人工结构介质中的声波非对称透射效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Asymmetric Acoustic Transmissions in Acoustic Metamaterials
  • 作者:孙宏祥
  • 论文级别:博士
  • 学科专业名称:声学
  • 学位年度:2013
  • 导师:张淑仪
  • 学科代码:070206
  • 学位授予单位:南京大学
  • 论文提交日期:2013-08-10
摘要
本论文主要从事声学人工结构中声波非对称透射及其性能调控的理论和实验研究。除第一章绪论和第六章总结和展望之外,主要工作分为四个部分:1、非对称板状结构引起声波非对称透射的基本理论;2、单层非对称板状结构中声波非对称透射的研究;3、多层非对称复合结构中声波非对称增强透射的研究;4、声波非对称透射性能调控的研究。
     1、非对称板状结构引起声波非对称透射的基本理论
     在第二章中,主要介绍浸没在流体中一维周期性栅格与固体平板组成非对称板状结构引起的声波非对称透射效应的基本理论。首先,利用声栅衍射的基本方程,计算得到声波通过浸没在流体中一维周期性栅格的衍射特性:然后,基于弹性波的波动方程,列出流固耦合运动方程及边界条件及其势函数形式,并对流固耦合运动方程及边界条件的势函数形式进行积分变换,从而推导得到浸没在流体中固体平板的兰姆波色散方程,并计算出兰姆波的色散曲线及泄漏角度曲线,为非对称板状结构引起声非对称透射效应的物理机理分析提供理论依据。
     2、单层非对称板状结构中声波非对称透射的研究
     在第三章中,研究浸没在水中单层非对称板状结构的声波非对称透射效应,并分析声波非对称透射效应产生的物理机制。研究表明:单层非对称板状结构的一侧表面为周期性矩形栅格,另一侧表面为光滑平板,当声波从栅格一侧垂直入射时,栅格引起声波衍射,衍射波激发非对称板状结构产生较强的非对称兰姆波;而当声波从光滑表面一侧垂直入射时,大部分能量发生反射,激发产生的非对称兰姆波极其微弱,因此非对称兰姆波的不对称激发是声波非对称透射产生的根本原因。数值计算的声透射谱显示,声波非对称透射频带中心区域的相对透射率均达到0.9以上,显示出很好的非对称透射效果。同时,在实验上对单层非对称板状结构中声波非对称透射性能进行测量,实验测量的声透射谱与数值模拟结果符合很好。
     在此基础上,研究样品中不同的结构参数对声波非对称透射性能的影响。研究表明:当样品结构参数整体缩放相同倍数时,声波非对称透射频带发生平移,且对正向声透射率、带宽及透射谱形状基本没有影响,从而实现频带可调的声非对称透射效应。该结构实现的声非对称透射效应具有宽带,频带可调,且结构简单易实现等优点。
     3、多层非对称复合结构中声波非对称增强透射的研究
     在第四章中,设计周期性圆柱栅格与多层平板组成的多层非对称复合结构模型,研究复合结构的声非对称增强透射效应,并分析声波非对称增强透射产生的物理机制。与其他复合结构相比,该结构激发产生的声整流比更高,正向声透射能流更强,而且集中分布在两束。研究表明:正向声透射率及声整流比的最大值分别可达到0.7和103;随着多层平板数量的增加,声整流比明显增大,而对正向声透射能流的影响较小;正向声透射能流来自于零级与士1级衍射波共同激发浸没在水中的多层平板产生的泄漏A0模,声非对称增强透射效应是由泄漏A0模的不对称激发引起。
     在此基础上,在复合结构的栅格左侧引入两个倾斜反射板,将周期性栅格产生的两束反射衍射波,再次发生反射,并透过多层平板,转化为正向声透射能流。优化的复合结构产生的声非对称透射效应进一步增强,声透射率及声整流比的最大值分别可达到0.97和104。同时,在实验中分别测量复合结构及优化的复合结构中的声透射谱,实验测量与数值模拟的结果吻合很好。多层非对称复合结构实现的声非对称增强透射效应具有频带宽、转化效率高及能量损耗低等优点。
     4、声波非对称透射性能调控的研究
     在第五章中,研究浸没在水中的周期性圆柱栅格与双层平板组成非对称复合结构中声波非对称透射性能的调控机制。基于调节几何结构的方法,逐个改变复合结构中的各个结构参数,研究不同的结构参数对声非对称透射性能的影响。研究表明:声非对称透射频带与复合结构的栅格常数及平板厚度相关,栅格常数增大,非对称透射频带向低频移动,且幅度很大;而平板厚度增大,非对称透射频带向高频移动,但幅度较小。
     在此基础上,研究复合结构中的声非对称透射频带、正向声透射率及正向透射声能流传播方向等性能的调控机制。结果表明:栅格常数增加或减小到一定程度,正向声透射率会明显降低。因此通过组合调节栅格常数与其他结构参数,研究声非对称透射频带及正向声透射率的变化趋势。栅格常数与平板厚度的组合调节对向低频或高频方向移动的声透射率有增强作用,向高频方向移动的声透射率增强尤其明显;栅格常数与圆柱直径的组合调节对向低频方向移动的声透射率增强较大;栅格常数与栅格和平板的间隔的组合调节对向高频方向移动的声透射率增强较大;当复合结构所有的结构参数同时以相同倍数变化时,声透射谱的频带发生平移,且带宽、正向声透射率等性能基本保持不变。
