新型金属/介电复合等离激元微结构的光透射与光全吸收效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
得益于日益发展的纳米科学和技术,各种金属人工微纳结构被设计和制备出来。这些金属结构具有丰富的光电性质,并在表面增强拉曼光谱、集成光路器件、生物传感、数据存储和光学天线等领域展现出了极大的应用前景。与此同时,在国际学术界也催生出了表面等离激元学(Plasmonics)这一覆盖物理、化学、材料、信息和生物科学的交叉学科。
     论文首先主要介绍金属/介电胶体晶体复合微结构的材料实验制备,研究了其光学增强透射的现象和可见-红外波段的光全吸收效应。论文提出了一种全新的偏振不敏感、宽频、宽角度的电磁波全吸收等离激元体系。这种体系的制备具有操作简单、成本低、样品大面积和高重复性等优点。论文研究发现,通过不同晶体单元参数的选取与混合,可以显著拓宽材料的光吸收谱响应范围。我们的结果为当前人们研究光全吸收提供了一个新的体系、研究对象和高效材料制备方法。论文具体包括以下几个方面:
     1、利用聚苯乙烯微球自组织构成的二维胶体晶体为模板,采用浅射沉积方法制备金属/介电异质“胶体”晶体(hetero-colloidal crystal)微结构。论文详细研究了这类等离激元(surface plasmon, SP)结构的光学透射特性,这一特性类似人们在金属“渔网”结构中所观测到的增强透射(Enhanced optical transmission, EOT)。论文通过在胶体晶体与其上表面覆盖的金属半球壳之间引入一介电(二氧化硅)层,通过改变介电层的厚度实现了体系光学共振透射特性的有效调控。论文利用有限元方法对这种等离激元晶体进行了数值仿真计算。通过模式的分析,得出此类体系中的共振透射现象主要是缘于局域在金属皱状膜附近的局域类球SP模与局限于介电微球中的光学模的耦合。利用这种金属/介电异质“胶体”晶体结构,我们研究了其在环境折射率变化传感方面的特性,发现相对于没有中间二氧化硅介质层的等离激元体系,含有合适厚度介质层的金属/介电异质“胶体”晶体结构具有更高的敏感度。
     2、我们通过在平整金属膜层上生长二维胶体晶体,然后再沉积不同厚度金属膜层,得到了新型的金属/介电复合等离激元结构。通过光反射光谱的测量,系统研究其在光吸收方面的特性,论文首次在这类体系中观测到双宽带全吸收效应。研究表明,这种双带光全吸收效应具有偏振、入射角度都不敏感和宽带光吸收的特性。此外,这体系的制备过程具有成本低,技术工艺要求低,以及高重复性的特点。论文接着基于有限元计算方法研究了此种体系的光学性质,计算得到的双宽带全吸收光谱,与实验测试得到的光谱在谱型上相吻合,特别是在长波段,计算给出出一个宽的高吸收带。通过对应的电场强度分布计算,分析得出与此吸收峰相对应的电场强度集中在介质球上覆盖的金属膜层的界面上,电场强度分布与类球SP模的电场分布图一致,而类球SP模是一个宽频的局域SP共振模式;在短波段,计算结果显示存在一个宽带吸收包络:中心波长的电场强度分布显示这一全吸收带是基于局域SP共振模式与介质球阵列的光学模式包括导波(guided mode, GM)模式之间的耦合而形成的。我们发现这种双宽带全吸收效应可以通过调控体系的几何参数,如介质球尺寸大小,介电常数以及金属膜层厚度等来实现多自由度调控。从而可以实现从红外向可见以及其它频段的拓展。
     3、论文进一步提出并实验证实一种无序体系的超宽带光全吸收等离激元结构。论文通过采用两种尺寸的胶体微球混合,形成一定无序度的单层胶体体系,并将此引入到金属/介电复合表面等离激元光吸收结构中。论文研究这种无序结构对光全吸收特性的影响。研究发现,与采用单一尺寸的胶体球构成的胶体晶体有序体系相比,这种无序结构的引入能够产生更宽波段的高吸收现象。论文还进一步研究了通过配置两种不同尺寸微球在乳液浓度所占的比值,以及改变微球的几何尺寸来调控体系的光吸收特性。论文的初步研究结果为我们继续研究和实现可见光全频段的光全吸收人工微结构等离激元材料奠定了良好的实验基础。
Benefit from the developed nano-science and technology, various metallic nanostructures have been designed and fabricated out. These metallic nanostructures possess unique and various functional properties, which have presented great potential for applications in the research fields of surface enhanced Raman scattering (SERS), integrated circuits (IC), biosensors, data storage and optical antennas. Meanwhile, it has merged into a new rapidly growing discipline, named as plasmonics, which covers the research area of physics, chemistry, material science, information science, biology, and their inter-disciplines.
