磁共振灌注成像在脑胶质瘤的临床应用及动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质瘤是脑内最常见的原发占位性病变,其病理特点是存在异质性,因此活检有时会低估胶质瘤的级别。尽管近年来手术、放疗和化疗等水平不断提高,胶质瘤患者,尤其是高级别胶质瘤患者的预后仍非常差。为了制定最佳治疗方案和评估预后,准确的病理分级是必须的。血管增生程度是胶质瘤病理分级的一个重要指标,准确评估肿瘤血供对确定胶质瘤级别是有价值的。近年来迅速发展的MR灌注加权成像技术(perfusion weighted imaging,MR PWI)能反映组织的微血管分布及血流灌注情况,提供血流动力学方面的信息。因此,MR PWI可以通过各种血流动力学指标对肿瘤血管化及血容量、血流量进行定性和定量分析,并用于协助胶质瘤术前分级及定位活检。本研究旨在探讨MR PWI对胶质瘤术前分级的作用和价值以及大鼠C6脑胶质瘤模型进行MR PWI研究的可行性。
     目的:
     1 探讨MR PWI在术前评估脑胶质瘤组织病理学分级中的价值。
    
     第四军医大学博士学位论文
    2检测细胞核因子KB(NF一B)在脑胶质瘤中的表达,并探讨
     其与脑胶质瘤血管生成的关系。
    3探讨脑胶质瘤相对脑血容量(rCBV)与血管内皮细胞生长因子
     (VEGF)蛋白表达及肿瘤微血管密度(MVD)间的相关性。
    4探讨大鼠C6脑胶质瘤模型应用常规MR动态观察的价值及对
     其进行MR PWI研究的可行性。
    方法:
    1对30例术前疑为幕上胶质瘤的患者行MR检查,术后经病理组
     织学证实。MR扫描顺序为常规MR平扫、PWI及常规MR增
     强扫描。PWI序列为梯度回波一平面回波(GE一EPI)序列,原始
     灌注图像数据经工作站软件计算出脑CBV图和CBF图,在CBV
     图和CBF图上获取胶质瘤最大rCBV值(rCBV)和最大rCBF
     〔rCBF)值,并与病理组织学分级做对照。对rCBV与rCBF
     两组数据进行非参数相关分析,观察两组间的相关性。
    2应用免疫组织化学方法检测NF一Bp65及vEGF在30例胶质
     瘤及10例正常脑组织中的表达情况,同时观察肿瘤内MVD,
     将NF一Bp65蛋白表达与vEGF蛋白表达及MvD计数进行统
     计学分析。
    3按VEGF表达阳性与阴性将胶质瘤分为两组,即VEGF阳性组
     与VEGF阴性组,做统计学分析,观察两组间最大rCBV值是
     否有统计学差异。采用直线相关分析观察最大rCBV值与MVD
     间的关系。
    4采用立体定向的方法将1、106/lo,1浓度c6胶质瘤细胞种植于
     大鼠右侧尾状核部位,建立大鼠C6脑胶质瘤模型,观察大鼠
     术后的一般情况和常规MR表现,在大鼠濒死前行MR PWI检
     查,PWI检查后处死大鼠或大鼠自然死亡后立即获取肿瘤标本,
     做病理学检查。
    
