亚波长金属结构对光波异常传输的FDTD数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1998年T. W. Ebbesen等人在Nature期刊上首次报道了金属薄膜上亚波长孔径阵列的异常光学透射(EOT)现象以来,亚波长或纳米尺度范围内光波-物质作用物理问题和技术应用已引起了世界各国科学家们的极大兴趣,并快速发展成为了当前光学领域中的研究热点。尽管目前针对亚波长金属结构中出现奇特效应的物理机制仍然存在许多争议,但大量研究表明外部电磁场与金属表面自由电子相互作用形成的一种相干共振,即表面等离子体激元(SPP)的激发,在其中扮演着至关重要的角色。事实上,如何深刻理解和清楚地揭示金属微纳结构与光波作用的物理本质已成为目前该研究领域内的重要基础课题。因此,我们有必要进一步深入开展相关的理论研究,探索和发现其中的新现象、新效应和新原理,为未来新型纳米光子器件的设计与开发奠定研究基础。
     本论文主要运用二维时域有限差分(FDTD)数值模拟方法,并基于自行编写的C语言计算程序,比较详细的研究了亚波长金属银膜上单狭缝结构在近红外光波照射下的多种新异物理现象,深入阐述了这些现象与亚波长结构参数之间的相互关联,并分析探讨了其中的物理起源。本论文的主要研究结果如下:
     1.系统研究了金属亚波长单狭缝在TM偏振光照射下发生增强透射的物理过程及其不同截面上的光强分布情况。模拟结果表明透射率曲线随着狭缝厚度变化产生周期性的多峰振荡,而随狭缝宽度变化至多出现一个峰值。透射光中辐射波和表面波之间的能量分配与狭缝宽度密切相关。另外,我们发现随着缝宽的增大,狭缝内壁之间的耦合模强度逐渐减弱,其空间模式也变得不再均匀。
     2.首次研究了金属单狭缝结构在空间离散化情况下的增强透射特性。计算结果发现通过合理设计和调整缝内刻槽参数(槽宽、槽深及其填充物折射率等),离散化狭缝透射率较光滑情况可以获得进一步提高(约十倍左右)或者被完全抑制掉,理论分析认为透射率提高的物理机制来源于各狭缝基本单元内激发的理想SPP基模共振,及其在狭缝基本单元之间的多次散射与耦合过程。这可以用来有效提高纳米光子器件中SPP波信号的传输距离。
     3.仿真模拟了透射空间填充不同折射率介质时,金属亚波长单狭缝结构对光波透射的电磁场分布情况,首次发现了在高折射率透射空间情况下,透射光束在近场区域内的空间聚焦和准直现象,而且聚焦光束的横向宽度为亚波长量级。进一步的研究结果表明聚焦光束的特征参数如焦距和焦深等随着狭缝宽度、透射空间介电常数和入射光波长的增大而增大。该研究有望在纳米光刻、传感探测和超分辨显微等方面有重要应用价值。
     4.针对亚波长金属单狭缝结构在高折射率透射空间内出现的近场光束聚焦行为,我们首次提出了基于金属表面散射的准柱面波(QCW)近场干涉及其次波辐射的理论解释,即从狭缝出射拐点处散射的准柱面波首先在端口区域相互干涉产生纳米量级周期性空间分布的强度条纹,然后它们再作为次波源向透射空间辐射电磁波并叠加形成光束聚焦的效果,理论预测和模拟实验结果取得了较好的吻合。这对于深刻认识亚波长金属结构与光波作用的基本原理具有重要意义。
Since the first discovery of extraordinary optical transmission (EOT) throughsubwavelength hole arrays on the metal films, which was reported by Ebbesen et al.on Nature in1998, the goal of understanding the physical issues about thelight-matter interactions in the scale of subwavelength and nano-meter has attractedenormous interest around the world, and sprung on the intense research activities andutilizing these phenomena, whose rapid development makes it become a researchhotspot in the current optical field. Although the underlying mechanisms of thesepeculiar phenomena are still in a controversy, numerous studies have confirmed thatsurface plasmon polaritons (SPP), being a coherent collective oscillation of freeelectrons on the metal surface excited by the incident electromagnetic waves, shouldplay significant roles during the optical transmission processes. Actually, how tocomprehensively understand and clearly reveal the relevant physical essences hasalready been an open question in this research field. Therefore, it is very necessary tofurther carry out theoretical studies to explore some new phenomena and new effects,and try to discover their new principles, which will be of benefit to the futuredevelopment of the new nano photonic devices and their optimal designing work.