     In this thesis, we will detailedly show the fabrication of the composite metallodielectric microstructures. The enhanced optical transmission (EOT) and perfect optical absorption phenomena in these metallodielectric microstructures have been investigated both in experimental and calculation. We have proposed a novel perfect electromagnetic waves absorption plasmonic system with polarization-independent, broad bandwidth and wide angle. The proposed system is with several merits, including the simple technique requirement, low cost, large area and high reproducibility. In the following study, we find out that the bandwidth of the plasmonic absorber could even significantly broadened by the mixture of different size unit cells. Overall, our results could supply a new alternative approach of the light perfect absorber, and also suggest a novel investigation object and a high efficiency fabrication method for the worldwide peer researchers. The thesis is mainly composed of three sections that are arranged as following:
     1、By utilizing the two dimensional (2D) colloidal crystal fabricated by the self-assembling of polystyrene microsphere as the template, we fabricate the metallodielectric hetero-colloidal crystal by utilizing the vacuum ion-beam sputtering deposition method. The detailed optical transmission properties of this kind plasmonic microstructure have been investigated in this thesis. It is found out that the resonant optical transmission properties could be highly tuned by introducing a dielectric layer between the up gold cover layer and the colloidal crystal. This optical transmission phenomenon is similar to the EOT observed in the metallic fishnet structure. Based on the finite element method, we do numerical study on this kind plasmonic crystal. By the study of the modes, we propose the EOT is based on the contribution from the coupling between the localized sphere-like surface plasmon (SP) mode and the confined optical guided mode (GM) in the microspheres. Based on this kind metallodielectric hetero-colloidal crystal microstructure, we do study on the dielectric environment sensitivity and find out a better sensitivity factor of the metallodielectric hetero-colloidal crystal with a suitable thickness buffer layer than that without buffer dielectric layer.
     2、We obtain novel plasmonic microstructures by self-assembling a monolayer colloidal crystal on an optically opaque metal film followed by depositing a thin metallic half-shell on the top of the colloidal particles. By measured the reflection and transmission, we show the detailed light absorption response of this novel microstructure and achieve a dual broadband light perfect absorption for the first time in this kind system. This novel dual broadband light absorber has several merits including the polarization-independent, wide angle and broad bandwidth. In addition, it is found out that the proposed system here is with several practical advantages, such as the large area fabrication and production, very low cost, lower technique requirement and high reproducibility. By utilizing the finite element method, we do numerical study on the optical properties of this kind light absorber. The calculated light absorption spectrum with dual broad bandwidth spectrum shows good agreement to the experimental results. In particular, at the longer wavelength regime, the calculated results show a broad bandwidth high absorption band. By the study of the corresponding electric field intensity distribution on the central wavelength of the absorption band, we find out that the main electric field intensity is confined on the up metallic thin film. This kind pattern is very similar to that of the localized sphere-like SP mode which is a broad bandwidth plasmonic resonant mode. At the short wavelength regime, the calculated spectrum shows a broad absorption spectrum lineshape. The corresponding electric field distributions suggest that the high absorption would be the result of the coupling between the localized SP mode near the metal film and the optical resonant modes of the dielectric microsphere array. Based on the calculation and theoretical analysis, we also find out that the dual broadband light absorption properties could be modified by tune the geometry parameters, including the microsphere size, the dielectric index and the thickness of the metal film. Thus, the proposed structure is with spectral scalable and we can present broad bandwidth perfect light absorption from visible to infrared frequency regime.
