周期阵列结构与电子注互作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹科学技术发展迅速,而太赫兹辐射源的研发是其中的关键技术。本论文主要探索一种能将电子学与光子学相结合从而产生太赫兹辐射的新型太赫兹源器件,并研究分析其中的一些物理现象和物理机制。
     在探索电子学与光子学相结合产生太赫兹辐射的过程中,本论文主要研究了如下内容并取得如下结果:
     一.本论文探讨利用电子注掠过金属表面直接激发金属中的表面等离子体波并与之互作用的可能性。相比于传统的电子或光子直接作用于金属表面激发表面等离子体波,这是一个新的尝试。通过理论推导,证明了电子注的等离子体频率只需达到金属中的等离子体波振荡频率的10~(-4)倍,就可以直接激发金属中的表面等离子体波并与之互作用。
     二.本论文探讨了电子注与亚波长孔阵列结构中的仿表面等离子体波互作用的情况。通过理论分析以及计算机粒子模拟,证明了电子注可以与亚波长孔阵列结构中的仿表面等离子体波互作用,并指出此种亚波长孔阵列结构与传统慢波结构相比所具有的优势。利用亚波长孔阵列结构中的透射现象,设计了双电子注与亚波长孔阵列结构的互作用模型,粒子模拟结果证明电子注的调制深度大大加深,从而证明此方法可以产生更大功率的太赫兹输出。
     三.本论文在研究电子注与亚波长孔阵列结构互作用的过程中,发现了双边的衍射辐射现象。利用经典的基于格林函数的积分方程的方法,从理论上推导了电子注激发亚波长孔阵列结构双边衍射辐射的整个物理过程,求得了各个区域场的解析表达式。运用计算机粒子模拟软件,证明了理论推导的正确性。在此基础上,利用解析解分析了双边衍射辐射的各种情况,并从物理机制上给予了解释。本论文利用电子注作为激发源,验证了亚波长孔阵列的透射现象,阐述了电子注作为激发源比其他平面波激发源所具有的优势,并探讨了结构深度对透射的影响。本论文还对亚波长孔阵列的透射现象进行了微波波段的实验研究,由平面波激发的亚波长孔阵列的透射现象的实验结果,从另一个角度验证了理论推导的正确性及可扩展性。
     四.本论文探讨了另外一种周期孔阵列结构——光子晶体中的辐射现象。运用平面波展开法和等离子体粒子模拟方法讨论了一维和二维光子晶体中的辐射特性。为了更好的研究,专门设计了粒子模拟的边界条件模块,并取得很好的结果。本论文模拟了电子以不同速度进入一维光子晶体所产生的辐射现象;并从理论上分析了二维光子晶体中可能的辐射现象。验证了前人对二维正方形晶格光子晶体中辐射的分析,运用粒子模拟验证了这些现象,并将这一理论分析拓展至六边形晶格结构光子晶体辐射的分析中。
Terahertz Science and Technology have been developed rapidly, and the developments of the radiation sources are one of the key researches in this area. In this work, the major study is to explore a new way of merging the electronics and photonics for the new type terahertz sources and devices.
     The following results have been achieved in this dissertation:
     1. The possibility of excitation of surface plasmon in conducting metal by electron beam has been discussed. It has been proven that the surface plasmon can be excited and amplified by electron beam just passing above to the surface of metal. This phenomenon may happen if the plasma frequency is just 10~(-4) of the plasmon frequency of metal.
     2. The subwavelength holes array has been proposed to explore the interaction of electron beam and mimicking surface plasmon. After theoretical analysis and computer simulation, it has been proven that electron beam can excite the mimicking surface plasmon in the subwavelength holes array and interact with it to produce the terahertz radiation. The advantages of subwavelength holes array structure for the electron beam-wave interaction have been revealed comparing with the traditional slow wave structures. The enhanced transmission phenomenon of subwavelength holes array is utilized to design the two beams interaction sources. The results of computer simulation demonstrate that the sources driven by two beams can produce much more terahertz radiation.
