluxes were measured at five different MLSS concentrations and three different aeration intensities at each MLSS concentration. The result showed that increased the aeration intensity can increase the critical flux when MLSS concentration were in a certain range (<10000mg/L). When MLSS concentration was small than 4000mg/L, aeration intensity had a critical value. Critical flux will not further increase with the increased of aeration intensity which greater than the value. When MLSS concentration was large than 10000mg/L, the role of aeration intensity in order to delay membrane fouling had become insignificant.
     Kept the reactor operated with influent/effluent and aeration intermittently under the conditions of MLSS concentration at 8000mg/L, aeration intensity at 0.3m3/h and effluent flux at 15L/(m2·h). The membrane fouling increased slowly and constantly at the rate of 0.126KPa/d. The phenomenon of TMP rose rapidly was not observed. That means the process can control membrane fouling effectively. Dosed powdered activated carbon (PAC) can optimize the characteristic of MLSS and slow down membrane fouling further. PAC dosage was 1.5g/L when MLSS was 8000mg/L. After dosed the PAC into mixed liquor at the later of the experiment, the TMP decreased slightly and its increasing rate declined to 0.04KPa/d.
引文
[1]国家环境保护部.中国环境状况公报(2009年)[R].北京.2010:4-15.
    [2]仇保兴.总结经验,改革创新,加快城镇污水处理[R].合肥.全国城镇污水处理设施建设与运行工作现场会议.2010.4.
    [3]郭春禹,杜启云.膜生物反应器污水再生工程的运行与优化[J].工业水处理,2006,26(1):63-67.
    [4]Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use [M]. Elsevier, Oxford,2003:26.
    [5]湖州科滤膜技术有限公司http://www.bo365.com.cn/mofengli/zhishi.htm.
    [6]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京.化学工业出版社,2002:291-298.
    [7]Wisniewski C. Membrane bioreactor for water reuses [J].Desalination,2007, 203:15-19.
    [8]刘锦霞,顾平.膜生物反应器脱氮除磷工艺的进展[J].城市环境与城市生态,2001,14(2):27-29.
    [9]Rosenberger S, Kruger U, Witzig R. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater [J]. Water Research,2002, 36:413-420.
    [10]杨造燕,匡志花,顾平,等.膜生物反应器无剩余污泥排放的研究[J].城市环境与城市生态,1999,12(1):16-18.
    [11]Xing C H, Yamamoto K, Fukushi K. Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge[J]. Journal of Membrane Science,2006, 275:175-186.
    [12]Davies J. Intensified activated sludge process with submerged membrane micro filtration. Water Science & Technology,1998,38(4/5):4-10.
    [13]张再利,朱宛华,江荣.膜分离技术及膜生物反应器的发展和展望[J].安徽化工2,2001,20(2):24-27.
    [14]Bemberis I, Hubbard P J, Leonard F B. Membrane sewage treatment systems-potential for complete wastewater treatment [J]. American Society of Agriculture Engineers Winter Meeting,1971,71(878):1-28.
    [15]Smith C V, Gregorio D O, Talcott R M. The use of ultra-filtration membranes for activated sludge separation [J]. Proceedings of the 24th Industrial Waste Conference, Purdue University, Ann Arbor Science,1969, USA,1300-1310.
    [16]Hardt F W, Clesceri L S, Nemerow N L. Solids separation by ultra filtration for concentrated activated sludge[J]. Wat. Pollut. Con. Fed.,42,2135-2148.
    [17]Grethlein H E. Anaerobic digestion and membrane separation of domestic wastewater [J]. Wat. Pollut. Con Fed,1978, (50):754-763.
    [18]Kimura S. Japan's aqua Renaissance'90 project [J]. Water Science & Technology, 1991,23:1573-1592.
    [19]岑运华.日本“水综合再生利用系统”90计划的进展概要[J].环境科学研究,1990,3(2):50-55.
    [20]Stephenson T, Judd S, Jefferson B, et al.膜生物反应器污水处理处理技术[M].张树国,李咏梅译.北京.化学工业出版社,2003.
    [21]Botha G. R, Sanderson R D, Buckley C A. Brief historical review of membrane development and membrane applications in wastewater treatment in Southern Africa [J]. Water Science & Technology.,1992,25(10):1-4.