     In this thesis, we employ the finite-difference time-domain (FDTD) numericalsimulation method and the self-compiled calculation program with C computerlanguage to investigate physical properties of the optical transmission through a silversubwavelength slit structure illuminated by the infrared incident waves. And then weintensively elucidate the relationships of these phenomena with the structuralparameters. Finally their physical origins are discussed. The main contents and resultsof this thesis are given as follows:
     1. The physical processes of EOT from a subwavelength metallic slit illuminated byan incident transverse-magnetic wave and the involved electromagnetic fielddistributions in different cross-sections of the slit are investigated thoroughly. The simulation results reveal that the transmission efficiency seems to periodicallyoscillate with multiple peaks when the slit depth is varied, but it tends to give no morethan one peak profiled tendency for the change of the slit width. The ratio of theoutput energy dispensing between the radiative and surface wave components isidentified to closely depend on the slit width. On the other hand, with increasing theslit width, the field coupling intensity in the slit is found to reduce with accompany ofthe degrading uniform distribution of the spatial mode.
     2. We investigate the upgrade transmission properties of a spatially quantized singlesubwavelength metallic slit. We find for the first time that the optical transmittancewill be further increased about ten times or suppressed effectively to zero, when thesmooth slit is discretized into several unit components by inside placing transversegrooves with suitable geometrical parameters (such as the width, depth, and therefractive index of the filling). The theoretical analysis suggest that the formation offundamental plasmon resonances inside the slit units and their multiple scattering andmutual coupling processes play a dominant role for the observations. This kind of slitquantization method can be used to improve the propagation distance of SPP signalsin nano-photonic devices.
     3. We simulate the electromagnetic field distributions of the transmission lightthrough a single subwavelength metallic slit when the output space is set as differentpermittivities, and found for the first time that the near-field beam focusing andcollimating effect especially in the cases of high permittivity and relatively large slitwidth. The available transverse full-width and half-magnitude (FWHM) value of thefocal spot can be compressed into the subwavelength scales. Moreover, our detailedinvestigations demonstrate that the characteristic parameters of the beam focusingspot (for example, the focal length and the focus depth) tends to increase with the slitwidth, output permittivity, and incident wavelength. This new finding will beexpected to have potential applications in nanolithography, sensing probe, andsuper-resolution microscopy.
     4. In order to understand the physical origins of the near-field beam focusing of thesingle metallic subwavelength slit with the high permittivity of output space, wepropose a interference model of the quasi-cylindrical waves scattered by the metallicslit, with accompany of the secondary light sources radiation processes. According tothe theory, the quasi-cylindrical waves are firstly scattered from the slit exit corners,and then they have a spatial interference to form the periodic intensity fringes, whichcan be acted as the secondary light sources to thereafter reemit electromagnetic waveswith the phase coherence. And their subsequent spatial interference in the near-fieldregion finally leads to the beam focusing of the transmission light. The theoreticalpredictions agree well with the simulation results. We believe that this theoryprovides a new sight into the physical interaction of the subwavelength metallicstructures and incident light waves.
引文
[1.1] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission throughsubwavelength hole arrays[J]. Nature,1998,391:667-669.
    [1.2] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surfaceenhanced Raman Scattering[J]. Science,1997,275:1102-1106.
    [1.3] Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides[J]. Phys.Rev. Lett.,2004,93:137404.
    [1.4] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering[J]. Science,1997,275:1102–1106.
    [1.5] Li L, New formulating of the Fourier modal method for crossed surface-relief gratings[J]. J.Opt. Soc. Am.,1997, A14:2758-2767.
    [1.6] Chang S-H, Gray S K, Schatz G C. Surface Plasmon generation and light transmission byisolated nanoholes and arrays of nanoholes in thin metal films[J]. Opt. Express,2005,13:3150-3165.
    [1.7] Popov E, Bonod N, Neviere M, et al. Surface plasmon excitation on a singlesubwavelength hole in a metallic sheet[J]. Appl. Opt.,2005,44:2332-2337.
    [1.8] Chen Z, Hooper I R, Sambles J R. Strongly coupled surface plasmons on thin shallowmetallic gratings[J]. Phys. Rev. B,2008,77:161405(R).
    [1.9] Collin R E, Eggimann W H. Dynamic interaction fields in a two-dimensional lattice[J].IRE Trans. Micro-Wave Theory Tech.,1961,9:110-115.
    [1.10] Bethe HA. Theory of diffraction by small holes[J]. Phys. Rev.,1944,66:163-182.
    [1.11] Garcia deAbajo F J, Gomez-Medina R, Saenz J J. Full transmission through perfect-conductor subwavelength hole arrays[J]. Phys. Rev. E,2005,72:016608.
    [1.12] Garcia deAbajo F J. Colloquium: light scattering by particle and hole array[J]. Rev. Mod.Phys.,2007,79:1267-1290.
    [1.13] Galindo V, Wu C P. Numerical solutions for an infinite phased array of rectangularwaveguides with thick walls[J]. IEEE Trans. Antennas Propag.,1966, AP-14:149-158.
    [1.14] Chen C-C. Diffraction of electromagnetic waves by a conducting screen perforatedperiodically with circular holes[J]. IEEE Trans. Microwave Theory Tech.,1971, MTT-19:475-481.