     正向声透射能流的传播角度与非对称透射频带中A0模的泄漏角度相同,而非对称透射频带与平板厚度及栅格常数密切相关,因此,当平板厚度或栅格常数变化时,A0模的泄漏角度曲线与士1级衍射波的传播角度曲线发生平移,从而引起正向声透射能流传播角度的改变,因此,调节平板厚度或栅格常数,可以获得不同频率值在不同方向的正向声透射能流。研究线性复合结构中声非对称透射频带、正向声透射率及正向声透射能流传播角度等性能的量化调控机制,为研制新型可调控的声单通器件奠定理论基础,具有重要的科学意义和应用价值。
     最后,除了上述主要内容外,本论文在附录部分叙述了攻读博士期间完成的黏弹性材料中激光热弹激励超声波的传播特征及倾斜缺陷的超声检测的研究工作,主要研究黏弹性材料构成的单层薄板、单层厚板、薄膜/基底结构中的激光激发超声波的传播特征。同时,研究激光激发瑞利波检测表面倾斜缺陷的机制,检测得到表面倾斜缺陷的位置、长度及倾斜角度,并分析缺陷的宽度及材料的黏性对激光激发瑞利波检测表面倾斜缺陷的影响。本附录部分的研究工作为不同类型的黏弹性结构中力学性能的评价及材料缺陷的无损检测提供一定的理论依据。
The dissertation is mainly devoted to study on asymmetric acoustic transmissions in acoustic metamaterials. The main contents of the dissertation are divided into four parts:(1). The basic theory of asymmetric acoustic transmissions induced by asymmetric plate-like structures;(2). Study on asymmetric acoustic transmissions in a single layer of asymmetric plate-like structures;(3). Study on enhancement of asymmetric acoustic transmissions in multi-layered asymmetric composite structures;(4). Study on control of asymmetric acoustic transmissions. The main contents are described briefly as follows:
     1. The basic theory of asymmetric acoustic transmissions induced by asymmetric plate-like structures
     In the second chapter, we mainly introduce the basic theory of asymmetric acoustic transmission (AAT) in an asymmetric plate-like structure immersed in a fluid, which is composed of a one-dimensional periodical grating structure and solid plates. First, according to the basic equations of the acoustic grating diffraction, the diffractive characteristics of acoustic waves through a one-dimensional periodical grating immersed in the fluid are calculated. In addition, based on the wave equations of the elastic wave, the general form and the potential function form of the fluid-solid coupling equations and boundary conditions are obtained, and the potential function form of the fluid-solid coupling equations and boundary conditions are transformed by using integral transform method. Therefore, the dispersive equations of the Lamb wave in the solid plate immersed in the fluid are derived, and the dispersive curve and leaky angle curve of the Lamb wave are calculated. The studies provide the theoretical bases for studying the physical mechanisms of the AAT in the asymmetric plate-like structures.