     3. A novel electromagnetic diffraction radiation phenomenon is discovered. It explores that the physics of electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line current of electron beam. Actived by a uniformly moving line current, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration below the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained from the computer simulation. The relation between the effective surface plasmon wave, electromagnetic penetration of the holes and diffraction radiation has been revealed theoretically. It has been proven that the phenomena involving the electromagnetic penetration/transmission and diffraction radiation in both sides of the array happen simultaneously. A distinct diffraction radiation phenomenon has been discovered and the mechanism has been disclosed. The experimental research has been carried out in the microwave frequency region. Moreover, the integral equations method for the analytical theory of the diffraction radiation and the electromagnetic penetration/transmission of the SHA can also be extended and explored to other interesting phenomena with SHA structure.
     4. The work also discusses the diffraction radiation in another periodical structure—Photonic Crystal. Theoretical study and computer simulation on the Vavilov-Cherenkov Radiation (VCR) in 1D and 2D photonic crystal are given in the paper. It has been found previously that there are number of interesting and important behaviors for the VCR in a 2D photonic crystal, such as when the electron energy is lower than the threshold the backward VCR may occur, etc. Some new important features of the VCR in photonic crystal, mainly the radiation excited by a train of electron bunches has been observed and the physical mechanism is examined as well.
引文
[1]刘盛纲.太赫兹科学技术的新发展.第270次香山科学会议,北京,2005
    [2]Nagel M,Boliver P H,Brucherseifer M,et al.Integrated THz technology for label free genetic diagnostics.Appl.Phys.Lett.,2002,80(1):154-156
    [3]Markelz A G,Roitberg A and Heilweil E J.Pulsed terahertz spectroscopy of DNA,bovine serum albumin and collagen between 0.1 and 0.2 THz.Chem.Phys.Lett.,2000,320(1-2):42-48
    [4]Dekorsy T,Auer H,Waschke C,et al.Emission of Submillimeter Electromagnetic Waves by Coherent Phonons.Phys.Rev.Lett.,1995,74(5):738-741
    [5]Clery J C.Brainstroming their way to an imaging revolution.Science,2002,297(5582):761-763
    [6]Tadao Nagatsuma.Exploring Sub-Terahertz Waves for Future Wireless Communications.The Joint 31~(st)International Conference on Infrared and Millimeter Waves and 14~(th)International Conference on Terahertz Electronics,2006,4
    [7]McMillan R W,Trussell C W,Bohlander R A,et al.An Experimental 225GHz Pulsed Coherent Radar.IEEE Trans.Microwave Theory and Tech.,1991,39(3):555-562
    [8]Daniel R C,Guy B D,Thomas M G.W-band Polarimetric Scattering Features of a Tactial Ground Target Using a 1.56THz 3D imaging Compact Range.Proceedings of SPIE,2001,4382(1):241-251
    [9]G L Carr,Michael C Martin,Wayne R McKinney,et al.High-Power terahertz radiation from relativistic electron.Nature,2002,420(6912):153-156
    [10]Gruner G.Millimeter and Submillimeter Wave Spectroscopy of Solids.Topics in Applied Physics,1998,74(1):51-109
    [11]Leavitt R P,Wortman D E,Dropkin H.Millmeter-wave Oronton Oscillation-Part Ⅰ:Theory.IEEE J.Quantum Electronics,1981,QE-17(8):1333-1340