     第四军医大学博士学位论文
    结果:
    1低级别(I一11级)胶质瘤rCBV、:CBF范围分别为0.72一4.26
     和0.82一2.89,均值分别为2.10士0.88和1.52士0.65。高级别(111
     一IV级)胶质瘤rCBV、rCBF范围分别为0.89一10.02和
     1.50一6.40,均值分别为5.23士1.89和4.81士1.60。高、低级别胶
     质瘤间的rCBV和rCBF比较有统计学意义(p< 0.01)。非参数
     相关性分析表明rCBV与rCBF间有显著的正相关性(r=0.772,
     P<0 .001)。
    2 30例胶质瘤中17例NF一KBp65蛋白表达阳性,阳性表达率
     为56.7%,阳性产物定位于肿瘤细胞核。10例正常脑组织中NF-
     KBp65无l例阳性表达。NF一KBp65表达与VEGF表达、MVD
     计数显著相关(p<0.01)。
    3 30例胶质瘤组织中vEGF阳性表达率为53.3%(16/30),正常
     脑组织中未见VEGF染色。VEGF阳性组:CBV的范围为1 .11
     一10.02,中位数5.36;VEGF阴性组rCBV的范围为0.72一6.32,
     中位数2.89。统计结果表明,VEGF阳性组与VEGF阴性组
     rCBVt匕较有统计学意义(p<0.01)。30例胶质瘤中MVD的范
     围为12.47一69.39,平均40.18士15.19。rCBV的范围为0.72一
     10.02,平均3.98士1.52。经直线相关分析,两者间具有显著正
     相关性(r=0.780,p<0.001)。
    4采用立体定向的方法将C6胶质瘤细胞种植于大鼠右侧尾状核
     部位,可以建立稳定的胶质瘤模型。常规MR能够动态观察大
     鼠C6胶质瘤模型的生长及发展。大鼠C6胶质瘤为实性肿瘤,
     MRI表现为长Tl长TZ信号,瘤组织有明显强化,有瘤周水
     肿,晚期瘤组织中央有坏死,肿瘤体积达到一定程度后可出现
     占位效应。在MR PWI的CBV图上胶质瘤呈高灌注表现。肿
     瘤最大CBV值的均数和标准差为1 44.46士22.51,正常脑组织
     CBV值的均数和标准差为75.79士13.21,t检验两者有显著差
    
     异(p=0.000)。肿瘤最大rCBV值的均数和标准差为2.0 1±
     0.1 7。
    结论:
    1 MR PWI可以提供常规MR图像所无法获得的肿瘤血供信息;
     结合常规MR图像,MR PWI对胶质瘤术前分级和治疗方案的
     制定有临床实用价值。
    2 NF.K B p65是脑胶质瘤相关的一种癌蛋白,在胶质瘤的发生
     中发挥重要调节作用。NF.K B对’VEGF可能有正向调节作用,
     进而影响胶质瘤血管生成。
    3 MR PWI的最大rCBV值与MVD和VEGF具有良好的相关性,
     可以作为术前评价脑胶质瘤血管生成的可靠指标。
    4大鼠C6胶质瘤细胞立体定向接种可建立一种稳定的脑胶质瘤
     模型,常规MR能够在活体上对大鼠C6?
Gliomas are most common primary neoplasms of the brain. They have a heterogeneous histologic spectrum, and at biopsy their grade thus tends to be underestimated. In spite of improvements in the results of surgery, radiation therapy and chemotherapy, the prognosis of patients with gliomas, particularly those with high-grade tumors, remains poor. For planning the optimal treatment strategy and assessing prognosis, accurate histologic grading is essential, and for this, vascular proliferation is an important criteria; in determining the histologic grade of a glioma, the evaluation of tumor vascularity is therefore valuable. Recent developments in MR perfusion weighted imaging (MR PWI) techniques can assess distribution of microvessel and blood perfusion of tissue,and provide hemodynamics information. So MR PWI have permitted the creation of cerebral blood volume (CBV) maps, leading to the
    
    
    qualitative and quantitative assessment of tumor vascularity. These maps have helped in the assessment of tumor grade and in targeting the site of biopsy. The purpose of this study was to evaluate the role of MR PWI in pre-operation grading of gliomas and investigate the feasibility of rat C6 brain glioma model in MR PWI research.
    Objective:
    1 To evaluate the value of MR PWI in preoperative grading of cerebral gliomas.
    2 To investigate the expression of NF- k B protein and the relationship between the expression of NF- k B and angiogenesis in cerebral gliomas.
    3 To investigate the correlation of rCBV with vascular endothelial
    growth factor ( VEGF ) protein expression and microvessel density (MVD) in cerebral gliomas.
    4 To study the value of conventional MR in long-term follow-up and
    the feasibility in MR PWI research of rat C6 brain glioma model.
    Methods:
    1 MR examinations were performed preoperatively in 30 patients with suspected supratentorial gliomas. All the 30 cases were proved by operation and pathology. The procedures of MR examinations included plain MR scan, PWI and routine contrast-enhanced MR scan. The pulse sequence of PWI was GE-EPI. The CBV and CBF maps were calculated from the original data of perfusion images and the maximum rCBV and maximum rCBF of gliomas were acquired from CBV and CBF maps through measurement on the region of interest (ROI). The
    
