MEMS金属/电介质光子晶体的强透射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MEMS红外气敏传感器因其利用气体的特征光谱进行测量而具有优越的选择性、灵敏度和稳定性。其中,其关键部件MEMS红外光源的研究近年来备受人们的关注。随着纳米等离子体晶体技术的发展,人们注意到利用二维金属亚波长圆孔(孔直径不超过入射光波长的一半)阵列[Two-Dimensional MetallicSubwavelength Hole Arrays(TDMSHA)]具有对特定波长光的选择与强透射[Extraordinary Optical Transmission(EOT)]特性,有望为研制对特定范围的红外光波有很好的选择和增强透射作用的MEMS红外辐射光源提供了一个有效的手段。
     本文以MEMS红外气敏传感器为应用目标,采用MEMS技术,设计和制作一种由TDMSHA和硅—空气光子晶体组合成的金属/电介质光子晶体[Metal/Dielectric Photonic Crystal(MDPhC)]结构。目的是利用MDPhC对黑体热辐射光谱有增强透射和滤波剪裁特性来制作能够发射高性能、可调谐窄带的等离子体MEMS红外光源。论文主要研究了三种结构,即MDPhC、金属/金属/电介质光子晶体[Metal/Metal/Dielectric Photonic Crystal(M/MDPhC)]和金属/电介质/金属/电介质光子晶体[Metal/Dielectric/Metal/Dielectric Photonic Crystal(M/D/MDPhC)],系统地探讨了这三种结构的EOT新现象、新特性对提高等离子体MEMS红外光源的选频与光辐射增强特性的影响,为MEMS红外气敏传感器的应用提供理论基础和技术支持。
     本文主要研究内容和成果如下:
     1.研究了由TDMSHA和硅—空气光子晶体组合而成的MDPhC结构,探讨了几何尺寸横向比例即圆孔半径同阵列周期的比值(r/a_0=0.2,0.25,0.3)对MDPhC在金属/空气界面中表面等离子体激元[surface plasmon polaritons(SPP)](1,0)基态模式的EOT特性的影响。在课题组设计和制作的金/二氧化硅/硅MDPhC结构基础上,对该结构进行了时域有限差分法(FDTD)数值模拟和对实验样品的反射光谱进行了测量。同正方形晶格圆孔阵列相比较,理论模拟和实验测量结果均发现由正三角形晶格圆孔阵列组成的MDPhC,当r/a_0=0.25时,能够获得较强的光透射增强效果和较窄的透射峰。理论模拟结果拟合出来的反射率最小值的位置(λ_(min))与a_0的关系式(λ_(min)=1+0.82a_0)和实验结果拟合的关系式(λ_(min)=0.2+0.94a_0)基本属于一致的线性关系。这种线性关系与由SPP耦合作用机理推出的方程式(λ_(min)≈3~(1/2)a_0/2=0.87a_0)相符合,证实了该机理解释MDPhC的EOT特性是可行的。
     2.研究了由最外层金属膜厚度小于其趋肤深度而内层金属膜厚度远大于其趋肤深度的双层金属膜组成的M/MDPhC结构,发现该结构中的双层金属之间存在SPP相互耦合作用。探讨了最外层金属厚度(t_m)对M/MDPhC的EOT特性的影响。采用MEMS技术,设计和制作了由银/金双层金属膜TDMSHA和硅—空气光子晶体组合而成的M/MDPhC结构。对该结构进行了FDTD数值模拟和对实验样品的透射光谱进行了测量。比较了M/MDPhC和MDPhC的EOT特性,发现M/MDPhC比MDPhC在金属/空气界面中SPP(1,1)次态模式的透射效率[T(λ_(max))]大,且其大小与t_m无关;而M/MDPhC在金属/空气界面中SPP(1,0)基态模式的T(λ_(max))与t_m有关;这说明银/金双层组合膜之间存在SPP相互耦合作用且主要发生在金属/空气界面中。实验结果发现:由不同的银膜厚度(t_m=1.5,3.8,23nm)组成的正三角形晶格和正方形晶格两种圆孔阵列的M/MDPhC在金属/空气界面中SPP(1,0)基态模式的EOT现象都与t_m存在相似的关系。①随着t_m的增加,透射峰的位置(λ_(max))有规律地向短波长方向偏移;②当t_m=3.8nm时,M/MDPhC的T(λ_(max))较大。
     3.研究了由金属/电介质/金属三层组合膜组成的M/D/MDPhC结构,探讨了电介质的折射率对M/D/MDPhC在金属/空气界面中SPP(1,0)基态模式的EOT特性的影响,同时也讨论了不同电介质膜的厚度(t_d=0.2,0.4,0.6μm)的影响。采用MEMS技术,设计和制作了由金/SiO_xN_y/金三层膜组合的TDMSHA和硅—空气光子晶体构成的M/D/MDPhC结构。对实验样品的透射光谱进行了测量。比较了M/D/MDPhC和MDPhC的EOT特性,发现M/D/MDPhC的透射峰更窄了,这说明金/SiO_xN_y/金三层组合膜之间存在SPP相互耦合作用。实验结果发现:①采用折射率小(1.6)的SiO_(2.1)N_(0.3)比折射率大(1.8)的SiO_(0.6)N_1组成的M/D/MDPhC的λ_(max)小,这证实了SPP相互耦合作用机理的正确性;②采用低折射率的SiO_(2.1)N_(0.3)组成的M/D/MDPhC的T(λ_(max))较大且透射峰较窄;③采用薄的SiO_xN_y膜(0.2微米)组成的M/D/MDPhC能够获得较大的T(λ_(max))和较窄的透射峰;随着SiO_xN_y膜的厚度增加,M/D/MDPhC在金属/空气界面中SPP(1,0)基态模式逐渐退化,其透射峰也逐渐展宽。
MEMS infrared gas sensor has excellent selectivity,sensitivity and stability owing to using spectral characteristics of gas as measurement.Thereinto,the research on MEMS infrared light source,which is the key components of it has been concerned in recent years.With the development of nanometer plasmonic crystals technology,it was noted that using the characteristics of two-dimensional metallic subwavelength (hole diameter less than half of the wavelength of incident light) round hole arrays (TDMSHA) to select a specific wavelength of light and enhance extraordinary optical transmission(EOT),it is possible to provide an effective means of fabricating MEMS infrared radiation light source having a very good selection and enhancement in a specific range of infrared light.