    [12]Wortman D E,Dropkin H,Leavitt R P.Millmeter-wave Oronton Oscillation-Part Ⅱ:Experiment.IEEE J.Quantum Electronics,1981,QE-17(8):1341-1348
    [13] Bratman V L, Dumesh B S, Fedotov A F. Broadband Orotron operation at millimeter and submillimeter waves. Int. J. Infrared and Millimeter Waves, 2002, 23(11): 1595-1601
    [14] Agusu L, Idehara T, Mori H, et al. Design of a CW 1THz Gyrotron (Gyrotron Fu Cw Ⅲ) using a 20 T superconducting magnet. Int. J. Infrared and Millimeter Waves, 2007, 28(3): 315-328
    [15] Siegel P H, Fung A, Manohara H, et al. Nanoklystron: A monolithic tube approach to THz power generation. 2001 in 12~(nd) Int. Space Terahertz Technol. Symp., 1: 81-90
    [16] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc., 1996, 13(11): 2424-2436
    [17] Zhang X C, Hu B B, Darrow J T, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett., 1990, 56(11): 1011-1013
    [18] Williams B S, Kumar S, Callebaut H, et al. Terahertz quantum cascade Laser operating up to 137K. Appl. Phys. Lett., 2003, 83(25): 5142-5144
    [19] Chen Q, Zhang X C. Polarization modulation in optoelectronic generation and detection of terahertz beams. Appl. Phys. Lett., 1999, 74(23): 3435-3438
    [20] Taniuchi T, Shikata J. Tunable terahertz wave generation in DAST cystal with dual-wavelength KTP optical parametric oscillator. Eletronics Letters, 2000, 36(16): 1414-1416
    [21] Dragoman D, Dragoman M. Terahertz fields and applications. Progress in Quantum Electronics, 2004, 28(1): 1-66
    [22] Xu L, Zhang X C, Auston D H. Terahertz beam generation by femtosecond optical
    pulses in electro optic materials. Appl. Phys. Lett., 1992, 61(15): 1784-1786
    [23] 吴培亨,陈健.太赫兹波段的检测.第270次香山科学会议,北京 2005
    [24] Kanglin Wang, Daniel MMittleman. Metal wires for terahertz wave guiding. Nature, 2004, 432(7015): 376-379
    [25] Hou-Tong Chen, Willie J Padilla, Joshua M O Zide, et al. Active terahertz metamaterial devices. Nautre, 2006, 444(5343): 597-600
    [26] Hou-Tong Chen, John F Hara, Abul K Azad, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295-298
    [27] Heinz Raether. Surface Plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag, 1988, 4-7
    [28]J M Pitarke,V M Silkin,E V Chulkov,et al.Theory of surface plasmons and surface-plasmon polaritons.Rep.Prog.Phys.,2007,70(1):1-87
    [29]William L Barnes,Alain Dereux,Thomas W Ebbesen.Surface plasmon subwavelength optics.Nature,2003,424(6942):824-830
    [30]C J Powell,J B Swan.Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium.Phys.Rev.,1960,118(3):640-643
    [31]M.Friedman,V Serlin,A Drobot, et al.Propagation of Intense Relativistic Electron Beams through Drift Tubes with Perturbed Walls.Physics Review Letter,1983,50(24):1922-1925
    [32]谢家麟,赵永翔.速调管群聚理论.北京:科学出版社,1966, 38-42
    [33]刘盛纲.刘盛纲学术论文集.成都:四川科学技术出版社,1993,146-157
    [34]刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1985,292-295
    [35]J B Pendry,L Martin-Moreno,F J Garcia-Vidal.Mimicking Surface Plasmons with Structured Surfaces.Science,2004,305(5685):847-848
    [36]Alastair P Hibbins,Benjamin R Evans,J R Sambles.Experimental Verification of Designer Surface Plasmons.Science,2005,308(5722):670-672
    [37]F J Garcia,J J Saenz.Electromagnetic surface modes in structured perfect-conductor surfaces.Phys.Rev.Lett.,2005,95(23):233901