     3、In this thesis, we further propose and experimentally verify a disorder ultra-broadband perfect light absorption effect. By using two different size colloidal microspheres mixing together, we do study on light absorption behavior of the disorder plasmonic system. We obtain the novel disorder plasmonic microstructures by self-assembling a monolayer colloidal crystal with some certain disorder on an optically opaque metal film followed by depositing a thin metal layer on the top of the colloidal particles. It is found out that this kind disorder microstructure could produce broader bandwidth of light perfect absorption than the order system formed by the single colloidal microsphere. We do further investigations on the modification of the light absorption properties by tuning the colloidal concentration ratios of the different microspheres and the sizes of the colloids. The obtained investigation results would show great contributions on the further study on the research and realization of the full visible light perfect absorption plasmonic microstructures.
引文
[1]A. V. Zayats,I.I. Smolyaninov, A. A. Maradudin, Phys. Rep.408,131 (2005).
    [2]E. Ozbay, Science 311,189 (2006); R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Materials Today 9,20 (2007); A. Polman, Science 322,868 (2008); J. Heber, Nature 461,720 (2009); M. L. Brongersma and V. M. Shalaev, Science 328,440(2010).
    [3]S. A. Maier, Plasmonics:Fundamentals and Applications, (Springer, Berlin, 2007); J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys.70,1 (2007); W. A. Murray and W. L. Barnes, Ady. Mater.19,3771 (2007); S. Kawata, Y. Inouye, and P. Verma, Nature Photon.3,388 (2009); H. Okamoto and K. Imura, Progress in Surface Science 84,199 (2009); J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nature Mater.9, 193 (2010); D. K. Gramotnev, and S. I. Bozhevolnyi, Nature Photon.4,83 (2010).
    [4]J. R. Lakowicz, Plasmonics 1,5 (2006); J. N. Anker, W. P, Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater.7,442 (2008); X. Huang, S. Neretina, and M. A. El-Sayed, Ady. Mater.21,4880 (2009).
    [5]C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett.5,709 (2005); M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nature Mater.8,935 (2009); G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, Nature Nanotechnol.4,669 (2009).
    [6]王振林.物理学进展,2009,29(3):287-324。
    [7]E. Kretschmann, H. Raether,Z. Naturforsch. A 23,2135 (1968).
    [8]A. Otto, Z. Physik 216,398 (1968).
    [9]L. Salomon, G. Bassou, J.P. Dufour, F. de Fornel, A.V. Zayats, Phys. Rev. B 65, 125409 (2002).
    [10JB. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett. 77,1889(1996).
    [11]J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103,266802 (2009).
    [12]任斌,田中群.现代仪器,2004(5):1-13;张征林,刘凌云,陆祖宏.传感技术学报,1999(4):332-336;明海等.物理,2004,33(9):636-640;马中团等.物理,2004,33(7):497-502;顾本源.物理,2007,36(4):280-287。
    [13]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz,J. Phys. Chem. B 107, 668 (2003).
    [14]C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York,1983).
    [15]P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308,1607(2005).
    [16]M. I. Stockman, Nat. Photonics 2,327 (2008).
    [17]B. Sepulvedaa, P. C. Angelomeb, L. M. Lechugaa, L. M. Liz-Marzanb, Nano Today 4,244 (2009).
    [18]J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang and Z. Q. Tian, Nature 464, 392 (2010).
    [19]C. Farcau and S. Astilean,J. Phys. Chem. C 114,11722 (2010).
    [20]W. J. Cho, Y. Kim, and J. K. Kim, ACS Nano 6,255 (2012).
    [21]H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, Nano Lett.12, 4076(2012).
    [22]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998); H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58,6779 (1998); W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424,824 (2003).
    [23]L. Landstrom, D. Brodoceanu, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.84,373 (2006); L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17,761 (2009); L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bauerle, Appl. Phys.,A Mater. Sci. Process.81,911 (2005).
    [24]P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, Ady. Mater. (Deerfield Beach Fla.) 18,1612 (2006).
    [25]詹鹏,基于自组织的表面等离激元晶体的制备及其光学性质研究,博士毕业论文(2006年).
    [26]Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, Opt. Express 18,3546 (2010).
    [27]D. Crouse, and P. Keshavareddy, Opt. Express 15,1415 (2007).
    [28]D. Crouse, and P. Keshavareddy, Opt. Express 13,7760 (2005).
    [29]H. E. Arabi, M. Park, M. Pournoury, and K. Oh, Opt. Express 19,8514 (2011).
    [30]Y. Xiao, V. Gaddam, and L. Yang, Opt. Express 17,12538 (2008).