     2. Study on asymmetric acoustic transmissions in a single layer of an asymmetric plate-like structure
     In the third chapter, the AAT in a single layer of an asymmetric plate-like structure immersed in water, and the physical mechanisms of the AAT are studied. The asymmetric plate-like structure is composed of two different surfaces, in which one surface is a periodical rectangular grating, and the other side is a smooth surface. As the acoustic wave is incident from the side of grating surface, the acoustic wave is severely diffracted when it is reaching the grating surface, and the diffracted waves induce stronger anti-symmetric Lamb modes. However, as the acoustic wave is incident from the side of the smooth surface, most of the acoustic wave is reflected by the smooth surface. The anti-symmetric Lamb mode is also excited in the second case, but the excitation is very weak. Therefore, the AAT originates from the enormously asymmetric excitation of the anti-symmetric Lamb mode in the asymmetric plate-like structure. The numerical simulations show that in the frequency bands where the AAT appeared, the relative transmittance can be up to0.9, which indicates that the asymmetric plate-like structure has good performance. Meanwhile, we also experimentally study the AAT of the asymmetric plate structure, and the results of the experimental measurements agree well with the numerical simulations.
     In addition, we investigate the influence of different structure parameters on the AAT. It shows that as all of the structure parameters are changed with the same ratio simultaneously, the frequency bands of the AAT are translated, but the transmittance, bandwidth, and transmission spectrum shapes keep constant basically. It is indicated that the frequency ranges of the AAT can be systematically controlled. The structure has the advantages of broader bandwidth, tunable frequency range, and simple structure as well as being easy to be achieved.
     3. Study on enhancement of asymmetric acoustic transmissions in multi-layered asymmetric composite structures
     In the fourth chapter, we study an enhanced AAT through a multi-layered asymmetric composite structure consisted of a periodical grating made of cylinders and accompanied by multi-layered plates immersed in water, and also investigate the physical mechanisms of the enhanced AAT in detail. Compared the AAT with other composite structures, the acoustic rectifying ratio and transmitted acoustic energy flux in this structure are enhanced obviously, and the transmitted acoustic energy flux is only divided into two branches. The results show that the transmittance and rectifying ratio of the composite structure can be as high as0.7and103respectively. Even higher rectifying ratio can be obtained with more plates, but the number of the plates has less influence on the transmitted acoustic energy flux. The transmitted acoustic energy flux arises from the leaky A0mode in the multi-layered plates immersed in the water which is excited by both the0-and±1-orders diffracted waves. The enhanced AAT originates from the asymmetric excitation of the leaky A0mode in the composite structure.
     In addition, we introduce two inclined plates as mirrors placed at the left side of the grating to optimize the composite structure. Both reflected diffraction energy beams are reflected again by both inclined plates and transmit through the multi-layered plates. The AAT are further enhanced in the optimized composite structure, and the transmittance and rectifying ratio of the optimized structure are up to0.97and104respectively. Meanwhile, we also experimentally measured the transmittance spectra in both structures, and the experimental measurements agree well with the numerical results. The enhanced AAT in the composite structure has also the advantages of broader bandwidth, more high efficiency, and low energy loss.
     4. Study on control of asymmetric acoustic transmissions
     In the fifth chapter, we investigate the control of the AAT in the asymmetric composite structure consisted of a periodical grating accompanied by two layers of identical plates immersed in water. Based on the method of the geometrical adjustment, the influences of the structural parameters on the AAT are studied by changing the structural parameters of the composite structure successively and separately. The results show that the frequency band of the AAT is related to the lattice constant (a) of the grating and plate thickness (h). The frequency band of the AAT greatly shifts to the low frequency range with the increase of a. However, the frequency band of the AAT slowly moves to the high frequency range with the increase of h.
     Based on these results, we study the control of the frequency band, transmittance, and the direction of the transmitted acoustic energy flux. The variation of α have a great influence on the frequency band range of the AAT, however, the transmittance is reduced obviously if a is great changed from its optimized value. Thus, we investigate the frequency band range and transmittance simultaneously by adjusting the combination of a and another parameter. The results show that the suitable change of the combination of a and h may increase the transmittance in the band moved to the high or low frequency range, especially to the high frequency range. The change of the combination of a and the diameter of the cylinder (d) increases the transmittance in the band moved to the low frequency range. The variation of the combination of a and the distance between the grating and the plate (b) enhances the transmittance in the band moved to the high frequency range. The frequency band the AAT is translated with the variation of all of the structure parameters, but the frequency band and transmittance remain unchanged basically.