    [38]Mathieu Carras,Alfredo De Rossi.Photonic modes of metallodilectric periodic waveguides in the midinfrared spectral range.Phys.Rev.B,2006,74(23):235120
    [39]F J Garcia-Vidal,L Martin-Moreno,J B Pendry.Surfaces with holes in them:new plasmonic metamaterials.J.Opt.A:Pure Appl.Opt.,2005,7(2):S97-S101
    [40]Zhichao Ruan,Min Qiu.Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface.Appl.Phys.Lett.,2007,90(20):201906
    [41]William Barnes,Roy Sambles.Only Skin Deep.Science,2004,305(5685):785-786
    [42]M Nazarov,J L Coutaz,A Shkurinov,et al.THz surface plasmon jump between two metal edges.Optics Comm.,2007,277(5):33-39
    [43]J B Pendry,A J Holden,W J Stewart,et al.Extremely low frequency plasmons in metallic mesostructures.Phys.Rev.Lett.,1996,76(25):4773-4776
    [44] M A Shapiro, G Shvets, J R Sirigiri, et al. Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves. Opt. Lett., 2006, 31(13): 2051-2053
    [45] R B Pettit, J Silcox, R Vincent. Measurement of surface-plasmon dispersion in oxidized aluminum films. Phys. Rev. B, 1975, 11(8): 3116-3123
    [46] Bo E Sernelius. Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces. Phys. Rev. B, 2005, 71(23): 235114
    [47] H Shin, Peter B Catrysse, Shanhui Fan. Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes. Phys. Rev. B, 2005, 72(8): 085436
    [48] 张克潜,李德杰.微波与光电子学中的电磁理论. 北京:电子工业出版社, 2001, 293-298
    [49] Bruce E Carlsten. Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure. Phys. Plas., 2002, 9(12): 5088-5096
    [50] Vinit Kumar, Kwang-Je Kim. Analysis of Smith-Purcell free-electron lasers. Phys. Rev. E, 2006, 73(2): 026501
    [51] A A Maragos, Z C Ioannidis, I G Tigelis. Dispersion characteristics of a rectangular waveguide grating. IEEE Tran. Plas. Scie., 2003, 31(5): 1075-1082
    [52] J A Dionne, L A Sweatlock, H A Atwater. Planar metal plasmon waveguides frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B, 2005, 72(7): 075405 [53] H P Freund, T M Abu-Elfadl. Linearized Field Theory of a Smith-Purcell Traveling Wave Tube. IEEE Tran. Plas. Scie., 2004, 32(3): 1015-1024 [54] D Li, K Imasaki, Z Yang. Absolute and convective instability of smith-purcell free electron laser. Proceedings of FEL, 2006, TUPPH047 [55] Yuan-Yao Lin, Yen-Chieh Huang. Mode and gain analysis for symmetric and staggered grating-waveguide free-electron laser. Phys. Rev. ST- A. B., 2007, 10(3): 030701 [56] Vinit Kumar, RRCAT, Indore, et al. Optimization of parameters of smith-purcell BWO. Proceedings of FEL, 2006, M0PPH014 [57] Chuan Sheng Liu, Vipin K Tripathi. Simulated coherent Smith-Purcell radiation from a metallic grating. IEEE J. Quan. Elec., 1999, 35(10): 1386-1389 [58] C Genet, T W Ebbesen. Light in tiny holes. Nature, 2007, 445(5350): 39-46
    [59] Yung-Chiang Lan, Ruey-Lin Chern. Surface plasmon-like modes on structured perfectly conducting surface. Optics Express, 2006, 14(23): 11339-11347
    [60] J T Shen, Peter B Catrysse, Shanhui Fan. Mechanism for designing metallic matamaterials with a high index of refraction. Phys. Rev. Lett., 2005, 94(19): 197401
    [61] Philips P M, Zaidman E G, et al. Review of two-stream amplifier performance. IEEE Trans. Plas. Scie., 1990, 37(3): 870-875
    [62] Serlin V, Friedman M. The two-beam configuration of the relativistic klystron amplifier. Proceedings of SPIE, 1993, 1872(7): 96-105
    [63] Chen C, Catravas P, Bekefi G. Growth saturation of stimulated beam modulation in a two-stream relativistic klystron amplifier. Appl. Phys. Lett., 1993, 62(14): 1579-1581