    [31]W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8,281(2008).
    [32]A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Opt. Lett.28,423 (2003).
    [33]R. Bukasov, and J. S. Shumaker-Parry, Nano Lett.7,1113 (2007).
    [34]L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, Nano Lett.5,2034 (2005).
    [35]X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, Ady. Funct. Mater.20,1910 (2010).
    [36]J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, Ady. Mater.23, 1272(2011).
    [37]M. Lopez-Garcia, J. F. Galisteo-Lopez, A. Blanco, C. Lopez, and A. Garcia-Martin,Ady. Funct. Mater.20,4338 (2010).
    [38]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett.100,207402 (2008).
    [39]C. M. Watts, X. L. Liu, and W. J. Padilla,,Ady. Mater.24, OP98, (2012).
    [40]B. Zhu, C. Huang, Y. Feng, J. Zhao, T. Jiang, PIER B 24,121 (2010).
    [41]H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, Opt. Express 16,7181 (2008).
    [42]A. I. M. Ayala, Master of Science Thesis, Tufts University, USA, (2009).
    [43]H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, Phys. Rev. B 78,241103 (2008).
    [44]Y. Avitzour, Y. A. Urzhumov, G. Shvets, Phys. Rev. B.79,045131 (2008).
    [45]K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, Nat. Comm.2,517 (2011).
    [46]X. Liu, T. Starr, A. F. Starr, W. J. Padilla, Phys. Rev. Lett.104,207403 (2010).
    [47]J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, Appl. Phys. Lett.96, 251104(2010).
    [48]X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett.107,045901 (2011).
    [49]S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett.99,253104 (2011).
    [50]B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19,15221(2011).
    [51]P. Bouchon, C. Koechlin, F. Pardo, R. Haidar, and J. L. Pelouard, Opt. Lett.37, 1038(2012).
    [52]Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett.12, 1443 (2012).
    [53]T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photonics 2,299 (2008).
    [54]M. C. Hutley, and D. Maystre, Opt. Commun.19,431 (1976).
    [55]N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, Opt. Express 16,15431 (2008).
    [56]J. Cesario, R. Quidant, G. Badenes, S. Enoch, Opt. Lett.30,3404 (2005).
    [57]J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, Phys. Rev. Lett.100, 066408 (2008).
    [58]J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett.34,686 (2009).
    [59]S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, Phys. Rev. Lett.87,176801 (2001).
    [60]T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett.95,116802(2005).
    [61]T. Kelf, Y. Sugawara, R. Cole, J. Baumberg,M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, Phys. Rev. B 74,1 (2006).
    [62]R. M. Cole, J. J. Baumberg, F. J. Garcia De Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, Nano Lett.7,2094 (2007).
    [63]K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun.2,517 (2011).
    [64]S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, Phys. Rev. Lett. 108,047401 (2012).
    [65]K. F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, and T. F. Heinz, Phys. Rev. Lett.101,196405 (2008).
    [66]M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80,245435 (2009).
    [67]F. H. L. Koppens, D. E. Chang, and F. J. Garcia de Abajo, Nano Lett.11,3370 (2011).
    [68]Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Nature Nanotech.2,770 (2007).
    [69]S. Chattopadhyay, L. C. Chen, and K. H. Chen, Crit. Rev. Solid State Mater. Sci. 31,15(2006).
    [70]D. Poitras, and J. A. Dobrowolski, Appl. Opt.43,1286 (2004).
    [71]R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater.21, 3504 (2009).
    [72]C. H. Sun, P. Jiang, and B. Jiang, Appl. Phys. Lett.92,061112 (2008).
    [73]W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, Nano Lett.10,2012 (2010).
    [74]C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Penumans, Appl. Phys. Lett.96, 133302(2010).
    [75]W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, and X. Wang, Opt. Express 19,26536 (2011).
    [76]A. Raman, Z. Yu, and S. Fan, Opt. Express 19,19015 (2011).
    [77]Y. Chang, and Y. Chen, Opt. Express 19, A875 (2011).
    [78]V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett.8,4391 (2008).
    [79]H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, Nano Lett.12,4070 (2012).
    [80]Y. Yao, J. Yao, V. K. Narasimhan, Z. C. Ruan, C. Xie, S. H. Fan, and Y. Cui, Nat. Commun.3,664 (2012).