     In this paper,MEMS infrared gas sensor as the goal of application,we design and fabricate the metal/dielectric photonic crystal(MDPhC) combined structure with TDMSHA and silicon-air photonic crystal using MEMS technology.The purpose is to fabricate the plasmonic MEMS infrared light source,which can emit high performance、tunable narrow-band light by using these tailor-made properties of MDPhC enhanced the blackbody radiation spectrum transmission and filtering.The three kinds of structures were investigated mainly by us in this paper,namely MDPhC、metal/metal/dielectric photonic crystal(M/MDPhC) and metal/dielectric/metal photonic crystal(M/D/MDPhC),we systematically explored the effect of new phenomena and new features of the EOT for three different structures to enhance the characteristics of plasmonic MEMS infrared light source selected frequency and optical radiation enhancement,this will provide a theoretical basis and technical support for the application of MEMS infrared gas sensor.
     The main research contents and results in this paper are as follows:
     1.We investigated MDPhC combined structure with TDMSHA and silicon-air photonic crystal,and explored the ratio of the horizontal geometry namely hole radius ratio to the array period(r/a_0=0.2,0.25,0.3) effect on the EOT performance at metal/air interface surface plasmon polaritons(SPP)(1,0) ground-state model of MDPhC.Based on the design and production of the gold/silicon dioxide/silicon MDPhC structure by our MEMS group,we used FDTD numerical simulation to the structure and measured reflectance spectra of experimental samples.Comparing with square lattice round hole array,it is found that both the theoretical simulation results and the experimental results have proved that MDPhC being composed of triangular lattice round hole array,while r/a_0=0.25,it can obtain better effect of light transmission enhancement and narrower transmission peak.The relationship(λ_(min)=1+0.82a_0) of array period(a_0) and the minimum reflectivity position(λ_(min)) by fitting the theoretical simulation results and the relationship(λ_(min)=0.2+0.94a_0 ) by fitting the experimental results are the same linear relationship basically.This linear relationship is coincident with the equation(λ_(min)≈3~(1/2)a_0/2=0.87a_0) by the introduction of SPP coupling mechanism,it is confirmed that the SPP coupling mechanism to explain the EOT characteristics of MDPhC is feasible.