    [64] Uhm H S. Two-stream instability in a self-pinched relativistic electron beam. J. Appl. Phys., 1984, 56(7): 2041-2046
    [65] T W Ebbesen, H J Lezec, H F Ghaeml. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391(6668): 667-669
    [66] H A Bethe. Theory of Diffraction by Small Holes. Phys. Rev., 1944, 66(7&8): 163-182
    [67] F J Garcia-Vidal, Esteban Moreno, J A Porto, et al. Transmission of Light through a Single Rectangular Hole. Phys. Rev. Lett., 2005, 95(10): 103901
    [68] F J Garcia-Vidal, L Martin-Moreno, Esteban Moreno, et al. Transmission of light through a single rectangular hole in a real metal. Phys. Rev. B, 2006, 74(15): 153411
    [69] A Mary, Sergio G Rodrigo, L Martin-Moreno, et al. Theory of light transmission through an array of rectangular holes. Phys. Rev. B, 2007, 76(19): 195414
    [70] K L vander Molen, K J Klein Koerkamp, S Enoch, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys. Rev. B, 2005, 74(4): 045421
    [71] D E Grupp, H J Lezec, T W Ebbesen, et al. Crucial role of metal surface in enhanced transmission through subwavelength apertures. Appl. Phys. Lett., 2000, 77(11): 1569-1571
    124
    [72] Jean-Baptiste Masson, Guilhem Gallot. Coupling between surface plasmons in subwavelength hole arrays. Phys. Rev. B, 2006, 73(12): 121401
    [73] K J Klein Koerkamp, S Enoch, F B Segrink, et al. Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. Phys. Rev. Lett., 2004, 92(18): 183901
    [74] F J Garcia de Abajo, J J Saenz, I Campillo, et al. Site and lattice resonances in metallic hole arrays. Optics Express, 2006, 14(1): 9769
    [75] F J Garcia de Abajo, R Gomez-Medina, J J Saenz. Full transmission through perfect-conductor subwavelength hole arrays. Phys. Rev. E, 2005, 72(1): 016608
    [76] Henri J Lezec, Tineke Thio. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Optics Express, 2004, 12(16): 4585
    [76] Marek W Kowarz. Homogeneous and evanescent contributions in scalar near-field diffraction. Appl. Opt., 1995, 34(17): 3055-3063
    [78] Reuven Gordon. Bethe' s aperture theory for arrays. Phys. Rev. A, 2007, 76 (5): 053806
    [79] Haitao Liu, Philippe Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 2008, 452(6762): 728-731
    [80] Cyriaque Genet, Martin P van Exter, JPWoerdman. Huygens description of resonance phenomena in subwavelength hole arrays. J. Opt. Soc. Am. A, 2005, 22 (5): 998-1002
    [81] S V Kukhlevsky, M Mechler, L Csapo, et al. Enhanced transmission versus localization of a light pulse by a subwavelength metal slit. Phys. Rev. B, 2004, 70(19): 195428
    [82] E Popov, M Neviere, S Enoch, et al. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B, 2000, 62(23): 16100
    [83] A Krishnan, T Thio, T J Kim, et al. Evanescently coupled resonance in surface plasmon enhanced transmission. Optics Communication, 2001, 200(1): 1-7
    [84] L Martin-Moreno, F J Garica-Vidal, H J Lezec, et al. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett., 2001, 86(6): 1114-1117
    125
    [85] Sergy A Darmanyan, Anatoly V Zayats. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study. Phys. Rev. B, 2003, 67(3): 035424
    [86] Bo Hou, Zhi Hong Hang, WeijiaWen, et al. Microwave transmission through metallic hole arrays-Surface electric field measurement. Appl. Phys. Lett., 2006, 89(13): 131917