    
    results of maximum rCBV and rCBF were correlated with those of histopathologic gradings. The correlation between rCBV and rCBF was evaluated using spearman's rank correlation analysis.
    2 The expression of NF- k B p65 protein, VEGF protein and MVD in 30 cases of cerebral gliomas and 10 cases of normal brain tissue were detected inimunohistochemically.The correlation of NF- k B, VEGF and MVD was studied.
    3 According to the situation of VEGF protein expression, all the 30 cases were divided into two groups including positive VEGF protein expression group [VEGF( + )] and negative VEGF protein expression group [VEGF(-)]. Wilcoxon test was used for comparing the difference between the two groups. Linear correlation analysis was used for observing the correlation between rCBV and MVD in gliomas.
    4 By using the sterotatic method to implant C6 cells into the right caudate nucleus of rat, to set up the rat C6 brain gliomas model.
    
    The cell density of inoculation is 1x106 /10ul. On the following days, common condition and MR features of the rats were observed. MR PWI were performed in the dying rats. The specimens of tumors for pathological study were collected in the dying time or after the death of rats immediately.
    Results:
    1 The rCBV and rCBF in grade I-II gliomas were 0.72-4.26 and 0.82-2.89 respectively, with a mean of 2.10+0.88 and 1.52+0.65. The rCBV and rCBF in grade III-IV gliomas varied from 0.89-10.02 and 1.50-6.04 with a mean 5.23+1.89 and 4.81+1.60. The difference in rCBV and rCBF was statistically significant
    
    
    between grade I-II and III-IV gliomas (student t test, p<0.01). There was a strong correlation between rCBV a
引文
[1] Villringer A, Rosen BR., Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med, 1988, 6(2): 164-74.
    [2] Bax JJ,de Roos A,van Der Wall EE. Assessment of myocardial viability by MRI.J Magn Reson Imaging, 1999,10(3):418-22.
    [3] Kvistad KA, Rydland J, Vainio J, Smethurst HB, Lundgren S, Fjosne HE, Haraldseth O.Breast lesions: evaluation with dynamic contrast-enhanced T1-weighted MR. imaging and with T2*-weighted first-pass perfusion MR. imaging.Radiology, 2000,216(2): 545-53.
    [4] van der Woude HJ, Verstraete KL, Hogendoorn PC, Tamirtiau AH, Hermans J, Bloem JL.Musculoskeletal tumors: does fast Dynamic contrast-enhanced subtraction MR. imaging contribute to the characterization? Radiology, 1998,208(3):821-8.
    [5] Petrella JR,Provenzale JM.MR. perfusion imaging of the brain: techniques and applications.AJR,2000,175(1):207-219.
    [6] Frackowiak RS, Lenzi GL, Jones T, Heather JD.Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using O~(15) and positron emission tomography: theory, procedure, and normal values.J Comput Assist Tomogr, 1980,4(6):727-36.
    [7] Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S.Qualitative mapping of cerebral blood
    
    flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency.Radiology, 1994,192(2):513-20.
    [8] Tanabel JL,Yongbi M,Branch C.MR perfusion imaging in human brain using the UN-FAIR technique:un-inverted flow-sensitive alternating inversion recovery. J Magn Reson Imaging, 1999, 9(5): 761-69.
    [9] McLaughlin AC, Ye FQ, Pekar JJ, Santha AK, Frank JA.Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation.Magn Reson Med, 1997,37(4):501-10.
    [10] Muller TB, Haraldseth O, Jones RA, Sebastiani G, Godtliebsen F, Lindboe CF, Unsgard G. Combined perfusion and diffusionweighted magnetic resonance imaging in a rat model of reversible middle cerebral artery occlusion.Stroke, 1995, 26(3): 451-8.
    [11] Siewert B, Schlaug G, Edelman Rg,Warach S.Comparison of EPISTAR and T2*-weighted gadolirtium-enhaneed perfusion imaging in patients with acute cerebral ischemia.Neurology, 1997,48(3): 673-9.
    [12] Kuhl CK, Bieling H, Gieseke J, Ebel T, Mielcarek P, Far F, Folkers P, Elevelt A, Schild HH.Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology, 1997,202(1):87-95.
    [13] Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M.Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging--parametric "first-pass" images depict tissue vascularization and perfusion.Radiology,
    