    [1.15] Chen C-C. Transmission of microwave through perforated flat plates of finite thickness[J].IEEE Trans. Microwave Theory Tech.,1973, MTT-21:1-6.
    [1.16] Botten L C, McPhedran R C, Lamarre J M. Inductive grids in the resonant region: theoryand experiment[J]. Int. J. Infrared Millim. Waves,1985,6:511-575.
    [1.17] Neerhoff F L, Mur G. Diffraction of a plane electromagnetic wave by a slit in a thickscreen placed between two different media[J]. Appl. Sci. Res.,1973,28:73-88.
    [1.18] Harrington R F,Auckland D T. Electromagnetic transmission through narrow slots in thickconducting screens[J]. IEEE Trans. Antennas Propag.,1980, AP-28:616-622.
    [1.19] Schroter U, Heitmann D. Surface-plasmon-enhanced transmission through metallicgratings[J]. Phys. Rev. B,1998,58:15419-15421.
    [1.20] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen[J]. Phys. Rev.Lett.,2001,86:5601-5603.
    [1.21] Yang F, Sambles J R. Resonant transmission of microwaves through a narrow metallicslit[J]. Phys. Rev. Lett.,2002,89:063901.
    [1.22] Lalanne P, Hugonin J P, Rodier J C. Theory of surface plasmon generation at nanoslitapertures[J]. Phys. Rev. Lett.,2005,95:263902.
    [1.23] Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed opticaltransmission through subwavelengh hole arrays[J]. Opt. Express,2004,12:3629-3651.
    [1.24] Gay G,Alloschery O, Viaris de Lesegno B, et al. The optical response of nanostructuredsurfaces and the composite diffracted evanescent wave model[J]. Nature phys.,2006,2:262-267.
    [1.25] Lalanne P, Hugonin J P. Interaction between optical nano-objects at metallo-dielectricinterfaces[J]. Nature phys.,2006,2:551-556.
    [1.26] Schouten H F, Kuzmin N, Dubois G, et al. Plasmon-assisted two-slit transmission: Young’sexperiment revisited[J]. Phys. Rev. Lett.,2005,94:053901.
    [1.27] Lalanne P, Hugonin J P, Rodier J C. Theory of surface Plasmon generation at nanoslitapertures[J]. Phys. Rev. Lett.,2005,95:263902.
    [1.28] Bouwkamp C J. On the diffraction of electromagnetic waves by circular disks andapertures[J]. Philips Res. Rep.,1950,5:401-422.
    [1.29] Cohn S B. Microwave coupling by large apertures[J]. Proc. IRE,1952,40:696-699.
    [1.30] RobertsA. Electromagnetic theory of diffraction by a circular aperture in a thick, perfectlyconducting screen[J]. J. Opt. Soc. Am. A,1987,4:1970-1983.
    [1.31] NikitinAY, Zueco D, Garcia-Vidal F J, et al. Electromagnetic wave transmission througha small hole in a perfect electric conductor of finite thickness[J]. Phys. Rev. B,2008,78:165429.
    [1.32] DegironA, Lezec H J, Yamamoto N, et al. Optical transmission properties of a singlesubwavelength aperture in a real metal[J]. Opt. Commun.,2004,239:61-69.
    [1.33] Park T-H, Mirin N, Lassiter J B, et al. Optical properties of a nanosized hole in a thinmetallic film[J]. ACS Nano,2008,2:25-32.
    [1.34] Popov E, Bonod N, Neviere M, et al. Surface plasmon excitation on a singlesubwavelength hole in a metallic sheet[J]. Appl. Opt.,2005,44:2332-2337.
    [1.35] Chang S-H, Gray S K, Schatz G C. Surface Plasmon generation and light transmission byisolated nanoholes and arrays of nanoholes in thin metal films[J]. Opt. Express,2005,13:3150-3165.
    [1.36] Landau L D, Lifshitz E M, Pitaevskii L P. Electrodynamics of Continuous Media[M],Pergamon NewYork,1960.
    [1.37] Garcia-Vidal F J, Martin-Moreno L, Moreno E, et al. Transmission of ligth through asingle rectangular hole in a real metal[J]. Phys. Rev. B,2006,74:153411.
    [1.38] Gordon R, BroloAG. Increased cut-off wavelength for a subwavelength hole in a realmetal[J]. Opt. Express,2005,13:1933-1938.
    [1.39] Schroter U, Heitmann D. Surface-plasmon-enhanced transmission through metallicgratings[J]. Phys. Rev. B,1998,58:15419-15421.
    [1.40] Porto JA, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings withvery narrow slits[J]. Phys. Rev. Lett.,1999,83:2845-2848.
    [1.41] Astilean S, Lalanne P, Palamaru M. Light transmission through metallic channels muchsmaller than the wavelength[J]. Opt. Commun.,2000,175:265-273.