     2.We investigated M/MDPhC combined structure with double-layered metallic films,which the metal film's thickness of outer layer is less than its skin depth and the metal film's thickness of the inner layer is much larger than skin depth.It is found that the role of SPP mutual coupling occurs between the double-metal of the structure.The effect of metal thickness(t_m) at outermost layer on the EOT characteristics of M/MDPhC was explored by us.We design and fabricate M/MDPhC combined structure with silver/gold double-layered metallic films' TDMSHA and silicon-air photonic crystal using MEMS technology.We used FDTD numerical simulation to the structure and measured transmission spectra of experimental samples.By comparing the EOT characteristics of M/MDPhC and MDPhC,it is found that the transmission efficiency[T(λ_(max))]of SPP(1,1) hypo-state model at metal/air interface of M/MDPhC is bigger than MDPhC,and it has nothing to do with t_m;and the T(λ_(max)) of SPP(1,0) ground-state model at metal/air interface of M/MDPhC has something to do with t_m;it is;demonstrated that the SPP mutual coupling role being between silver/gold double-layered metallic films occurs only at metal/air interface. The results are found that:The EOT characteristics of M/MDPhC being composed of triangular lattice and square lattice round hole arrays with different silver film's thickness(t_m=1.5,3.8,23nm) exists the similar relationship with t_m.(1)With the increase of t_m,theλ_(max) shift to the direction of short-wavelength regularly;(2)While t_m=3.8nm,M/MDPhC has bigger T(λ_max).
     3.We investigated M/D/MDPhC combined structure with metal/dielectric/metal trilayer combination membrane,the effect of refractive index of dielectric on the EOT characteristics of SPP(1,0) ground-state model at metal/air interface of M/D/MDPhC was explored by us,and at the same time we also discussed the impact of the different dielectric film's thickness(t_d=0.2,0.4,0.6μm).We design and fabricate M/D/MDPhC combined structure with TDMSHA consisting of Au/SiO_xN_y/Au three combination membrane and silicon-air photonic crystal using MEMS technology.We measured transmission spectra of experimental samples.By comparing the EOT characteristics of M/D/MDPhC and MDPhC,it is found that the transmission peak of M/D/MDPhC get much narrower,it is demonstrated that the SPP mutual coupling role between Au/SiO_xN_y/Au three combination membrane indeed exists.The results are found that:(1)λ_(max) of M/D/MDPhC being composed of SiO_(2.1)N_(0.3) with small refractive index(1.6) is smaller than that of M/D/MDPhC being composed of SiO_(0.6)N_1 with large refractive index(1.8),the phenomenon can validate the correctness of SPP mutual coupling role mechanism;(2)M/D/MDPhC being composed of dielectric SiO_(2.1)N_(0.3) with small refractive index has a larger T(λ_(max)) and a narrower transmission peak;(3)M/D/MDPhC being composed of SiO_xN_y with thin film(0.2μm) is able to get much larger T(λ_(max)) and narrower transmission peak; With the increase of SiO_xN_y film's thickness,theSPP(1,0) ground-state model at metal/air interface of M/D/MDPhC gradually degrades,and its transmission peak also gradually widens.
引文
[1] H. A. Bethe, Theory of Diffraction by Small Holes [J]. Phys. Rev. 1944, 66,163-182.
    