    [81]N. P. Sergeant,0. Pincon, M. Agrawal, and P. Peumans, Opt. Express 17,22800 (2009).
    [82]S. Shu, L. Zheng, H. Li, C. Kwan Tsang, L. Shi, and Y. Y. Li, Opt. Express 37, 4883 (2012).
    [83]N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, Opt. Express 20,2882 (2012).
    [84]M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, Opt. Express 19,20642(2011).
    [85]Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5,4641 (2011).
    [86]K. Chen, R. Adato, and H. A ltug, ACS Nano 6,7998 (2012).
    [87]N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett.10,2342 (2010).
    [88]Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, Opt. Express 20,17552 (2012).
    [89]X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, Opt. Express 20, 27756(2012).
    [90]Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, T. J. Huang, Appl. Phys. Lett.100,053119 (2012).
    [1]任斌,田中群,现代仪器,5,1(2004).
    [2]U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer, Berlin, 1995).
    [3]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
    [4]S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, Phys. Rev. Lett.87,176801 (2001).
    [5]Nie and S. R. Emory, Science 275,1102 (1997); K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett.78,1667 (1997); H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Phys. Rev. Lett.83, 4357 (1999); J. F, Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang and Z. Q. Tian, Nature 464,392(2010).
    [6]S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, Nature 453,757 (2008).
    [7]J. R. Lakowicz, Plasmonics 1,5 (2006); Y. Jin and X. Gao, Nature Nanotechnol. 4,571 (2009); A. Kinkhabwala, Z. Yu, S. Fan, Y Avlasevich, K. Muullen, and W. E. Moerner, Nature Photon.3,654 (2009).
    [8]P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308,1607 (2005); E. Cubukcu, Eric A. Kort, K. B. Crozier, and F. Capassoa, App. Phys. Lett.89,093120 (2006); R. de Waele, A. F. Koenderink, and A. Polman, Nano Lett.7,2004(2007).
    [9]M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, Phys. Rev. Lett.100, 186804 (2008); A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y Zhang, Nature Photon.2,365 (2008).
    [10]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and Ari A. G. Requicha, Nature Mater.2,229 (2003); N. Engheta, A. Salandrino, and A. Alu, Phys. Rev. Lett.95,095504 (2005); N. Engheta, Science 317,1698 (2007); J. Heber, Nature 461,720 (2009).
    [11]A. Alu and N. Engheta, Phys. Rev. E 72,016623 (2005); A. Alu and N. Engheta, Phys. Rev. Lett 100,113901 (2008); A. Alu and N. Engheta, Phys. Rev. Lett.102, 233901 (2009).
    [12]M. I. Stockman, Nature Photon.2,327 (2008); M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460,1110 (2009); R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
    [13]S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green,. Appl. Phys.101,093105 (2007); H. A. Atwater, and A. Polman, Nature Mater.9,205 (2010).
    [14]P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459,410 (2009); R. Won, Nature Photon.3,500 (2009).
    [15]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe,J. Am. Chem. Soc.130,1676 (2008); E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326,1091 (2009).
    [16]J. N. Anker, W. P, Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nature Mater.7,442 (2008); B. Sepulvedaa, P. C. Angelomeb, L. M. Lechugaa, L. M. Liz-Marzanb, Nano Today 4,244 (2009); X. Huang, S. Neretina, and M. A. El-Sayed,Ady. Mater.21,4880 (2009).
    [17]C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett.5,709 (2005); M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nature Mater.8,935 (2009); G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, Nature Nanotechnol.4,669 (2009).
    [18]N. Halas, MRS Bull.30,362 (2005).
    [19]J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, Nano Lett.9,4326 (2009).
    [20]J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, Nature Phys.2,120 (2006).
    [21]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998); H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58,6779 (1998).
    [22]W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424,824 (2003); C. Genet and T. W. Ebbesen, Nature 445,39 (2007).
    [23]王振林,物理学进展29,287(2009).
    [24]L. Landstrom, D. Brodoceanu, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.84,373 (2006); L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17,761 (2009); L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.81,911 (2005).
    [25]P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, Ady. Mater. (Deerfield Beach Fla.) 18,1612 (2006); Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, Appl. Phys., A Mater. Sci. Process.92,291 (2008).