    [1.42] Lalanne P, Hogonin J P,Astilean S, et al. One-mode model and airy-like formulae for one-dimensional metallic gratings[J]. J. Opt. A, Pure Appl. Opt.,2000,2:48.
    [1.43] Garcia-Vidal F J, Martin-Moreno L. Transmission and focusing of light inone-dimensional periodically nanostructured metals[J]. Phys. Rev. B,2002,66:155412.
    [1.44] Liu W C, Tsai D P. Optical tunneling effect of surface plasmon polaritons and localizedsurface plasmon resonance[J]. Phys. Rev. B,2002,65:155423.
    [1.45] Hooper I R, Sambles J R. Surface Plasmon polaritons on thin-slab metal gratings[J]. Phys.Rev. B,2003,67:235404.
    [1.46] Lee K G, Park Q-H. Coupling of surface Plasmon polaritons and light in metallicnanoslits[J]. Phys. Rev. Lett.,2005,95:103902.
    [1.47] Collin S, Pardo F, Teissier R, et al. Strong discontinuities in the complex photonic bandstructure of transmission metallic gratings[J]. Phys. Rev. B,2001,63:033107.
    [1.48] Collin S, Pardo F, Teissier R, et al. Horizontal and vertical surface resonances intransmission metallic gratings[J]. J. Opt. A, Pure Appl. Opt.,2002,4: S154.
    [1.49] Marquier F, Greffet J J, Collin S, et al. Resonant transmission through a metallic film dueto coupled modes[J]. Opt. Express,2005,13:70-76.
    [1.50] Catrysse P B, Veronis G, Shin H, et al. Guided modes supported by plasmonic films with aperiodic arrangement of subwavelength slits[J]. Appl. Phys. Lett.,2006,88:031101.
    [1.51] Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallicgratings with very narrow slits[J]. Phys. Rev. Lett.,2002,88:057403.
    [1.52] Crouse D, Keshavareddy P. Role of optical and surface Plasmon modes in enhancedtransmission and applications[J]. Opt. Express,2005,13:7760-7771.
    [1.53] Xie Y, ZakharianAR, Moloney J V, et al. Transmission of light through a periodic array ofslits in a thick metallic film[J]. Opt. Express,2005,13:4485-4491.
    [1.54] Xie Y, ZakharianAR, Moloney J V, et al. Transmission of ligth through periodic arrays ofsub-wavelength slits in metallic hosts[J]. Opt. Express,2006,14:6400-6413.
    [1.55] Lalanne P, Rodier J C, Hugonin J P. Surface plasmons of metallic surfaces perforated bynanohole arrays[J]. J. Opt. Pure Appl. Opt.,2005,7:422-426.
    [1.56] Liu H T, Lalanne P. Microscopic theory of the extraordinary optical transmission[J].Nature,2008,452:728-731.
    [1.57] Yang X Y, Liu H T, Lalanne P. Cross conversion between surface plasmon polaritons andquasicylindrical waves[J]. Phys. Rew. Lett.,2009,102:153903.
    [1.58] Liu H T, Lalanne P. Light scattering by metallic surfaces with subwavelength patterns[J].Phys. Rev. B,2010,82:115418.
    [1.59] BarbaraA, Quemerais P, Bustarret E, et al. Optical transmission through subwavelengthmetallic gratings[J]. Phys. Rev. B,2002,66:161403(R).
    [1.60] Sun Z, Jung Y, Kim H K. Role of surface plasmons in the optical interaction in metallicgratings with narrow slits[J]. Appl. Phys. Lett.,2003,83:3021.
    [1.61] Steele J M, Moran C E, LeeA, et al. Metallodielectric gratings with subwavelength slots:optical properties[J]. Phys. Rev. B,2003,68:205103.
    [1.62] Lopez-Rios T, Mendoza D, Garcia-Vidal F J, et al. Surface shape resonances in lamellarmetallic gratings[J]. Phys. Rev. Lett.,1998,81:665-668.
    [1.63] Garcia-Vidal F J, Sanchez-Dehesa J, DecheletteA, et al. Localized surface plasmons inlamellar metallic gratings[J]. J. Lightwave tech.,1999,17:2191-2195.
    [1.64] Pang Y, Genet C, Ebbesen T W. Optical transmission through subwavelength slit aperturesin metallic films[J]. Opt. Commun.,2007,280:10-15.
    [1.65] Went H E, HibbinsAP, Sambles J R, et al. Selective transmission through very deepzero-order metallic gratings at microwave frequencies[J]. Appl. Phys. Lett.,2000,77:2789.
    [1.66] HibbinsAP, Sambles J R, Lawrence C R, et al. Remarkable transmission of microwavesthrough a wall of long metallic bricks[J]. Appl. Phys. Lett.,2001,79:2844.
    [1.67] Xing Q, Li S, Tian Z, et al. Enhanced zero-order transmission of terahertz radiation pulsesthrough very deep metallic gratings with subwavelength slits[J]. Appl. Phys. Lett.,2006,89:041107.