    [22]Norddahl B, Rohold L. The BIOREK(?) concept:for the conversion of organic effluent to energy, concentrated fertilizer and potable water. May,2000. Bioscan Engineering A/S, Denmark
    [23]Tran.T V. Advanced Membrane filtration process treats industrial wastewater efficiently [J]. Progress of Chemistry Engineering, March,1985:29-33.
    [24]Yamamoto K, Hiasa M, Mahmood T. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank [J]. Water Science & Technology,1991, 21(10):43-54.
    [25]Chiemchaisri C, Wong Y K, Urase T, et al. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment[J]. Water Science and Technology,1992,25(10):171-178.
    [26]Ross W R, Bamard J P, Strohwald N D, et al. Practical application of the ADUF process to the full-scale treatment of a Maize processing effluent [J]. Water Science and Technology,1992,25(10):27-31.
    [27]Krauth K H, Staab K F. Pressured membrane bioreactor of wastewater treatment [J]. Water Science and Technology,1993,94:555-562.
    [28]Chang J. Membrane bioprocess for the denitrification of drinking water supplies [J]. Journal of Membrane Science,1993,80:233-239.
    [29]Trouve F W, Urbain V, Manem J. Treatment of municipal wastewater by membrane bioreactor results of a semi-industrial pilot-scale study [J]. Water Science and Technology, 1994,30:151-157.
    [30]Lubbecke S, Vogelpohl A, Dewjanin W. Wastewater treatment in a biological high-performance system with high biomass concentration[J].Water Research,1995, 29(3):793-802.
    [31]Nagaoka H. Influence of bacteria extra cellular polymers on the membrane separation activated sludge process [J]. Water Science & Tech.1996,34(6):165-170.
    [32]Davies W J, Le M S, Heath C R. Intensified activated sludge process with submerged membrane micro filtration [J]. Water Science and Technology,1998,38(4):421-428.
    [33]] Ueda T, Kikuoka Y, Hata K. Treatment of domestic sewage from rural settlements by a membrane bioreactor [J]. Water Science & Technology,1996,34(9):189-196.
    [34]In-Soung Chang. Membrane fouling in membrane bioreactors for wastewater treatment [J]. Journey of Environment Engineering,2002,128(11):1018-1029.
    [35]Hang-Sik Shin, Seok-Tae Kang. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times [J]. Water Research,2003,37:121-127.
    [36]Clech P L, Jefferson B, In Soung Chang. Critical flux determination by the flux-step method in a submerged membrane bioreactor [J], Journal of membrane science,2003, 227:81-93.
    [37]Clech P L, Jefferson B, Judd S J. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor[J]. Journal of membrane science.2003,218:117-129.
    [38]Katsuki Kimura, Taro Miyoshi, Takuro Naruse, et al. The difference in characteristics of foulants in submerged MBRs caused by the difference in the membrane flux [J]. Desalination,2008,231:268-275.
    [39]Jun-Yong kim, In-Soung Chang, Dong-Hwam Shin, et al. Membrane fouling control through the change of the depth of a membrane module in a submerged membrane bioreactor for advanced wastewater treatment [J]. Desalination,2008,231 35-43.
    [40]岑运华.膜生物反应器在污水处理中的应用[J].水处理技术,1991.17(5):318-323.
    [41]林哲.膜分离活性污泥法的研究[J].城市环境和城市生态,1994,7(1):6-11.
    [42]樊耀波,王菊思.水与废水利用中的膜生物反应器技术[J].环境科学,1995,16(5):79-81.
    [43]吴志超.巴西基酸生产废水膜生物工艺处理试验研究[J].中国环境科学,1998,19(6):163-168.
    [44]何义亮.厌氧MBR处理高浓度食品废水的应用[J].环境科学,1999,20(6):53-55.
    [45]王连军.无机膜一生物反应器处理啤酒废水及其膜清洗的试验研究[J].工业水处理.2000.20(2):32-34.
    [46]杨期勇,陈季华,张峰.涤纶减量废水的试验研究[J].环境工程,2005,23(4):20-24.
    [47]王国平,邹联沛UASB-膜生物反应器处理抗生素废水的研究[J].环境科学与技术,2006,29(9):96-97.
    [48]刘旭东,王召玲.滑石粉对MBR法处理造纸废水的影响[J].沈阳建筑大学学报,2006,22(5):821-824.