    1994,192(3):835-43.
    [14] Rempp M,Gunnar B,Wenz F.Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrastenhanced MR imaging.Radiology, 1994,193(2):637-41.
    [15] Petrella JR, DeCarli C, Dagli M, Duyn JH, Grandin CB, Frank JA, Hoffman EA, Theodore WH.Assessment of whole-brain vasodilatory capacity with acetazolamide challenge at 1.5 T using dynamic contrast imaging with frequency-shifted burst. AJNR, 1997,18(6):1153-61.
    [16] Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Rohl L, Bjornerud A, Gyldensted C.CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values.J Magn Reson Imaging, 1999,9(2):342-7.
    [17] Wong JC,Provenzale JM,Petrella JR.Perfusion MR imaging of brain neoplasms.AJR, 2000,174(4): 1147-57.
    [18] Knopp EA,cha S,Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II. Glial neoplasms dynamic contrast-enhanced T2*-weighted MR imaging. Radiology, 1999,211(3):791-98.
    [19] Zheng J,Ehrhardt JC,Gzadlo T,Yuh WT.Comparison of inversion recovery asymmetrical spin-echo EPI and gradient-echo EPI for brain motor activation study.J Magn Reson Imaging, 1997, 7(5):843-7.
    [20] Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR, 2001,22(7): 1306-15.
    [21] Weisskoff RM, Zuo CS, Boxerman JL,Rosen BR. Microscopic
    
    susceptibility variation and transverse relaxation: theory and experiment.Magn Reson Med, 1994,31(6):601-10.
    [22] Uematsu H,Maeda M,Sadato N, Matsuda T, Ishimori Y, Koshimoto Y, Kimura H, Yamada H, Kawamura Y, Yonekura Y, Itoh H. Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. AJNR, 2001, 22(10):1915-1919.
    [23] Zierler KL.Circulation times and the theory of indicator-dilution methods for determining blood flow and volume.In:handbook of physiology.Baltimore,MD:Williams and Wilkins, 1962: 585-615.
    [24] Cha S, Lu S,Johnson G, Knopp EA. Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements.J Magn Reson Imaging, 2000,11 (2): 114-9.
    [25] Kuppusamy K, Lin W, Cizek G. In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging.Radiology, 1996,(1): 106-12.
    [26] Lin w, Celik A,Paczynski RP. Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods.J Magn Reson Imaging, 1999,9(1):44-52.
    [27] Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer, 1996,77(2):362-372.
    [28] Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, Shigematsu Y, Liang L, Ge Y, Ushio Y, Takahashi M. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR, 1998,171(6):1479-86.
    
    
    [29] Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Rosen BR. Cerebral blood volume maps of gliomas: comparison with tumor grade and histopathologic findings. Radiloyy, 1994,191(1): 41-51.
    [30] Yang D, Korogi Y, Sugahara T, Kitajima M, Shigematsu Y, Liang L, Ushio Y, Takahashi M. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI.Neuroradiology, 2002,44(8): 656-66.
    [31] Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology, 2002, 222(3): 715-21.
    [32] Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions:dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology, 2002, 223(1): 11-29.
    [33] Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Liang L, Ushio Y, Takahashi M. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue.AJNR, 2000, 21(5): 901-9.
    [34] Cha S,Johnson G, Yuz M.The role of contrast-enhanced perfusion MR imaging in differentiating between recurrent tumor and radiation necrosis.Radiology, 1999,213 (p): 188-92.
    [35] Ricci PE,Karis JP, Heiserman JE, Fram EK, Bite AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?AJNR,
    
    1998,19(3):407-13.
    [36] Cha S, Knopp EA, Johnson G, Litt A, Glass J, Gruber ML, Lu S, Zagzag D. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR, 2000,21 (5):881-90.
    [37] Kuszyk BS, Corl FM, Franano FN, Bluemke DA, Hofmann LV, Fortman BJ, Fishman EK. Tumor transport physiology: implications for imaging and imaging-guided therapy. AJR, 2001,177(4):747-53.
    [38] Yang S, Wetzel S, Cha S,Law M, Zagzag D. Dynamic contrastenhanced T2*-weighted MR imaging of gliomatosis cerebri.AJNR, 2002,23(3):350-5.
    [39] Law M, Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology, 2002,222(3):715-21.
    [40] Guo AC, Cummings TJ,Dash RC,Provenzal JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology, 2002,224(1): 177-83.
    [41] Emst TM,Chang L,Witt MD.Cerebral toxoplasmosis ans lymphoma in AIDS:perfusion MR imaging experience in 13 patients. Radiology, 1998,208(3):663-71.
    [42] Sugahara T, Korogi Y, Kochi M, Takahashi M. Perfusionsensitive MR imaging of gliomas: comparison between gradientecho and spin-echo echo-planar imaging techniques. AJNR, 2001, 22(7):1306-15.
    [43] Yang S, Law M, Zagzag D, Wu HH, Cha S, Golfinos JG, Knopp EA, Johnson G. Dynamic contrast-enhanced perfusion MR
    
    imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR, 2003, 24(8):1554-9.
    [44] Bruening R, Wu RH, Yousry TA, Berchtenbreiter C, Weber J, Pellet M, Steiger HJ, Reiser M. Regional relative blood volume MR maps of meningiomas before and after partial embolization. J Comput Assist Tomogr, 1998,22(1):104-10.
    [45] Cha S, Pierce S, Knopp EA, Johnson G, Yang C, Ton A, Litt AW, Zagzag D. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR, 2001, 22(6): 1109-16.
    [46] Keir SI,Wardlaw JM.Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke, 2000, 31(4): 2723-34.
    [47] Fox SB, Gatter KC, Harris AL. Tumour angiogenesis. J Pathol, 1996,179(3):232-7.
    [48] Folkman J, Shing Y. Angiogenesis. J Biol Chem, 1992, 267(16): 10931-4.
    [49] Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol, 1992,3(2):65-71.
    [50] Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med,1995, 28,333(26):1757-63.
    [51] Passe TJ, Bluemke DA, Siegelman SS.Tumor angiogenesis: tutorial on implications for imaging. Radiology, 1997, 203(3): 93-600.
    [52] Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H. Possible participation of autocrine and paracrine vascular endothelial growth factors in
    
    hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem, 1995,270(47):28316-24.
    [53] Delorme S,Knopp MV. Non-invasive vascular imaging: assessing tumour vascularity. Eur Radiol, 1998,8(4):517-27.
    [54] Weidner N, Carroll PR,Flax J, Folkman J.Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma.Am J Pathol, 1993,143(2):401-9.
    [55] Wendner N, Scmple JD,Welch WR,Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med, 1991,324(1):1-8.
    [56] Lee HS, Lee JS,Woo GW, Yoon JH. Recurrent hepatocellular carcinoma after spontaneous regression. J Gastroenterol, 2000, 35(7): 552-6.
    [57] Gasparini G, Harris AL. Does improved control of turnout growth require an anti-cancer therapy targeting both neoplastic and intratumoral endothelial cells? Eur J Cancer, 1994, 30(2): 201-6.
    [58] Fontanini G, Bigini D, Vignati S, Basolo F, Mussi A, Lucchi M, Chine S, Angeletti CA, Harris AL, Bevilacqua G. Microvessel count predicts metastatic disease and survival in non-small cell lung cancer. J Pathol, 1995,177(1):57-63.
    [59] Giatromanolaki A, Koukourakis M, O'Byrne K, Fox S, Whitehouse R, Talbot DC, Harris AL, Gatter KC. Prognostic value of angiogenesis in operable non-small cell lung cancer.J Pathol, 1996,179(1):80-8.
    [60] Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediatethickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol,1988,133(2):419-23.
    
    
    [61] Gasparini G,, Weidner N, Bevilacqua P, Maluta S, Dalla Palma P, Caffo O, Barbareschi M, Boracchi P, Marubini E, Pozza F. Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma.J Clin Oncol, 1994,12(3):454-66.
    [62] Leon SP, Folkerth RD,Blaek PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors.Cancer, 1996,77(2): 362-72.
    [63] Tynninen O, Aronen HJ, Ruhala M, Paetau A, Von Boguslawski K, Salonen O, Jaaskelainen J, Paavonen T. MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation. Invest Radiol, 1999,34(6): 427-34.
    [64] Haran EF, Maretzek AF, Goldberg I, Horowitz A, Degani H. Tamoxifen enhances cell death in implanted MCF7 breast cancer by inhibiting endothelium growth. Cancer Res,1994,54(21):5511-4.
    [65] Buadu LD, Murakami J, Murayama S, Hashiguchi N, Sakai S, Toyoshima S, Masuda K, Kuroki S, Ohno S. Patterns of peripheral enhancement in breast masses: correlation of findings on contrast medium enhanced MRI with histologic features and tumor angiogenesis. J Comput Assist Tomogr, 1997,21(3):421-30.
    [66] Brasch R, Turetschek K. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report.Eur J Radiol, 2000,34(3):148-55.
    [67] Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC.Correlation of dynamic contrast-
    
    enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR, 1998, 171(4):941-9.
    [68] Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med, 1998,4(5):623-6.
    [69] Padhani AR, Husband JG. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol, 2001,56(8):607-20.
    [70] Frouge C, Guinebretiere JM, Contesso G, Di Paola R, Blery M. Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis. Invest Radiol, 1994,29(12): 1043-9.
    [71] Buadu LD, Murakami J, Murayama S, Hashiguchi N, Sakai S, Masuda K, Toyoshima S, Kuroki S, Ohno S.Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology, 1996, 200(3):639-49.
    [72] Mayr NA,Hawighorst H, Yuh WT, Essig M, Magnotta VA, Knopp MV. MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. J Magn Reson Imaging,1999,10(3):267-76.
    [73] Tynninen O, Aronen HJ, Ruhala M, Paetau A, Von Boguslawski K, Salonen O, Jaaskelainen J, Paavonen T. MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation. Invest Radiol, 1999, 34(6): 427-34.
    [74] Gillies RJ, Evelhoch JL,Karczmar GS.Application of magnetic
    
    resonance in model systems:tumor biology and physiology. Neoplasia, 2000, 2(2):139-151.
    [75] Delorme S, Knopp MV. Non-invasive vascular imaging: assessing tumour vascularity. Eur Radiol,1998,8(4):517-27.
    [76] Kedar RP, Cosgrove DO, Bamber JC, Bell DS.Automated quantification of color Doppler signals: a preliminary study in breast tumors. Radiology, 1995,197(1):39-43.
    [77] Cheng WF, Lee CN,Chu JS, Chen CA, Chen TM, Shau WY, Hsieh CY, Hsieh FJ. Vascularity index as a novel parameter for the in vivo assessment of angiogenesis in patients with cervical carcinoma. Cancer, 1999,85(3):651-7.
    [78] Lee CN, Cheng WF, Chen CA, Chu JS, Hsieh CY, Hsieh FJ Angiogenesis of endometrial carcinomas assessed by measurement of intratumoral blood flow, microvessel density, and vascular endothelial growth factor levels.Obstet Gynecol, 2000,96(4):615-21.
    [79] Lassau N, Paturel Asselin C, Guinebretiere JM, Leclere J, Koscielny S, Roche A, Chouaib S, Peronneau P. New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography. Invest Radiol, 1999,34(3): 194-8.
    [80] Kil SP, Wu CH, Chang YL. Vascular pathology of malignant cervical lymphadenopathy: qualitative and quantitative assessment with power Doppler ultrasound. Cancer, 1998, 83(6): 1189-96.
    [81] Kurjak A, Kupesic S. Three dimensional ultrasound and power doppler in assessment of uterine and ovarian angiogenesis: a prospective study.Croat Med J, 1999,40(3):413-20.
    [82] Katherine W, Christopher RB, Peter N.Evaluation of tumor
    
    angiogenesis with US : imaging, Dopplerand contrast agents. Acad Radiol, 2000,7:824-839.
    [83] Zagzag D,Goldenberg M,Brem S. Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model.AJR, 1989,153(1):141-6.
    [84] Kenneth A,Chusilp C,Fred T.Application of CT in the investigation of angiogenesis in oncology.Acad Radiol, 2000, 7(4): 840-850.
    [85] Miles KA,Kelly BB.CT measurements of capillary permeability within nodal masses:apotential technique for assessing the activity of lymphoma.Br J Radiol,1997,70(1)74-79.
    [86] Scopinaro F, Schillaci O, Scarpini M, Mingazzini PL, Di Macio L, Banci M, Danieli R, Zerilli M, Limiti MR, Centi Colella A. Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med, 1994,21(9):984-7.
    [87] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705-16.
    [88] Baeuerle P, Baltimore D. NF-kappa B: ten years after. Cell, 1996,87(1):13-20.
    [89] Lee JK,Gilbert J. Nuclear factor-kappa B: important transcraption factor and therapeutic target. J Clin Pharmacol, 1998, 38(11): 981-93.
    [90] Baldwin AS Jr.The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996,14:649-83.
    [91] Beg AA, Baldwin AS Jr. The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors.Genes Dev, 1993,7(11):2064-70.
    