    [1.68] Lopez-Tejeira F, Rodrigo S G, Martin-Moreno L, et al. Efficient unidirectional nanoslitcouplers for surface plasmons[J]. Nature Phys.,2007,3:324-328.
    [1.69] Weeber J C, Bouhelier A, Colas des Francs G, et al. Submicrometer in-planeintegrated surface plasmon cavities[J]. Nano Lett.,2007,7:1352-1359.
    [1.70] Ding C, Hu X, Ping J, et al. Tunable surface plasmon polariton microcavity[J]. Phys. Lett.A,2008,372:4536-4538.
    [1.71] Maier SA. Plasmonics: fundamentals and applications[M]. Springer science businessmedia,2007.
    [1.72] Thio T, Pellerin K M, Linke RA, et al. Enhanced light transmission through a singlesubwavelength aperture[J]. Opt. Lett.,2001,26:1972-1974.
    [1.73] Lezec H J, DegironA, Devaux E, et al. Beaming light from a subwavelength aperture.Science[J],2002,297:820.
    [1.74] Garcia-Vidal F J, Lezec H J, Ebbesen T W, et al. Multiple paths to enhance opticaltransmission through a single subwavelength slit[J]. Phys. Rev. Lett.,2003,90:213901.
    [1.75] DegironA, Ebbesen T W.Analysis of the transmission process through single aperturessurrounded by periodic corrugations[J]. Opt. Express,2004,12:3694-3700.
    [1.76] HibbinsAP, Sambles J R, Lawrence C R. Gratingless enhanced microwave transmissionthrough a subwavelength aperture in a thick metal plate[J]. Appl. Phys. Lett.,2002,81:4661.
    [1.77] Cao H,AgrawalA, NahataA. Controlling the transmission resonance lineshape of a singlesubwavelength aperture[J]. Opt. Express,2005,13:763-769.
    [1.78] Bravo-Abad J, Garcia-Vidal F J, Martin-Moreno L. Wavelength de-multiplexing propertiesof a single aperture flanked by periodic arrays of indentations[J]. Photonics Nanostruct.Fundam. Appl.,2003,1:55-62.
    [1.79] Kim S, Lim Y, Park J, et al. Bundle beaming from multiple subwavelength slitssurrounded by dielectric surface gratings[J]. Journal of Lightwave Technology,2010,28:2023-2029.
    [1.80] Kim H, Park J, Lee B. Tunable directional beaming from subwavelength metal slits withmetal-dielectric composite surface gratings[J]. Opt. Lett.,2009,34:2569-2571.
    [1.81] Kim S, Lim Y, Kim H, et al. Optical beam focusing by a single subwavelength metal slitsurrounded by chirped dielectric surface gratings[J]. Appl. Phys. Lett.,2008,92:013103
    [1.82] Shi H, Wang C, Du C, et al. Beam manipulating by waveguide mode interference[J]. Opt.Express,2005,13:6815-6820.
    [1.83] Choi D, Lim Y, Roh S, et al. Optical beam focusing with a metal slit array arranged alonga semicircular surface and its optimization by genetic algorithm[J]. Applied Optics,2010,49: A30-A35.
    [1.84] Verslegers L, Catrysse P B, Yu Z, et al. Deep-subwavelength focusing and steering of lightin an aperiodic metallic waveguide array[J]. Phys. Rev. Lett.,2009,103:033902.
    [1.85] Min C, Wang P, Jiao X, et al. Beam focusing by metallic nano-slit array containingnonlinear material[J]. Appl. Phys. B,2008,90:97-99.
    [2.1] Yee K. S. Numerical solution of initial boundary value problems involving Maxwellequations in isotropic media[J]. IEEE Trans. Antennas Propagat.,1966, AP-14:302-307.
    [2.2] Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation ofwaves[J]. Math. Comput.,1977,31:629-651.
    [2.3] Mur G. Absorbing boundary conditions for the finite-difference approximation of thetime-domain electromagnetic field equations[J]. IEEE Trans. Electromagn. Compat.,1981,EMC-23:377-382.
    [2.4] Moore T G, Blaschak J G, Taflove A et al. Theory and application of radiation boundaryoperators[J]. IEEE Trans. Antennas Propagat.,1988, AP-36:1797-1812.
    [2.5] Berenger J-P. A perfectly matched layer for the absorption of electromagnetic waves[J]. J.Comput. Phys.,1994,114:185-200.
    [2.6] Berenger J-P. Perfectly matched layer for the FDTD solution of wave-structure interactionproblem[J]. IEEE Trans. Antennas and Propagation,1996, AP-44:110-117.
    [2.7]葛德彪闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2005.
    [2.8] Taflove A, Hagness S C. Computational Electrodynamics the finite-difference time-domainmethod[M]. Artech House,2000.