    [49]邢传宏,钱易.无机膜生物反应器处理生活污水试验研究[J].环境科学,1997,18(3):1-4.
    [50]黄霞,汪诚文,钱易.膜-活性污泥法组合污水处理工艺的试验研究[J].给水排水,1998,24(7):23-27.
    [51]何义亮,顾国维.膜生物反应器工艺参数控制研究[J].上海环境科学,1999,18(2):83-84.
    [52]邹联沛,王宝贞,范延臻,等.STR对膜生物反应器出水水质的影响研究[J].中国给水排水,2000,16(7):16-18.
    [53]张军,王宝贞,聂梅生.MBR污水处理与回用的经济分析和评价[J].给水排水,2001,27(6):9-11.
    [54]曹斌,袁宏林,王晓昌.膜生物反应器设计中工艺参数的探讨[J].环境工程,2004,22(5):24-27.
    [55]何圣兵,蒋轶锋,王宝贞.MBR中溶解氧和污泥负荷对污泥产量的影响[J].水处理技术,2005,31(9):17-20.
    [56]桂萍,黄霞等.膜-生物反应器运行条件对膜过滤特性的影响[J].环境科学,1999,20(3):38-41.
    [57]刘锐,黄霞.一体式膜生物反应器的水力动力学特性[J].环境科学,2000,21(5):47-50.
    [58]刘研萍,王琳,王进.膜生物反应器的污染及防治[J].工业水处理理,2004,24(6):5-9.
    [59]赵方波,于水利,荆国林,等.淹没式膜生物反应器中膜污染机理的研究[J].环境科学学报,2005,25(3):385-390.
    [60]孟凡刚,张捍民,于连生.活性污泥性质对短期膜污染影响的解析研究[J].环境科学,2006,27(7):1348-1352.
    [61]吴宗义,吴鑫.膜生物反应器的工程应用进展[J].山西建筑,2009,35(18):158-159.
    [62]中国设计师网给排水行业版http://shui.shejis.com.
    [63]Hanft S. Membrane bioreactors in the changing world water maker[R].2006, Business Communication Company Inc.
    [64]中国设计师网给排水行业版http://shui.shejis.com/
    [65]李辰.一体式膜生物反应器处理城市污水的试验研究[M].西安建筑科技大学,2008,6-8.
    [66]Ng W J, Gomez M J. Study on a sequencing batch membrane bioreactor for wastewater treatment[J].Water Science and Technology,2000,41(10-11):227-234.
    [67]Krampe J, Krauth K, Sequencing batch reactor with submerged hollow fibre membranes for the biomass separation [J]. Water Science and Technology,2001,43 (3), 195-199.
    [68]肖景霓,张捍民,代方臣,等.序批式膜生物反应器同时脱氮除磷的比较研究[J].环境科学,2006,27(11):2233-2238.
    [69]Lobos J, Wisniewski C, Heran M, et al. Membrane bioreactor performances:Effluent qualities of continuous and sequencing systems for water reuse [J].Desalination,2007, 204:39-45.
    [70]张胜,张铭川,竺建荣等.序批式反应器不同活性污泥特性的比较研究[J].工业微生物,2008,38(2):38-41,
    [71]Tsilogeorgisa J, Zouboulisa A, Samarasb P, et al. Application of a membrane sequencing batch reactor for landfill leachate treatment [J]. Desalination,2008, 221:483-493.
    [72]Bae Tae-Hyun, Han Sung-Soo, Tak Tae-Moon. Membrane sequencing batch reactor system for the treatment of dairy industry wastewater [J].Process Biochemistry,2003,39: 221-231.
    [73]李春杰,耿琰,周琪,等SMSBR去除焦化废水中有机物及氮的特性[J].中国给水排水,2002,17(5):6-11.
    [74]Kang I J, Kim K JM, Lee C H. Characteristics of micro-filtration membranes in a membrane coupled sequencing batch reactor system [J]. Water Research,2003, 37:1192-1197.
    [75]McAdama E, Gildemeisterb R, Judda S J. Critical analysis of submerged sequencing batch membrane bioreactor operating conditions [J].Water Research,2005,39:4011-4019.
    [76]Field R W, Wu D, Howell J A, et al. Critical flux concept for micro filtration fouling[J]. Journal of Membrane Science,1995,100:259-272.