    [87] J Bravo-Abad, F J Garcia-Vidal, L Martin-Moreno. Resonant Transmission of Light Through Finite Chains of Subwavelength Holes in a Metallic Film. Phys. Rev. Lett., 2004, 93(22): 227401
    [88] Peter B Catrysse, Shanhui Fan. Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films. Phys. Rev. B, 2007, 75(7): 075422
    [89] Y Ben-Aryeh. Transmission enhancement by conversion of evanescent waves into propagating waves. Appl. Phys. B: Lasers and Optics, 2008, 91(1): 157-165
    [90] Bo Hou, Jun Mei, Manzhu Ke, et al. Tuning Fabry-Perot resonances via diffraction evanescent waves. Phys. Rev. B, 2007, 76(5): 054303
    [91] Young-Min Shin, Jin-Kyo So, Kyo-Ha Jang, et al. Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons. Phys. Rev. Lett., 2007, 99(14): 147402
    [92] Smith S J, Purcell EM. Visible Light from Localized Surface Charges Moving across a Grating. Phys. Rev., 1953, 92(2): 1069-1070
    [93] Yong-Min, Jin-Kyu So, Kyu-Ha Jang, et al. Superradiant terahertz Smiht-Purcell radiation from surface plasmon excited by counterstreaming electron beams. Appl. Phys. Lett., 2007, 90(3): 031502
    [94] Capser W Barnes, K G Dedrick. Radiation by an Electron Beam Interacting with a Diffraction Grating Two-Dimensional Theory. Journal of Applied Physics, 1966, 37(1): 411-418
    [95] Eamon Lalor. Three-Dimensional Theory of the Smith-Purcell Effect. Phys. Rev. A, 1973, 7(2): 435-446 [96] G F Mkrtchian. Small signal gain of a Smith-Purcell free electron laser. Phys. Rev. ST-AB, 2007, 10(8): 080701
    [97] 刘盛纲.相对论电子学.北京:科学出版社,1987,387-394
    [98]P M VandenBerg.Diffraction theory of a reflection grating.Appl.Sci.Res.,1971,24(1):261-293
    [99]P M VandenBerg.Smith-Purcell radiation from a line charge moving parallel to a reflection grating.Journal of the optical society of America,1973,63(12):689-697
    [100]P M VandenBerg.Smith-Purcell radiation from a point charge moving parallel to a reflection grating.Journal of the optical society of America,1973,63(12):1588-1597
    [101]Miguel Beruete,Mario Sorolla,I.Camillo,et al.Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates.IEEE tran.On Antennas and Propagation,2005,53(6):1897-1903
    [102]E Yablonovitch.Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Phys.Rev.Lett.,1987,58(20):2059-2062
    [103]E Yablonovitch.Photonic band-gap structures.Opt Soc,1993,10(1):283-295.
    [104]肖三水,光子晶体计算方法和设计的研究:[博士学位论文].浙江杭州:浙江大学,2004,711-715
    [105]Taflove A.The Finite-Different Time Domain method,Computational Electro dynamics.Artech House INC,1995.40-42
    [106]Stephen D.Gedney an Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices.IEEE Trans.Antennas and Propagation,1996,44(12):1630-1639
    [107]王秉中.计算电磁学.北京:科学出版社,2002
    [108]Jelley J V.Cherenkov radiation and its applications.London:Pergamon press,1958,1-2
    [109]Frank I M,Tamm I E.The coherent radiation of a fast electron in a medium.Dokl.Akad.Nauk SSSR,1937,14:107
    [110]J T Shen,P M Platzman.Properties of a one-dimensional etallophotonic crystal.Phys.Rev.B,2004,70(3):035101
    [111]Chiyan Luo,Mihai Ibanescu,Steven G Johnson,et al.Cerenkov radiation in photonic crystals.Science,2003,299(5605):368-371
    [112]Chiyan Luo,Steven G Johnson,J D Joannopoulos.All-angle negative refraction without negative effective index.Phys.Rev.B,2002,65(20):201104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700