    [2.9] Sacks Z S, Kingsland D M, Lee R, et al. A perfectly matched anisotropic absorber for useas an absorbing boundary condition[J]. IEEE Trans. Antennas and Propagation,1995,43:1460-1463.
    [3.1] JonscherAK. Dielectric relaxation in solids[J]. J. Phys. D:Appl. Phys.,1999,32: R57.
    [3.2]李翰如.电介质物理导论[M].成都科技大学出版社,1990.
    [3.3] Kelley D F, Destan T J, Luebbers R J. Debye function expansions of complex permittivityusing a hybrid particle Swarm-Least squares optimization approach[J]. IEEE Trans.Antennas Propag.,1994,55:1999-2005.
    [3.4]王磊周庆.频率相关材料的计算模型分析[J].大学物理,2007,26:48-52.
    [3.5] Grosso G, Parravicini G P. Solid state physics[J].Academic Press(London),2003.
    [3.6]王亚伟邓晓斌王立峰等.亚波长金属光栅透射性的多模型分析[J].激光杂志,2009,30:25-27.
    [3.7] Vial A, Grimault A-S, Macias D, et al. Improved analytical fit of gole dispersion:application to the modeling of extinction spectra with a finite-difference time-domainmethod[J]. Phys. Rev. B,2005,71:085416.
    [3.8] Umdea R, Totsuji C, Tsuruta K, et al. Dispersion models and electromagnetic FDTDanalyses of nanostrutured metamaterials using parallel computer[J]. Mem. Fac. Eng.Oka.Uni.,43:11-18.
    [3.9]邱国斌蔡定平.金属表面电浆简介[J].物理双月刊(台湾),2006,28:472-485.
    [3.10]葛德彪闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2005.
    [3.11] Gedney S D. An anisotropic PML absorbing media for the FDTD simulation for fields inlossy and dispersive media[J]. Electromagnetics,1996,16:399-415.
    [3.12] Sacks Z S, Kingsland D M, Lee D M, et al. A perfectly matched anisotropic absorber foruse as an absorbing boundary condition[J]. IEEE Trans. Antennas Propagat.,1995, AP-43:1460-1463.
    [3.13] Gedney S D. An anisotropic perfectly matched layer absorbing media for the truncation ofFDTD lattices[J]. IEEE Trans. Antennas Propagat.,1996, AP-44:1630-1639.
    [4.1]邱国斌蔡定平.金属表面电浆简介[J].物理双月刊(台湾),2006,28:472-485.
    [4.2] Maier S A. Plasmonics: fundamentals and applications[M]. Springer science businessmedia,2007.
    [4.3] Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited bylight[J]. Z. Naturforschung,1986,23A:2135-2136.
    [4.4] Otto A. Excitation of nonradiative surface plasma waves in silver by the method offrustrated total reflection[J]. Z. Physik,1968,216:398-410.
    [4.5] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M].Springer-Verlag,1986.
    [4.6] Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings withvery narrow slits[J]. Phys. Rev. Lett.,1999,83:2845-2848.
    [4.7] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830.
    [5.1] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission throughsubwavelength hole arrays[J]. Nature (London),1998,391:667-669.
    [5.2] Lalanne P, Hugonin J P, Astilean S, et al. One-mode model and Airy-like formulae forone-dimensional metallic gratings[J]. J. Opt. A: Pure Appl. Opt.,2000,2:48-51.
    [5.3] Thio T, Pellerin K M, Linke R A, et al. Enhanced optical transmission through a singlesubwavelength aperture[J]. Opt. Lett.,2001,26:1972-1974.
    [5.4] Liu H, Lalanne P. Microscopic theory of the extraordinary optical transmission[J]. Nature,2008,452:728-731.
    [5.5] Collin S, Sauvan C, Billaudeau C, et al. Surface modes on nanostructured metallicsurfaces[J]. Phys. Rev. B,2009,79:165405(7).
    [5.6] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelengthwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440:508-511.
    [5.7] Ekinci Y, Solak H H, David C. Extraordinary optical transmission in the ultraviolet regionthrough aluminum hole arrays[J]. Opt. Lett.,2007,32:172-174.
    [5.8] Liscidini M, Galli M, Patrini M, et al. Demonstration of diffraction enhancement via Blochsurface waves in a-SiN:H multilayers[J]]. Appl. Phys. Lett.,2009,94:043117(3).
    [5.9] Gérard D, Salomon L, de Fornel F, et al. Suppression of radiative losses of surfacepolaritons on nanostructured thin metal films[J]. Opt. Lett.,2005,30:780-782.
    [5.10] Xie Y, Zakharian A R, Moloney J V, et al. Transmission of light through a periodic arrayof slits in a thick metallic film[J]. Opt. Express,2005,13:4485-4491.
    [5.11] Lalanne P, Hugonin J P, Rodier J C. Theory of surface plasmon generation at nanoslitapertures[J]. Phys. Rev. Lett.,2005,95:263902(4).