    [77]Howell J A. Sub-critical flux operation of micro filtration [J]. Journal of Membrane Science,1995,107:165-171.
    [78]Pollice A, Brookes A, Jefferson B, et al. Sub-critical fouling in membrane bioreactors-a review of recent literature [J]. Desalination,2005,174:221-230.
    [79]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [80]高延耀,顾国维.水污染控制工程(第二版)下册[M].高等教育出版社,1999,254-258.
    [81]李翠青.利用丝状菌和膜生物反应器处理城镇污水[D].太原理工大学,2009.5:25.
    [82]张胜,张铭川,竺建荣,等.序批式反应器不同活性污泥特性的比较研究[J].工业微生物,2008,38(2):38-41.
    [83]秦霄鹏,秦霄雯,孙洪涛.一体式膜生物反应器处理生活污水的试验研究[J].工业水处理,2006,26(5):41-43.
    [84]Park J S, Yeon K M, Lee C H. Hydrodynamics and microbial physiology affecting performance of a new MBR, membrane coupled high performance compact reactor [J]. Desalination,2005,172:181-188.
    [85]Chiemchaisri C, Wong Y K, Urase T. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment [J]. Water Science and Technology,1992,25 (10):231-240.
    [86]Ergas S J, Rheinheimer D E. Drinking water denitrification using a membrane bioreactor [J]. Water Research,2004,38 (14):3225-3232.
    [87]张超,陈银广,刘燕.pH对增强生物除磷系统酶活性的影响[J].高等学校化学学报,2008,29(9):1797-1800.
    [88]Clech P L, Bruce Jefferson, In Soung Chang, et al. Critical flux determination by the flux-step method in a submerged membrane bioreactor [J]. Journal of Membrane Science, 2003,227:81-93.
    [89]Zhang J, Chua H C, Zhou J, et al. Factors affecting the membrane performance in submerged membrane bioreactors [J]. Journal of Membrane Science,2006,284:54-66.
    [90]Brookes A., Jefferson B, Judd S J. Sub-critical fouling in a membrane bioreactor: impact of flux and MLSS [C]. IWA4th World Water Congress, September,2004, Marrakech.
    [91]Ognier S, Wisnieswski C, Grasmick A. Bio-fouling in membrane bioreactors: Phenomenon analysis and modeling, Proceedings of MBR [M].2001, Cranfield University, UK.
    [92]Kimura K, Yamato N, Yamamura H, et al. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater[J].Environment Science Technology, 2005,39:6293-6299.
    [93]Han S S, Bae T H, Jang G,et al. Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system[J]. Process of Biology & chemistry,2005,40:2393-2400.
    [94]Geng G H, Hall E R. A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes [J]. Water Research,2007,41(19):4329-338.
    [95]Holbrook R D, Higgins M J, Murthy S N. Effect of alum addition on the performance of submerged membranes for wastewater treatment [J]. Water Environment Reserch,2004, 76:2699-2702.
    [96]Yoon S H, Collins J H, Musale D. Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process [J]. Water Science & Technology, 2005,51:151-157.
    [97]Jiang T, Kennedy M D, Guinzbourg B F. Optimizing the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism[J]. Water Science & Technology,2006,51:19-25.
    [98]Park J S, Yeon K M, Lee C H. Hydrodynamics and microbial physiology affecting performance of a new MBR, membrane coupled high performance compact reactor [J]. Desalination,2005,172:181-188.
    [99]Li Y Z, He Y L, Liu Y H, et al. Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactor [J]. Desalination,2005,174:305-314.
    [100]李娜,李志东,张洪林.膜生物反应器处理生活污水临界通量的研究[J].工业用水与废水,2006,37(6):35-38.
    [101]Wen X, Bu Q, Huang X. Study on fouling characteristics of an axial hollow fibers cross-flow micro filtration under different flux operations [C]. Proceeding of Water Environment-Membrane Technology Conference,2004, Seoul, Korea.
    [102]李耀中,贺延龄,刘永红,等.AS-SMBR与BPAC-SMBR运行特性的比较研究[J].环境科学研究,2005,18(5):52-55.
    [103]王雅琴,吕伟娅,谭德君,等.投加活性炭膜污染控制的研究[J].给水排水,2007,33:131-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700