     The propagation angle of the transmitted acoustic energy flux is the same as that of the leaky angle of the Ao mode in the frequency band of the AAT. However, the frequency band of the AAT is related to the parameters a and h. and the angle curves of the leaky Ao mode and the±1-orders diffracted waves are shifted with the variations of a and h, which cause the change of the propagation angle of the transmitted acoustic energy flux. Therefore, we can control the propagation angle of the transmitted acoustic energy flux by modifying the parameters a and/or h. In this chapter, we study the control mechanisms of the frequency range, transmittance, and the direction of the transmitted acoustic energy flux of the AAT. The results provide the theoretical basis for designing tunable unidirectional acoustic devices, which has important scientific significance and applied potential.
     Finally, an appendix is attached to describe the studies on laser-generated ultrasonic waves in viscoelastic materials and also its applications to angled crack detections. We mainly study the laser-generated ultrasonic waves in a single thin plate, a single thick plate, and a coating/substrate structure made of the viscoelastic materials. Moreover, the detection mechanisms of angled cracks with laser-generated Rayleigh waves are studied, and the position, length, and orientation angle of the angled crack is detected. Furthermore, the influences of the crack width and the material viscoelasticity on the Rayleigh wave propagations and crack detections are also obtained. The studies provide the theoretical basis for evaluating mechanical properties and nondestructive detecting cracks in different types of viscoelastic structures.
引文
[1]N. Engheta and R. W. Ziolkowski, Metamaterials:Physics and Engineering Explorations, Piscataway, NJ:Wiley-IEEE Press,2006.
    [2]L. Solymar and E. Shamonina, Waves in metamaterials, Oxford:Oxford University Press,2009.
    [3]V. G Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi,1968,10(4):509-514.
    [4]E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Reversed Doppler effect in photonic crystals, Physical Review Letters,2003,91(13):133901.
    [5]S. N. Galyamin, A. V. Tyukhtin, A. Kanareykin, and P. Schoessow, Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary, Physical Review Letters,2009,103(19):194802.
    [6]J. B. Pendry, Negative refraction makes a perfect lens, Physical Review Letters, 2000,85(18):3966-3969.
    [7]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.
    [8]N. Garcia and M. Nieto-Vesperinas, Left-handed materials do not make a perfect lens, Physical Review Letters,2002,88(20):207403.
    [9]N. Garcia and M. Nieto-Vesperinas, Is there an experimental verification of a negative index of refraction yet?, Optics Letters,2002,27(11):885-887.
    [10]P. M. Valanju, R. M. Walser, and A. P. Valanju, Wave refraction in negative-index media:always positive and very inhomogeneous, Physical Review Letters,2002, 88(18):187401.
    [11]J. M. Williams, Some problems with negative refraction, Physical Review Letters, 2001,87(24):249703.
    [12]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters,2000,84(18):4184-4187.
    [13]D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Direct calculation of permeability and permittivity for a left-handed metamaterial, Applied Physics Letters,2000,77(14):2246-2248.
    [14]R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science,2001,292:77-79.
    [15]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature,2008,455:376-379.
    [16]J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science,2008, 321:930.
    [17]N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-dif&action-limited optical imaging with a silver superlens, Science,2005,308:534-537.
    [18]C. Luo, S. G Johnson, and J. D. Joannopoulos, All-angle negative refraction without negative effective index, Physical Review B,2002,65(20):201104.
    [19]S. Foteinopoulou and C. M. Soukoulis, Negative refraction and left-handed behavior in two-dimensional photonic crystals, Physical Review B,2003,67(23): 235107.
    [20]P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, Photonic crystals:imaging by flat lens using negative refraction, Nature,2003,426:404.
    [21]P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, Negative refraction and left-handed electromagnetism in microwave photonic crystals, Physical Review Letters,2004,92(12):127401.