    [5.12] Wuenschell J, Kim H K. Surface plasmon dynamics in an isolated metallic nanoslit[J].Opt. Express,2006,14:10000-10013.
    [5.13] Xie Y, Zakharian A R, Moloney J V, et al. Transmission of light though periodic arrays ofsub-wavelength slits in metallic hosts[J]. Opt. Express,2006,14:6400-6413.
    [5.14] Yan M, Thylén L, Qiu M, et al. Feasibility study of nanoscaled optical waveguide basedon near-resonant surface plasmon polariton[J]. Opt. Express,2008,16:7499-7507.
    [5.15] Dmitruk N L, Korovin A V. High light transmission through thin absorptive corrugatedfilms[J]. Opt. Lett.,2008,33:893-895.
    [5.16] Porto J A, García-Vidal F J, Pendry J B. Transmission resonances on metallic gratingswith very narrow slits[J]. Phys. Rev. Lett.,1999,83:2845-2848.
    [5.17] Cao Q, Lalanne P. Negative Role of Surface Plasmons in the Transmission of MetallicGratings with Very Narrow Slits[J]. Phys. Rev. Lett.,2002,88:057403(4).
    [5.18] Astilean S, Lalanne P, Palamaru M. Light transmission through metallic channels muchsmaller than the wavelength[J]. Opt. Commun.,2000,175:265-273.
    [5.19] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen[J]. Phys. Rev.Lett.,2001,86:5601-5603.
    [5.20] Gordon R. Light in a subwavelength slit in a metal: Propagation and reflection[J]. Phys.Rev. B,2006,73:153405(3).
    [5.21] Collin S, Pardo F, Teissier R, et al. Strong discontinuities in the complex photonic bandstructure of transmission metallic gratings[J]. Phys. Rev. B,2001,63:033107(4).
    [5.22] Garcia-Bidal F J, Lezec H J, Ebbesen T W, et al. Multiple paths to enhance opticaltransmission through a single subwavelength slit[J]. Phys. Rev. Lett.,2003,90:213901(4).
    [5.23] Bravo-Abad J, Martín-Moreno L, García-Vidal F J. Transmission properties of a singlemetallic slit: From the subwavelength regime to the geometrical-optics limit[J]. Phys. Rev.E,2004,69:026601(6).
    [5.24] Xie Y, Zakharian A R, Moloney J V, et al. Transmission of light through slit apertures inmetallic films[J]. Opt. Express,2004,12:6106-6121.
    [5.25] Bethe H A. Theory of diffraction by small holes[J]. Phys. Rev.,1944,66:163-182.
    [5.26] Zhou Y S, Gu B Y, Wang H Y, et al. Multi-reflection process of extraordinary opticaltransmission in a single subwavelength metal slit[J]. Euro-Phys. Lett.,2009,85:24005(5).
    [5.27] Lezec H J, Thio, T. Diffracted evanescent wave model for enhanced and suppressedoptical transmission through subwavelength hole arrays[J]. Optics Express,2004,12:3629-3649.
    [5.28]邱国斌蔡定平.金属表面电浆简介[J].物理双月刊(台湾),2006,28:472-485.
    [5.29] Maier S A. Plasmonics: fundamentals and applications[M]. Springer science businessmedia,2007.
    [6.1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature(London),2003,424:824-830.
    [6.2] Kirchain R, Kimerling L. A Roadmap for nanophotonics[J]. Nature Photonics,2007,1:303-305.
    [6.3] Thio T, Pellerin K M, Linke R A, et al. Enhanced light transmission through a singlesubwavelength aperture[J]. Opt. Lett.,2001,26:1972-1974.
    [6.4] Garcia-Vidal F J, Lezec H J, Ebbesen T W, et al. Multiple paths to enhance opticaltransmission through a single subwavelength slit[J]. Phys. Rev. Lett.,2003,90:213901.
    [6.5] Degiron A, Ebbesen T W. Analysis of the transmission process through single aperturessurrounded by periodic corrugations[J]. Opt. Express,2004,12:3694-3700.
    [6.6] Lalanne P, Hugonin J P. Interaction between optical nano-objects at metallo-dielectricinterfaces[J]. Nature Physics,2006,2:551-556.
    [6.7] Min Q, Gordon R. Surface plasmon microcavity for resonant transmission through a slitin a gold film[J]. Opt. Express,2008,16:9708-9713.
    [6.8] Lockyear M J, Hibbins A P, Sambles J R. Transmission of microwaves through a steppedsubwavelength slit[J]. Appl. Phys. Lett.,2007,91:251106.
    [6.9] Lin X-S, Huang X-G. Tooth-shaped plasmonic waveguide filers with nanometers sizes[J].Opt. Lett.,2008,33:2874-2876.
    [6.10] Matsuzaki Y, Okamoto T, Haraguchi M, et al. Characteristics of gap plasmon waveguidewith stub structures[J]. Opt. Express,2008,16:16314-16325.