    [26]J. Chen, Q. Shen, Z. Chen, Q. G. Wang, C. J. Tang, and Z. L. Wang, J. Chem. Phys.136,214703(2012).
    [27]J. Chen, W. Dong, Q. G. Wang, C. J. Tang, Z. Chen, Z. L. Wang, Chin. Phys. Lett. 29,097303 (2012).
    [28]L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, Chin. Phys. Lett.28,057801 (2011).
    [29]Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, Appl. Phys. A 92,291 (2008).
    [30]詹鹏,基于自组织的表面等离激元晶体的制备及其光学性质研究,博士毕业论文(2006年).
    [31]孙洁,二维胶体晶体的制备及其光学性质的研究,硕士毕业论文(2008年).
    [32]Z. Liu, J. Hang, J. Chen, Z. Yan, C. Tang, Z. Chen, and P. Zhan, Opt. Express 20, 9215(2012).
    [33]H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato,J. Appl. Phys.87,7152 (2000).
    [34]T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, Phys. Rev. B 70,235113 (2004).
    [35]S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett.92,191106 (2008).
    [36]S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, Adv. Mater.23, 2515(2011).
    [37]S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett.92,191106 (2008).
    [38]T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, Phys. Rev. B 70,235113 (2004).
    [39]Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, Opt. Express 18,3546 (2010).
    [40]M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, Appl. Opt.22,1099 (1983).
    [41]Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, Opt. Express 19,23889 (2011).
    [42]C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, Phys. Rev. B 80,165401 (2009).
    [1]E. Yablonovitch, Phys. Rev. Lett.58,2059 (1987).
    [2]S. John, Phys. Rev. Lett.58,2486 (1987).
    [3]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton Univer-sity Press, Princeton, New Jersey,1995.
    [4]W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424,824 (2003).
    [5]A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep.408,131 (2005).
    [6]S. A. Maier, Plasmonics:Fundamentals and Applications, Springer, New York, 2007.
    [7]D. Gerard, L. Salomon, F. De Fornel, and A. V. Zayats, Phys. Rev. B 69,113405 (2004).
    [8]L. H. Smith, J. A. Wasey, W. L. Barnes, Appl. Phys. Lett.84,2986 (2004).
    [9]D. Z. Han, F. Q. Wu, X. Li, C. Xu, X. H. Liu, and J. Zi, Appl. Phys. Lett.89, 091104(2006).
    [10]J. Yoon, G. Lee, SH Song, C.-H. Oh, and P.-S. Kim, J. Appl. Phys.94,123 (2003).
    [11]X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, Adv. Funct. Mater.20,1910 (2010); L. Shi, X. Liu, H. Yin, and J. Zi, Phys. Lett. A 374,1059 (2010).
    [12]M. Lopez-Garcia, J. F. Galisteo-Lopez, A. Blanco, C. Lopez, and A. Garcia-Martin, Adv. Funct. Mater.20,4338 (2010).
    [13]Y. Zhu, X. Hu, C. Lu, Y. Huang, and Q. Gong, Plasmonics 7,589 (2012).
    [14]H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, J. Appl. Phys.87,7152 (2000).
    [15]T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, Phys. Rev. B 70,235113 (2004).
    [16]S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett.92,191106 (2008).
    [17]S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, Adv. Mater.23, 2515(2011).
    [18]S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett.92,191106 (2008).
    [19]T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, Phys. Rev. B 70,235113 (2004).
    [20]S. Schiller and R. L. Byer, Opt. Lett.16,1138 (1991).
    [21]Y. Panitchob, G. Senthil Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, Opt. Express 16,11066 (2008).
    [22]L. Landstrom, D. Brodoceanu, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.84,373 (2006).
    [23]L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17,761 (2009).
    [24]L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.81,911 (2005).
    [25]J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, Adv. Mater.23, 1272(2011).
    [26]T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett.95,116802(2005).
    [27]T. Kelf, Y. Sugawara, R. Cole, J. Baumberg,M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, Phys. Rev. B 74,1 (2006).
    [28]M. Lopez-Garcia, J. F. Galisteo-Lopez, A. Blanco, C. Lopez, and A. Garcia-Martin, Adv. Funct. Mater.20,4338 (2010).
    [29]A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Rep.408,131 (2005).