    [22]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Terahertz magnetic response from artificial materials, Science,2004,303:1494-1496.
    [23]S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic response of metamaterials at 100 terahertz, Science,2004,306: 1351-1353.
    [24]M. Lapine, M. Gorkunov, and K. H. Ringhofer, Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements, Physical Review E,2003,67(6):065601.
    [25]M. Lapine and M. Gorkunov, Three-wave coupling of microwaves in metamaterial with nonlinear resonant conductive elements, Physical Review E, 2004,70(6):066601.
    [26]I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, Tunable split-ring resonators for nonlinear negative-index metamaterials, Optics Express,2006,14(20): 9344-9349.
    [27]Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Applied Physics Letters,2007,90(1):011112.
    [28]H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Active terahertz metamaterial devices, Nature,2006,444:597-600.
    [29]A. B. Movchan and S. Guenneau, Split-ring resonators and localized modes, Physical Review B,2004,70(12):125116.
    [30]Z. Y. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Locally resonant sonic materials, Science,2000,289:1734-1736.
    [31]Z. Y. Liu, C. T. Chan, and P. Sheng, Analytic model of phononic crystals with local resonances, Physical Review B,2005,71(1):014103.
    [32]N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang. Ultrasonic metamaterials with negative modulus, Nature Materials,2006,5(6): 452-456.
    [33]J. Li and C. T. Chan. Double-negative acoustic metamaterial, Physical Review E, 2004,70(5):055602.
    [34]L. Fok and X. Zhang, Negative acoustic index metamaterial, Physical Review B, 2011,83(21):214304.
    [35]M. Ambati, N. Fang, C. Sun, and X. Zhang, Surface resonant states and superlensing in acoustic metamaterials,2007, Physical Review B,75(19):195447
    [36]X. D. Zhang, Acoustic resonant transmission through acoustic gratings with very narrow slits:Multiple-scattering numerical simulations, Physical Review B, 2005,71(24):241102.
    [37]B. Hou, J. Mei, M. Z. Ke, Z. Y. Liu, J. Shi, and P. Shen, Tuning Fabry-Perot resonances via diffraction evanescent waves, Physical Review B,2007,76(5): 054303.
    [38]M. Z. Ke, Z. J. He, S. S. Peng, Z. Y. Liu, and J. Shi, Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals, Physical Review Letters,2007,99(4):044301.
    [39]M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N, Zhu, and N. B. Ming, Extraordinary Acoustic Transmission through a lD Grating with Very Narrow Apertures, Physical Review Letters,2007,99(17):174301.
    [40]Z. J. He, H. Jia, C. Y. Qiu, S. S. Peng, X. F. Mei, F. Y. Cai, P. Peng, M. Z. Ke, and Z. Y. Liu, Acoustic Transmission Enhancement through a Periodically Structured Stiff Plate without Any Opening, Physical Review Letters,2010, 105(4):074301.
    [41]Y. Cheng, J. Y. Xu, and X. J. Liu, Tunable sound directional beaming assisted by acoustic surface wave, Applied Physics Letters,2010,96(7):071910.
    [42]X. Y. Ao and C. T. Chan, Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials, Physical Review E,2008,77(2):025601.
    [43]Z. Liang and J. Li, Extreme acoustic metamaterial by coiling up space, Physical Review Letters,2012,108(11):114301.
    [44]D. Monroe, Focus:Scenic route for sound allows extra control, Physics,2012,5: 33.
    [45]Z. Wang, Y. D. Chong, J. D. joannopoulos, and M. Soljacic, Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal, Physical Review Letters,2008,100(1):013905.
    [46]F. D. M. Haldane and S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry, Physical Review Letters,2008,100(1):013904.
    [47]Z. F. Yu and S. H. Fan, Complete optical isolation created by indirect interband photonic transitions Nature Photonics,2009,3:91-94.
    [48]L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal Light Propagation in a Silicon Photonic Circuit, Science,2011,333:729-733.
    [49]L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, An All-Silicon Passive Optical Diode, Science,2012,335:447-450.