    [2] T.W. Ebbesen, HJ. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature. 1998, 391: 667-669.
    [3] W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics [J]. Nature 2003,424: 824-830.
    
    [4] Raether, H. Surface Plasmons (ed. Hohler, G) (Springer, Berlin, 1998).
    [5] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106: 874-881.
    [6] Okamoto T, Feng J, Kawata S. Enhanced electroluminescence of organic light emitting diodes with a plasmonic crystal [C]. 2004, NFO8 conference.
    [7] Zayats A V, et al. Nanooptics of surface plasmon polaritons [J].Phys. Rep, 2005, 408 (324): 131-314.
    [8] Daniel E. Grupp, Henri J. Lezec, Tineke Thio, Thomas W. Ebbesen. Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture. [J]. Adv. Mater. 1999,11 (10): 860-862.
    [9] Tineke Thio, K. M. Pellerin, and T. W. Ebbesen. et al. Enhanced light transmission through a single subwavelength aperture. [J].Opt. Lett. 2001,26 (24): 1972-1974.
    [10] Tineke Thio, H J Lezec, and R A Linke. Giant optical transmission of sub-wavelength apertures: physics and applications. [J]. Nanotechnology. 2002, 13 (3): 429-432.
    
    [11] Garcia-Vidal, F. J., Moreno, E., Porto, J. A. and Martin-Moreno, L. Transmission of light through a single rectangular hole. [J]. Phys. Rev. Lett. 2005, 95,103901.
    
    [12] Garcia de Abajo, F. J. Light transmission through a single cylindrical hole in a metallic film. [J].Opt. Express 2002, 10: 1475-1484.
    [13] R. Gordon, A. G Brolo, and K. L. Kavanagh. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. [J]. Phys. Rev. Lett. 2004, 92: 037401-037404.
    [14] Tineke Thio, H. F. Ghaemi, H. J. Lezec, and T. W. Ebbesen et al. Surface-plasmon-enhanced transmis-sion through hole arrays in Cr films [J]. J. Opt. Soc. Am. B. 1999, 16, (10): 1743-1748.
    [15] Hua Cao and Ajay Nahata. Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. [J]. Opt. Express, 2004, 12, (16): 3664-3672.
    [16] K. J. Klein Koerkamp, S. Enoch, and L. Kuipers. Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. [J]. Phys. Rev. Lett. 2004, 92: 183901-183904.
    
    [17] H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
    
    [18] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays [J]. Phys. Rev. Lett. 2001, 86 (6): 1114-1117.
    
    [19] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B 1998, 58 (11): 6779-6782.
    [20] A. Krishnan, T. Thio, and T.W. Ebbesen. Evanescently coupled resonance in surface plasmon enhanced transmission [J]. Opt. Commun. 2001, 200: 1-7.
    [21] C. Genet & T. W. Ebbesen. Light in tiny holes [J]. Nature. 2007,445: 39-46.
    [22] William L. Barnes, Alain Dereux & T. W. Ebbesen. Surface Plasmon subwavelength optics [J]. Nature. 2003,424: 824-830.
    
    [23] Xiang Shou, Amit Agrawal and Ajiay Nahata. Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures [J]. Opt. Express 2005, 13:9834-9840.
    
    [24] Abul K. Azad, Yuguang Zhao, Weili Zhang and Mingxia He. Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays. [J]. Opt. Lett. 2006, 31: 2637-2639.
    
    [25] Henri Lezec and Tineke Thio. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. [J]. Opt. Express 2004, 12 (16): 3629-3651.
    [26] Haitao Liu, Philippe Lalanne. Microscopic theory of the extraordinary optical transmission. [J]. Nature 2008, 452: 728-731.
    
    [27] Reuven Gordon, Alexandreg. Brolo et al. A New Generation of Sensors Based on Extraordinary Optical Transmission [J]. Accounts of chemical research. 2008, 41 (8): 1049-1057.
    