    [6.11] Wang Y, Wang Y, Zhang Y. Transmission through metallic array slits with perpendicularcuts[J]. Opt. Express,2009,17:5014-5022.
    [6.12] Xie Y, Zakharian A R, Moloney J V, et al. Transmission of light through slit apertures inmetallic films[J]. Opt. Express,2004,12:6106-6121.
    [6.13] Pang Y, Genet C, Ebbesen T W. Optical transmission through subwavelength slitapertures in metallic films[J]. Opt. Comm.,2007,280:10-15.
    [6.14] Collin S, Pardo F, Pelouard J-L. Waveguiding in nanoscale metallic apertures[J]. Opt.Express,2007,15:4310-4320.
    [6.15] Feigenbaum E, Orenstein M. Perfect4-way splitting in nano plasmonic X-junctions[J].Opt. Express,2007,15:17948-17953.
    [6.16] Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonicwaveguides[J]. Appl. Phys. Lett.,2005,87:131102.
    [6.17] Weeber J-C, Bouhelier A, Colas des Francs G, et al. Surface-plasmon hopping alongcoupled coplanar cavities[J]. Rhys. Rev. B,2007,76:113405
    [6.18] Maier S A, Kik P G, Atwater H A. Optical pulse propagation in metal nanoparticle chainwaveguides[J]. Phys. Rev. B,2003,67:205402.
    [7.1] Ebbesen T W, Lezec H J, Ghaemi H F. Extraordinary optical transmission throughsubwavelength hole arrays[J]. Nature (London),1998,391:667-669.
    [7.2] Lalannne P, Hugonin J P, Rodier J C. Theory of surface plasmon generation at nanoslitapertures[J]. Physics Review Letters,2005,95:263902.
    [7.3] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J].Science,2002,297:820-822.
    [7.4] Kim S, Kim H, Lim Y, et al. Off-axis directional beaming of optical field diffracted by asingle subwavelength metal slit with asymmetric dielectric surface gratings[J]. AppliedPhysics Letters,2007,90:051113.
    [7.5] Kim H, Park J, Lee B. Tunable directional beaming from subwavelength metal slits withmetal-dielectric composite surface gratings[J]. Optics Letters,2009,34:2569-2571.
    [7.6] Sun Z, Kim H K. Refractive transmission of light and beam shaping with metallicnano-optic lenses[J]. Applied Physics Letters,2004,85:642-644.
    [7.7] Fan X, Wang G P. Nanoscale metal waveguide arrays as plasmon lenses[J]. Optics Letters,2006,31:1322-1324.
    [7.8] Verslegers L, Catrysse P B, Yu Z, et al. Deep-subwavelength focusing and steering oflight in an aperiodic metallic waveguide array[J]. Physics Review Letters,2009,103:033902.
    [7.9] Bartal G, Lerosey G, Zhang X. Subwavelength dynamic focusing in plasmonicnanostructures using time reversal[J]. Physics Review B,2009,79:201103.
    [7.10] Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of highly directionalemission from a single subwavelength aperture surrounded by surface corrugations[J].Physics Review Letters,2003,90:167401.
    [7.11] Yu L-B, Lin D-Z, Chen Y-C, et al. Physics origin of directional beaming emitted from asubwavelength slit[J]. Physics Review B,2005,71:041405.
    [7.12] Choi D, Lim Y, Roh S, et al. Optical beam focusing with a metal slit array arranged alonga semicircular surface and its optimization with a genetic algorithm[J]. Applied Optics,2010,49: A30-A35.
    [7.13] Shi H, Wang C, Du C, et al. Beam manipulating by metallic nano-slits with variantwidths[J]. Optics Express,2005,13:6815-6820.
    [7.14] Han Z, Forsberg E, He S. Surface plasmon bragg gratings formed in metal-insulator-metalwaveguides[J]. IEEE Photon. Technol. Lett.,2007,19:91-93.
    [7.15] Lalannne P, Hugonin J P. Interaction between optical nano-objects at metallo-dielectricinterfaces[J]. Nature Physics,2006,2:551-556.
    [7.16] Wang B, Chew Ah B, Teng J, et al. Subwavelength lithography by waveguide modeinterference[J]. Applied Physics Letters,2011,99:151106.
    [7.17] Gao H, Hyun J K, Lee M H, et al. Broadband plasmonic microlenses based on patches ofnanoholes[J]. Nano Letters,2010,10:4111-4116.
    [7.18] Kowarz M W. Homogeneous and evanescent contributions in scalar near-fielddiffraction[J]. Applied Optics,1995,34:3055-3063.
    [7.19] Chen P, Gan Q, Bartoli F J, et al. Spoof-surface-plasmon assisted light beaming inmid-infrared[J]. Journal of the Optical Society of America B,2010,27:685-689.
    [7.20] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering[J]. Science,1997,275:1102–1106.
    [7.21] Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides[J].Physics Review Letters,2004,93:137404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700