    [50]B. W. Li, L. Wang, and G. Casati, Thermal Diode:Rectification of Heat Flux, Physical Review Letters,2004,93(18):184301.
    [51]B. W. Li, J. Lan, and L. Wang, Interface Thermal Resistance between Dissimilar Anharmonic Lattices, Physical Review Letters,2005,95(10):104302.
    [52]C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-State Thermal Rectifier, Science,2006,314:1121-1124.
    [53]V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media, Physical Review Letters,2005,95(15):158702.
    [54]R.Riedling, U.S.Patet,4618796,1989.
    [55]M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Physical Review B,1994,49(4):2313-2322.
    [56]B. Liang, B. Yuan, and J. C. Cheng, Acoustic Diode:Rectification of acoustic energy flux in one-dimensional systems, Physical Review Letters,2009,103(10): 104301.
    [57]B. W. Li, Acoustics:now you hear me, now you don't, Nature Materials,2010,9: 962-963.
    [58]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nature Material,2010,9:989-992.
    [59]N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-based acoustic switching and rectification, Nature Material,2011,10:665-668.
    [60]X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode, Physical Review Letters,2011,106(8):084301.
    [61]Z. J. He, S. S. Peng, Y. T. Ye, Z. W. Dai, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, Asymmetric acoustic gratings, Applied Physics Letters,2011,98(8):083505.
    [62]X. F. Zhu, X. Y. Zou, B. Liang, and J. C. Cheng, One-way mode transmission in one-dimensional phononic crystal plates, Journal of Applied Physics,2010, 108(12):124909.
    [63]B. Yuan, B. Liang, J. C. Tao, X. Y. Zou, and J. C. Cheng, Broadband directional acoustic waveguide with high efficiency, Applied Physics Letters,2012,101(4): 043503.
    [64]R. Q. Li, B. Liang, Y. Li, W. W. Kan, X. Y. Zou, and J. C. Cheng, Broadband asymmetric acoustic transmission in a gradient-index structure, Applied Physics Letters,2012,101(26):263502.
    [65]A. Cicek, O. A. Kaya, and B. Ulug, Refraction-type sonic crystal junction diode, Applied Physics Letters,2012,100(11):111905.
    [66]J. H. Oh, H. W. Kim, P. S.Ma, H. M. Seung, and Y. Y. Kim, Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications, Applied Physics Letters,2012,100(21):213503.
    [67]Y. Tanaka, T. Murai, and N. Nishiguchi, Rectification of elastic waves in a thin plate, Journal of Applied Physics,2012,111(2):024507.
    [68]S. J. Xu, C. Y. Qiu, and Z. Y. Liu, Acoustic transmission through asymmetric grating structures made of cylinders, Journal of Applied Physics,2012,111(9): 094505.
    [69]H. Jia, M. Z. Ke, C. H. Li, C. Y. Qiu, and Z. Y. Liu, Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves, Applied Physics Letters,2013,102(15):153508.
    [70]Y. Li, J. Tu, B. Liang, X. S. Guo, D. Zhang, and J. C. Cheng, Unidirectional acoustic transmission based on source pattern reconstruction, Journal of Applied Physics,2012,112(6):064504.
    [1]Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev.Lett.,2008, 100(1):013905.
    [2]F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett.,2008,100(1):013904.
    [3]Z. F. Yu and S. H. Fan, Complete optical isolation created by indirect interband photonic transitions Nat. Photonics,2009,3:91-94.
    [4]L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal light propagation in a silicon photonic circuit, Science,2011,333:729-733.
    [5]L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, An all-silicon passive optical diode, Science,2012,335:447-450.
    [6]B.W. Li, L. Wang, and G. Casati, Thermal diode:rectification of heat flux, Phys. Rev. Lett.,2004,93(18):184301.
    [7]B. W. Li, J. Lan, and L. Wang, Interface Thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett.,2005,95(10):104302.
    [8]C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-State Thermal rectifier, Science,2006,314:1121-1124.
    [9]V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, Anomalous wave reflection at the interface of two strongly nonlinear granular media, Phys. Rev. Lett.,2005,95(15):158702.
    [10]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett.,1993,71(13): 2022-2025.