    [28] Irina Puscasu, Martin Pralle, et al. Photolithographically controlled emission from photonic crystals. [C] Nanosensing: Materials and Devices II, edited by M. Saif Islam, Achyut K. Dutta, Proc. of SPIE 2005, Vol. 6008, 60080Y.
    [29] Alexandre G. Brolo et al. Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Film [J]. Langmuir 2004, 20: 4813-4815.
    [30] Emmanuel Fort and Samuel Gr'esillon et al. Surface enhanced fluorescence [J]. J. Phys. D: Appl. Phys. 2008, 41013001.
    [31] J. T. Bahns, U. Welp et al. Enhanced Raman scattering from focused surface plasmons. [J]. Appl. Phys. Lett. 2007, 91, 081104.
    [32] James T. Daly and Daniel S. Cho, et al. MEMS based sensor system for environmental monitoring [C]. Advanced Environmental Sensing Technology II, Tuan Vo-Dinh, Stephanus Buttgenbach, Editors, Proceedings of SPIE 2002, 4576.
    [33] Irina Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and C. G. Ding, et al. Extraordinary emission from two-dimensional plasmonic-photonic crystals [J]. J. Appl. Phys. 2005,98,013531-1.
    [34] M. U. Pralle, N. Moelders, M. P. McNeal, et al. Photonic crystal enhanced narrow-band infrared emitters. [J]. Appl. Phys. Lett. 2002, 81, 25:4685-4687.
    [35] R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, and E. Johnson, et al. Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission [J]. Phys. Rev. B, 2006, 74, 045107-1.
    [36] Han-Kuei Fu, Yu-Wei Jiang, and Yang-Fang Chen, et al. A thermal emitter with selec-tive wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons [J]. J. Appl. Phys. 2009, 105,033505-1.
    [37] Irina Puscasu, Martin U. Prallea, McNeal. MP, et al. Frequency Selective Surfaces Enable MEMS Gas Sensor. [J].Mat. Res. Soc. Symp. Proc. 2002, 722: L3.4.1-L3.4.6.
    [38] Chia-YI Chen, Ming-Wei Tsai, and Si-Chen Lee et al. Coupling of surface plasmons between two silver films in a plasmonic thermal emitter. [J]. Appl. Phys. Lett, 2007, 91,243111.
    [39] Chih-Ming Wang, Yia-Chung Chang, and Din Ping Tsai et al. Reflection and emission properties of an infrared emitter. [J]. Opt. Express, 2007,15, 22: 14673-14678.
    [40] Ming-Wei Tsai, Chia-Yi Chen, et al. Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers. [J].Appl. Phys. Lett, 2007, 91, 213104.
    [41] P. Theodoni, V. Em. Vamvakas, et al. Efficient infrared emission from patterned thin metal films on a Si photonic crystal. [J].Phys. Stat. Sol. (a) 2008, 205,11: 2581-2584.
    [42] R. Biswas, D. Zhou, et al. Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice. [J]. Appl. Phys. Lett. 2008, 93,063307.
    [43] W. Fan, S. Zhang, B. Minhas, K. J. Malloy and S. R. J. Brueck, Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays Phys.[J].Rev. Lett. 2005, 94, 033902.
    [1]Eli Yablonovitch,Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J].Phys.Rev.Lett.1987,58,2059-2062.
    [2]Sajeev John,Strong localization of photons in certain disordered dielectric superlattices[J].Phys.Rev.Lett.1987,58,2486-2489.
    [3]M.Torres,J.P.Adrados,and F.R.M.de Epsinosa,Nature,1999,398,114.
    [4]Photonic Band Gap Materials,NATO,ASI,edited by C.M.Soukoulis(Kluwer,Dordrecht,1996).
    [5]J.D.Joarmopoulos,R.D.Meade,and J.N.Winn,Photonic Crystals:Molding the Flow of Light(Princeton Univ.Press,NJ,1995).
    [6]盖洪峰,王佳,田芋,基于纳米光学等离子晶体的新型纳米光子学器件的发展[J].光学技术2006,32(5)666-672.
    [7]Raether,H.Surface Plasmons(ed.Hohler,G.)(Springer,Berlin,1998).
    [8]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,P.A.Wolff.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature.1998,391:667-669.
    [9]William L.Barnes,Alain Dereux & T.W.Ebbesen.Surface Plasmon subwavelength optics [J].Nature.2003,424:824-830.
    [10]H.Raether,Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag,1988):7-30.
    [11]Kwangje Woo,Transmission Properties of Sub-Wavelength Hole Arrays in Metal Films[D].U.S.A.Florida University.
    [12]顾本源,表面等离子体亚波长光学原理和新颖效应[J].物理2007,36(4)280-287.
    [13]M.A.Ordal,L.L.Long,R.J.Bell,S.E.Bell,R.R.Bell,R.W.Alexander and C.A.Ward.Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,and W in the infrared and far infrared[J].Appl.Opt.1983,22:1099-1119.
    [14]Sergio G.Rodrigo,F.J.Garcia-Vidal,and L.Martin-Moreno.Influence of material properties on extraordinary optical transmission through hole arrays[J].Phys.Rev.B 2008,77,075401.