    [30]王振林.物理学进展,2009,29:287-324。
    [31]E. Kretschmann, H. Raether, Z. Naturforsch. A 23,2135 (1968).
    [32]A. Otto, Z. Physik 216,398 (1968).
    [33]L. Salomon, G. Bassou, J.P. Dufour, F. de Fornel, A.V. Zayats, Phys. Rev. B 65, 125409(2002).
    [34]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett. 77,1889(1996).
    [35]J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103,266802 (2009).
    [36]A. R. McGurn, A. A. Maradudin, Phys. Rev. B 48,17576 (1993).
    [37]V. Yannopapas, A. Modinos, N. Stefanou, ibid.60,5359 (1999).
    [1]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667(1998).
    [2]J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, Opt. Express 17,1859 (2009).
    [3]H. Leong and J. P. Guo, Opt. Express 20,21318 (2012).
    [4]Y. Shen, X. Chen, Z. Dou, N. P. Johnson, Z. K. Zhou, X. H. Wang, and C. J. Jin, Nanoscale 4,5576(2012).
    [5]R. Esteban, T. V. Teperik, and J. J. Greffet, Phys. Rev. Lett.104,026802 (2010).
    [6]Y. B. Zheng, B. Kiraly, S. Cheunkar, T. J. Huang, and P. S. Weiss, Nano Lett.11, 2061 (2011).
    [7]H. Wei, Z. Wang, X. Tian, M. Kall, and H. X. Xu, Nat. Commun.2,387 (2011).
    [8]H. A. Atwater and A. Polman, Nat. Mater.9,205-213 (2010).
    [9]C. M. Watts, X. L. Liu, and W. J. Padilla, Adv. Mater.24, OP98-OP120, OP181 (2012).
    [10]H. A. Atwater and A. Polman, Nat. Mater.9,205 (2010).
    [11]M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Science 332,702 (2011).
    [12]N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett.10,2342 (2010).
    [13]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett.100,207402 (2008).
    [14]K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun.2,517 (2011).
    [15]K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt. Express 19, 14260(2011).
    [16]C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, Opt. Express 20,10376 (2012).
    [17]S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett.99,253104 (2011).
    [18]L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, Opt. Lett.37,154 (2012).
    [19]J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, Opt. Lett.37, 371 (2012).
    [20]J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G Cai, E. Liang, and Q. Xue, Opt. Express 20,14871 (2012).
    [21]P. Bouchon, C. Koechlin, F. Pardo, R. Haidar, and J. L. Pelouard, Opt. Lett.37, 1038 (2012).
    [22]J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett.36,3476 (2011).
    [23]Y. Q. Ye, Y. Jin, and S. He,J. Opt. Soc. Am. B 27,498 (2010).
    [24]Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett.12, 1443(2012).
    [25]S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, Phys. Rev. Lett. 108,047401 (2012).
    [26]X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett.107,045901(2011)
    [27]X. Chen, Y. Chen, M. Yan, and M. Qiu, ACS Nano 6,2550 (2012).
    [28]Q. Feng, M. Pu, C. Hu, and X. Luo, Opt. Lett.37,2133 (2012).
    [29]T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photonics 2,299 (2008).
    [30]J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, Adv. Mater.23, 1272(2011).
    [31]B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, Adv. Funct. Mater.21,4182 (2011).
    [32]M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, Opt. Express 19,20642(2011).
    [33]Z. Liu, J. Hang, J. Chen, Z. Yan, C. Tang, Z. Chen, and P. Zhan, Opt. Express 20, 9215(2012).
    [34]C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, Phys. Rev. 580,165401 (2009).
    [35]Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, Opt. Express 19,23889 (2011).
    [36]P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi,Ady. Mater.18,1612 (2006).
    [37]L. Landstrom, D. Brodoceanu, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.84,373 (2006).
    [38]L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17,761 (2009).
    [39]L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.81,911 (2005).
    [40]S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, Adv. Mater.23, 2515(2011).
    [41]X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, Adv. Funct. Mater.20,1910 (2010).
    [42]L. Shi, X. Liu, H. Yin, and J. Zi, Phys. Lett. A 374,1059 (2010).
    [43]Y. Zhu, X. Hu, C. Lu, Y. Huang, and Q. Gong, Plasmonics 7,589 (2012).
    [44]J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Nano Lett.2,891 (2002).