    [11]R. Martinez-Sala, J. Sancho, J. V.Sanchez, V.Gomez, J. Llinares, and F. Meseguer, Sound attenuation by sculpture, Nature,1995,6554(378): 241.
    [12]M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Negative birefraction of acoustic waves in a sonic crystal, Nature Materials,2007,6:744-748.
    [13]L. Feng, X.P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y Zhu, S. N. Zhu, and N. B. Ming, Acoustic Backward-Wave Negative refractions in the second band of a soniccrystal, Phys. Rev. Lett.,2006,96(1): 014301.
    [14]L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, and Y. Y. Zhu, Negative refraction of acoustic waves in two-dimensional sonic crystals, Phys. Rev. B,2005,72(3):033108.
    [15]X. D. Zhang and Z. Y. Liu, Negative refraction of acoustic waves in two-dimensional phononic crystals, Appl. Phys. Lett.,2004,85(2):341-343.
    [16]L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhul S. N. Zhu, and N. B. Ming, Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal, Phys. Rev. B,2006,73(19): 193101.
    [17]Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound, Phys. Rev. Lett., 2010,104(16):164301.
    [18]Z. J. He, H. Jia, C. Y. Qiu, S. S. Peng, X. F. Mei, F. Y. Cai, P. Peng, M. Z. Ke, and Z. Y. Liu, Acoustic transmission enhancement through a periodically structured stiff Plate without any opening, Phys. Rev. Lett.,2010,105(7): 074301.
    [19]B. Liang, B. Yuan, and J. C. Cheng, Acoustic Diode:Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett.,2009,103(10): 104301.
    [20]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nature Mater.,2010,9:989-992.
    [21]N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-based acoustic switching and rectification, Nature Material,2011,10:665-668.
    [22]X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett.,2011,106(8):084301.
    [23]S. J. Xu, C. Y. Qiu, and Z. Y. Liu, Acoustic transmission through asymmetric grating structures made of cylinders, Journal of Applied Physics,2012,111(9): 094505.
    [24]Z. J. He, S. S. Peng, Y. T. Ye, Z. W. Dai, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, Asymmetric acoustic gratings, Applied Physics Letters,2011,98(8):083505.
    [25]A. Cicek, O. A. Kaya, and B. Ulug, Refraction-type sonic crystal junction diode, Applied Physics Letters,2012,100(11):111905.
    [26]J. H. Oh, H. W. Kim, P. S.Ma, H. M. Seung, and Y. Y. Kim, Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications, Applied Physics Letters,2012,100(21):213503.
    [27]B. Yuan, B. Liang, J. C. Tao, X. Y. Zou, and J. C. Cheng, Broadband directional acoustic waveguide with high efficiency, Applied Physics Letters, 2012,101(4):043503.
    [28]H. X. Sun, S. Y. Zhang, and X. J. Shui, A tunable acoustic diode made by a metal plate with periodical structure, Appl. Phys. Lett.,2012,100(10):103507.
    [29]H. X. Sun and S. Y. Zhang, Enhancement of asymmetric acoustic transmission, Appl. Phys. Lett.,2013,102(11):153508.
    [30]V. Twersky, On scattering of waves by the infinite grating of circular cylinders, IEEE Trans, on Antennas and Propagation,1962,10:737-765.
    [31]B.A.Auld(著),孙承平(译),固体中的声场和波(第1卷),北京:科学出版社(1982).
    [32]杜功焕,朱哲民,龚秀芬,声学基础,第2版,南京:南京大学出版社(2011).
    [33]夏志皋,江理平,唐高寿,弹性力学及其数值方法,上海:同济大学出版社(1997).
    [34]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云,声子晶体,北京:国防工业出版社(2009).
    [35]J. R. Wu and Z. M. Zhu, The propagation of Lamb waves in a plate bordered with layers of a liquid, J. Acoust. Soc. Am,1992,91(2):861-867.
    [36]V. Dayal, V.K. Kinra. Leaky Lamb waves in an anisotropic plate. I:An exact solution and experiments, J. Acoust. Soc. Am,1989,85(6):2268-2276.
    [1]B. Liang, B. Yuan, and J. C. Cheng, Acoustic Diode:Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett.,2009,103(10):104301.