    [15]Karl S.Kunz,Raymond J.Luebbers.The finite difference time difference time domin method for electromagnetics.Boca Raton:CRC Press.1993.
    [16]高本庆,时域有限差分法FDTDMethod。[M].北京:国防工业出版社1995.
    [17]葛德彪,闰玉波,电磁波时域有限差分方法。[M].西安:西安电子科技大学2002.
    [18]王长清,祝西里,电磁场计算中的时域有限差分法。[M].北京:北京大学出版社1994.
    [19]N.Peyghambarian,S.W.Koch and A.Mysyrowicz,Introduction to semiconductor optics (Prentice-Hall Inc.,Eaglewood Cliffs,New Jersey,1993).
    [20]A.V.Zayats,I.I.Smolyaninov and A.A.Maradudin,Phys.Rep.2005,408,131.
    [21]H.J.Lezec and T.Thio,Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J].Opt.Exp.2004,12,3629-3651.
    [22]Tineke Thio,H.F.Lezec,P.A.Wolff & T.W.Ebbesen.Surface-plasmon-enhanced transmission through hole arrays in Cr films.[J].J.Opt.Am.B.1999,16:1743-1748.
    [23]William L Barnes.Surface plasmon-polariton length scales:a route to sub-wavelength optics [J].Opt.A:Pure Appl.Opt.2006,8:$87-$93.
    [24]H.F.Ghaemi,T.Thio,D.E.Grupp,T.W.Ebbesen,and H.J.Lezec.Surface plasmons enhance optical transmission through subwavelength holes[J].Phys.Rev.B 1998,58(11):6779-6782.
    [25]C.Genet & T.W.Ebbesen.Light in tiny holes[J].Nature.2007,445:39-46.
    [26]L.Martin-Moreno,F.J.Garcia-Vidal,H.J.Lezec,K.M.Pellerin,T.Thio,J.B.Pendry,and T.W.Ebbesen.Theory of extraordinary optical transmission through subwavelength hole arrays [J].Phys.Rev.Lett.2001,86(6):1114-1117.
    [27]Popov,E.,Neviere,M.,Enoch,S.& Reinisch,R.Theory of light transmission through subwavelength periodic hole arrays.[J].Phys.Rev.B.2000,62(23):16100.
    [28]Bethe,H.A.Theory of diffraction by small holes.[J].Phys.Rev.1944,66:163-182.
    [29]R.Gordon,A.G.Brolo,A.McKinnon,A.Rajora,B.Leathem and K.L.Kavanagh,Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays.[J].Phys.Rev.Lett.2004,92(3):037401-037404.
    [30]K.J.Klein Koerkamp,S.Enoch,F.B.Segerink,N.E.van Hulst and L.Kuipers,Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. [J]. Phys.Rev. Lett. 2004, 92 (18): 183901-183904.
    [31] Degiron A, Ebbesen T W. Analysis of the transmission process through single apertures surrounded by periodic corrugations. [J] .Opt. Express, 2004, 12:3694 -3700.
    [32] Irina Puscasu, M. Pralle, et al. Extraordinary emission from two-dimensional plasmonic-photonic crystals. [J]. J. Appl. Phys.2005, 98, 013531.
    [33] A. Krishnan, T. Thio, and T.W. Ebbesen. Evanescently coupled resonance in surface plasmon enhanced transmission. [J]. Opt. Commun. 2001,200:1-7.
    [34] Degiron, A. & Ebbesen, T. W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. [J]. J. Opt. Pure Appl. Opt. 2005, 7, S90-S96.
    [35] Irina Puscasu, Martin Pralle, et al. Photolithographically controlled emission from photonic crystals. [C] Nanosensing: Materials and Devices II, edited by M. Saif Islam, Achyut K. Dutta, Proc. of SPIE 2005, Vol. 6008, 60080Y.
    [1]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,P.A.Wolff.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature.1998,391:667-669.
    [2]Strelniker,Y.M.& Bergman,D.J.Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field.[J].Phys.Rev.B 1999,59(20): R12763.
    [3] Popov, E., Neviere, M., Enoch, S. & Reinisch, R. Theory of light transmission through subwavelength periodic hole arrays. [J]. Phys. Rev. B. 2000,62 (23): 16100.
    [4] Chang, S.-H., Gray, S. K. & Schatz, G C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. [J]. Opt. Express 2005, 13: 3150-3165.
    [5] Kwak, E.-S. et al. Surface plasmon standing waves in large-area subwavelength hole arrays. [J]. Nano Lett. 2005, 5:1963-1967.
    [6] Irina Puscasu, M. Pralle, J. Daly, and C. G. Ding, et al. Extraordinary emission from two-dimensional plasmonic-photonic crystals [J]. J. Appl. Phys. 2005, 98, 013531-1.
    [7] M. U. Pralle, N. Moelders, M. P. McNeal, and R. Biswas, et al. Photonic crystal enhanced narrow-band infrared emitters [J]. Appl. Phys. Lett, 2002, 81,4685-4687.
    [8] Bethe, H. A. Theory of diffraction by small holes. [J]. Phys. Rev. 1944, 66: 163-182.
    [9] Raether, H. Surface Plasmons (ed. Hohler, G.) (Springer, Berlin, 1998).
    [10] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988): 7-30.
    