    
    [92] Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol, 1997,17(1):3-9.
    [93] Wang. pp, Wu ,MI,Siegel.Interleukin (IL)-10 inhibits nuclear factor NF-kappaB activation in human monoeytes. J Biol Chem, 1995,270(3):9558-69.
    [94] Kitajima I, Soejima Y, Takasaki I, Beppu H, Tokioka T, Maruyama I. Ceramide-indueed nuclear transloeation of NF-kappa B is a potential mediator of the apoptotic response to TNF-alpha in murine clonal osteoblasts. Bone, 1996, 19(3): 263-70.
    [95] Casano FJ, Rolando AM, Mudgett JS, Molineaux SM. The structure and complete nucleotide sequence of the murine gene encoding interleukin-1 beta converting enzyme (ICE). Genomics, 1994,20(3): 474-81.
    [96] Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D.Embryonie lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature, 1995,376 (6536): 167-70.
    [97] Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J, 1996,15(17): 4682-90.
    [98] Zandi E,Rothwarf DM,Delhase h,Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell, 1997,91(2):243-52.
    [99] Mayo MW, Wang C CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, Baldwin AS Jr. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by
    
    oncogenic Ras.Science, 1997,278(5344): 1812-5.
    [100] Gilmore TD, Koedood M, Piffat KA, White DW. Rel/NF-kappaB/IkappaB proteins and cancer.Oncogene, 1996, 13(7): 1367-78.
    [101] Moynagh PN,Williams DC,O'Neill LA.Interleukin-1 activates transcription factor NF kappa B in glial cells.Biochem J, 1993,294 (Pt 2):343-7.
    [102] Nishiya T, Uehara T, Nomura Y.Herbimycin A suppresses NF-kappa B activation and tyrosine phosphorylation of JAK2 and the subsequent induction of nitric oxide synthase in C6 glioma cells.FEBS Lett, 1995,371(3):333-6.
    [103] Ichiyama T, Zhao H, Catania A,Furukawa S,Lipton JM.alphamelanocyte-stimulating hormone inhibits NF-kappaB activation and IkappaBalpha degradation in human glioma cells and in experimental brain inflammation.Exp Neurol, 1999,157(2):359-65.
    [104] Manna SK, Aggarwal BB. Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappa B activation induced by various inflammatory agents.J Immunol, 1998,161 (6):2873-80.
    [105] Lim R, Zaheer A,Yorek MA,Darby CJ,Oberley LW.Activation of nuclear factor-kappaB in C6 rat glioma cells after transfection with glia maturation factor.J Neurochem, 2000, 74(2):596-602.
    [106] Yamagishi N,Miyakoshi J,Takebe H.Enhanced radiosensitivity by inhibition of nuclear factor kappa B activation in human malignant glioma cells.Int J Radiat Biol, 1997,72(2):157-62.
    [107] Otsuka G, Nagaya T, Saito K, Mizuno M, Yoshida J, Seo
    
    H.Inhibition of nuclear factor-kappaB activation confers sensitivity to tumor necrosis factor-alpha by impairment of cell cycle progression in human glioma cells.Cancer Res, 1999,59(17):4446-52,
    [108] Hartmann Marius,Heiland S,, Harting I, Tronnier VM, Sommer C, Ludwig R, Sartor K. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging.Neurosci Lett, 2003,338(2): 119-22.
    [109] Law M,Cha S,Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002,222(3):715-21.
    [110] M Maeda, S Itoh,H Kimura,T Iwasaki,N Hayashi.Vasacularity of meningiomas and neuromas:assessment with dynamic susceptibility-contrast MR imaging. AJR, 1994,163 : 181-86.
    [111] 万经海,李长元,江澄川。脑膜瘤,上海:上海医科大学出版社,2002:25~38.
    [112] Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res,1999,5(1): 119-27.
    [113] Folkman J, Shing Y. Angiogenesis. J Biol Chem, 1992,267(16):10931-4.
    [114] Klagsbrum M,Sober S.VEGF/VPF:the angiogenesis found. Carr Biol, 1997,3(2):699-702.
    [115] Folkerth RD. Descriptive analysis and quantification of angiogenesis in human brain tumors.J Neurooncol, 2000,
    