    [2]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nature Mater.,2010,9:989-992.
    [3]N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-based acoustic switching and rectification, Nature Material,2011,10:665-668.
    [4]X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett.,2011,106(8):084301.
    [5]S. J. Xu, C. Y. Qiu, and Z. Y. Liu, Acoustic transmission through asymmetric grating structures made of cylinders, Journal of Applied Physics,2012,111(9): 094505.
    [6]A. Cicek, O. A. Kaya, and B. Ulug, Refraction-type sonic crystal junction diode, Applied Physics Letters,2012,100(11):111905.
    [7]J. H. Oh, H. W. Kim, P. S.Ma, H. M. Seung, and Y. Y. Kim, Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications, Applied Physics Letters,2012,100(21):213503.
    [8]Z. J. He, S. S. Peng, Y. T. Ye, Z. W. Dai, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, Asymmetric acoustic gratings, Applied Physics Letters,2011,98(8):083505.
    [9]H. X. Sun, S. Y. Zhang, and X. J. Shui, A tunable acoustic diode made by a metal plate with periodical structure, Appl. Phys. Lett.,2012,100(10):103507.
    [10]H. X. Sun and S. Y. Zhang, Enhancement of asymmetric acoustic transmission, Appl. Phys. Lett.,2013,102(11):153508.
    [11]Q. Wei, Y. Cheng, and X. J. Liu, Acoustic omnidirectional superabsorber with arbitrary contour, Appl. Phys. Lett.,2012,100(9):094105.
    [12]Y. R. Wang, H. Zhang, S. Y. Zhang, L. Fan, and H. X. Sun, Broadband acoustic concentrator with multilayered alternative homogeneous materials, J. Acoust. Soc. Am.,2012,131(2):EL150-EL155.
    [13]COMSOL Multiphysics User's Guide, Version 4.2 (http://www.comsol.com).
    [14]H. Jia, M. Z. Ke, C. H. Li, C. Y. Qiu, and Z. Y. Liu, Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves, Appl. Phys. Lett.,2013,102(15):153508.
    [15]B. Hou, J. Mei, M. Z. Ke, Z. Y. Liu, J. Shi, and W. J. Wen, Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays, J. Appl. Phys.,2008,104(1):014909.
    [1]M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N, Zhu, and N. B. Ming, Extraordinary acoustic transmission through a lD grating with very narrow apertures, Physical Review Letters,2007,99(17):174301.
    [2]Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Acoustic Surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound, Physical Review Letters,2010,104(16):164301.
    [3]J. Christensenl, L. Martin-Moreno, and F. J. Garcia-Vidal, Enhanced acoustical transmission and beaming effect through a single aperture, Physical Review B, 2010,81(17):174104.
    [4]Z. J. He, H. Jia, C. Y. Qiu, S. S. Peng, X. F. Mei, F. Y. Cai, P. Peng, M. Z. Ke, and Z. Y. Liu, Acoustic Transmission enhancement through a periodically structured stiff plate without any opening, Physical Review Letters,2010, 105(7):074301.
    [5]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nature Mater.,2010,9:989-992.
    [1]X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett.,2011,106(8):084301.
    [2]S. J. Xu, C. Y. Qiu, and Z. Y. Liu, Acoustic transmission through asymmetric grating structures made of cylinders,J. Appl. Phys.,2012,111(9):094505.
    [3]H. Jia, M. Z. Ke, C. H. Li, C. Y. Qiu, and Z. Y. Liu, Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves, Appl. Phys. Lett.,2013,102(15):153508.
    [4]Y. Li, J. Tu, B. Liang, X. S. Guo, D. Zhang, and J. C. Cheng, Unidirectional acoustic transmission based on source pattern reconstruction, J. Appl. Phys., 2012,112(6):064504.
    [5]H. X. Sun, S. Y. Zhang, and X. J. Shui, A tunable acoustic diode made by a metal plate with periodical structure, Appl. Phys. Lett.,2012,100(10):103507.
    [6]H. X. Sun and S. Y. Zhang, Enhancement of asymmetric acoustic transmission, Appl. Phys. Lett.,2013,102(11):153508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700