    [45]B. X. Zhang, Y. H. Zhao, Q. Z. Hao, B. Kiraly, I. C. Khoo, S. F. Chen, and T. J. Huang, Opt. Express 19,15221 (2011).
    [46]Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5,4641 (2011).
    [47]M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, Appl. Opt.22,1099 (1983).
    [48]J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Nano Lett.2,891 (2002).
    [49]Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, Opt. Express 18,3546 (2010).
    [50]A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, Small 4,2292 (2008).
    [51]詹鹏,基于自组织的表面等离激元晶体的制备及其光学性质研究,博士毕业论文(2006年).
    [1]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett.100,207402 (2008); X. Liu, T. Starr, A. F. Starr, W. J. Padilla, Phys. Rev. Lett.104,207403 (2010); C. M. Watts, X. L. Liu, and W. J. Padilla, Adv. Mater. 24, OP98, (2012)。
    [2]T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, Nat. Photonics 2,299 (2008).
    [3]H. A. Atwater and A. Polman, Nat. Mater.9,205-213 (2010).
    [4]C. M. Watts, X. L. Liu, and W. J. Padilla, Adv. Mater.24, OP98-OP120, OP181 (2012).
    [5]H. A. Atwater and A. Polman, Nat. Mater.9,205 (2010).
    [6]M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Science 332,702 (2011).
    [7]N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett.10,2342 (2010).
    [8]J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, Adv. Mater.23, 1272(2011).
    [9]X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett.107,045901 (2011)
    [10]X. Chen, Y. Chen, M. Yan, and M. Qiu, ACS Nano 6,2550 (2012).
    [11]Z.Q. Lu, A. Zhao, Z. Y. Yang, L. Wu, P. Zhang, Y. Zheng, J. A. Duan, J. Opt. Soc. Am. B 30,1368(2013).
    [12]K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt. Express 19, 14260(2011).
    [13]C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, Opt. Express 20,10376 (2012).
    [14]S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett.99,253104 (2011).
    [15]L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, Opt. Lett.37,154 (2012).
    [16]J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, Opt. Lett.37, 371 (2012).
    [17]J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, Opt. Express 20,14871 (2012).
    [18]P. Bouchon, C. Koechlin, F. Pardo, R. Hai'dar, and J. L. Pelouard, Opt. Lett.37, 1038(2012).
    [19]J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett.36,3476 (2011).
    [20]Y. Q. Ye, Y. Jin, and S. He,J. Opt. Soc. Am. B 27,498 (2010).
    [21]S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, Phys. Rev. Lett. 108,047401 (2012).
    [22]Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett.12, 1443 (2012).
    [23]F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He,Appl.Phys. Lett.100,103506 (2012).
    [24]Q. Feng, M. Pu, C. Hu, and X. Luo, Opt. Lett.37,2133 (2012).
    [25]M. C. Hutley, and D. Maystre, Opt. Commun.19,431 (1976).
    [26]N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, Opt. Express 16,15431 (2008).
    [27]J. Cesario, R. Quidant, G. Badenes, S. Enoch, Opt. Lett.30,3404 (2005).
    [28]J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, Phys. Rev. Lett.100, 066408 (2008).
    [29]J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, Opt. Lett.34,686 (2009).
    [30]S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, Phys. Rev. Lett.87,176801 (2001).
    [31]T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett.95,116802 (2005).
    [32]T. Kelf, Y. Sugawara, R. Cole, J. Baumberg,M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, Phys. Rev. B 74,1 (2006).
    [33]R. M. Cole, J. J. Baumberg, F. J. Garcia De Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, Nano Lett.7,2094 (2007).
    [34]K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun.2,517 (2011).
    [35]Z. Liu, P. Zhan, J. Chen, C. Tang, Z. Yan, Z. Chen, and Z. Wang, Opt. Express 21, 3021 (2013).
    [36]K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Nature Mater.11,1017 (2012).
    [37]M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, Opt. Express 21, A268 (2013).
    [38]P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi,Adv. Mater.18,1612 (2006).
    [39]L. Landstrom, D. Brodoceanu, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.84,373 (2006).
    [40]L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17,761 (2009).
    [41]L. Landstrom, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bauerle, Appl. Phys., A Mater. Sci. Process.81,911 (2005).
    [42]S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, Adv. Mater.23, 2515(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700