    50(1-2): 165-72.
    [116] Rojiani AM,Dorovini-Zis K. Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study.J Neurosurg, 1996,85(6): 1078-84.
    [117] Wesseling P, van der Laak JA,Link M, Teepen HL, Ruiter DJ. Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol, 1998,29(4):352-8.
    [118] Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997, 17(7):4015-23.
    [119] Vernon R B,Sage E H. Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol, 1995,147(4): 873-83.
    [120] Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science, 1995,270(5241): 1500-2.
    [121] Sharma H W, Higgins S K,Perez R.A DNA morif present in alpha V integrio promoter exhibits dual binding preference to distinct tranccription factors.Anticancer Res, 1995,15(5B):1857-63.
    [122] Maeda K, Chung YS. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer, 1996; 77: 858-863.
    [123] Toi H, Hoshinga S. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early
    
    relapse in primary breast cancer. Cancer Res, 1994, 85: 1045-1049.
    [124] Jensen RL.Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review.Surg Neurol, 1998, 49(2): 189-95;
    [125] Read MA, Whitley MZ, Williams AJ, Collins T. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation.J Exp Med, 1994,179 (2):503-12.
    [126] 鄂征.组织培养技术,北京,人民卫生出版社,1993:267—291.
    [127] Bernstein JJ, Goldberg WJ, Laws ER Jr, Conger D, Morreale V, Wood LR. C6 glioma cell invasion and migration of rat brain after neural homografting: ultrastructure. Neurosurgery, 1990, 26(4): 622-8
    [128] Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF. A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model.Acta Neuropathol (Berl), 1985, 67(1-2):96-102.
    [129] Olson JJ, Friedman R, Orr K, Delaney T, Oldfield E H.Enhancement of the efficacy of x-irradiation by pentobarbital in a rodent brain-tumor model.J Neurosurg, 1990,72(5):745-8.
    [130] Farrell CL, Stewart PA, Del Maestro RF. A new glioma model in rat: the C6 spheroid implantation technique permeability and vascular characterization. J Neurooncol, 1987,4(4): 403-15.
    [131] Mcgrath JT. Intracranial pathology of the dog. J Neuropathol Exp Neurol, 1962,21 (1):327-329
    [132] Barker M, Hoshino T, Gureay O, Wilson CB, Nielsen SL, Downie R, Eliason J. Development of an animal brain tumor model and its response to therapy with 1,3 -bis (2 -chloroethyl)-
    
    1-nitrosourea. Cancer Res,1973,33(5): 976-986.
    [133] Benda P, Someda K. Morphological and immunochemical studies of rat glial tumors and elonal strains propagated in culture. J Nerurosurg, 1971,34(3): 310-23.
    [134] San-Galli F, Vrignaud P, Robert J, Coindre JM, Cohadon F. Assessment of the experimental model of transplanted C6 glioblastoma in Wistar rats. J Neurooncol,1989,7(3):299-304.
    [135] Yamasaki T, Moritake K, Paine JT. Intratumoral administration of tumor necrosis factor-alpha for malignant gliomas--two case reports.Neurol Med Chir (Tokyo), 1994,34(4):216-20.
    [136] Runge VM, Jacobson S,, Wood ML, Kaufman D, Adelman LS. MR imaging of rat brain glioma: Gd-DTPA versus Gd-DOTA. Radiology, 1988,166(3):835-8.
    [137] 陶晓峰,张建敏,施增儒,刘光华,肖湘生,张晓鹏,胡家飞,江基尧,张光霁.鼠脑胶质瘤模型的建立与增强磁共振成像研究.中国医学计算机成像杂志,1999,5(3):204-209.
    [138] Davaki P, Lantos PL. The development of brain tumours produced in rats by the intracerebral injection of neoplastic glial cells: a fine structural study. Neuropathol Appl Neurobiol, 1981,7(1):49-61.
    [139] Kato T, Yamakawa Y,Sakazaki Y, Ito J, Kato H, Tsunooka H, Masaoka A, Tanaka R. Glial cell growth-promoting factor in astrocytoma (C6) cell extracts.Brain Res, 1981,254(4): 596-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700