    [11] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays [J]. Phys. Rev. Lett. 2001, 86 (6): 1114-1117.
    [12] Popov, E., Neviere, M., Enoch, S. & Reinisch, R. Theory of light transmission through subwavelength periodic hole arrays. [J]. Phys. Rev. B. 2000, 62 (23): 16100.
    [13] A. Krishnan, T. Thio, and T.W. Ebbesen. Evanescently coupled resonance in surface plasmon enhanced transmission [J]. Opt. Commun. 2001, 200: 1-7.
    
    [14] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B. 1998, 58 (11): 6779-6782.
    
    [15] C. Genet & T. W. Ebbesen. Light in tiny holes [J]. Nature. 2007,445: 39-46.
    [16] William L. Barnes, Alain Dereux & T. W. Ebbesen. Surface Plasmon subwavelength optics [J]. Nature. 2003,424: 824-830.
    [17] Degiron A, Ebbesen T W. Analysis of the transmission process through single apertures surrounded by periodic corrugations [ J ]. Opt. Express. 2004,12:3694-3700.
    [18] Bravo-abad, J. et al. How light emerges from an illuminated array of subwavelength holes. [J]. Nature Phys. 2006, 2: 120-123.
    [19] Strelniker, Y. M. & Bergman, D. J. Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field. [J]. Phys. Rev. B. 1999, 59 (20): R12763.
    [20] Chang, S.-H., Gray, S. K. & Schatz, G. C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. [J]. Opt. Express. 2005, 13: 3150-3165.
    [21] Tineke Thio, H. F. Lezec, P. A. Wolff & T. W. Ebbesen. Surface-plasmon-enhanced transmission through hole arrays in Cr films. [J]. J. Opt. Am. B. 1999, 16: 1743-1748.
    [22] Y. Takakura. Optical Resonance in a Narrow Slit in a Thick Metallic Screen. [J]. Phys. Rev. Lett. 2001, 86: 5601-5603.
    [23] M. M. J. Treacy. Dynamical diffraction in metallic optical gratings. [J]. Appl. Phys. Lett. 1999,75:606-608.
    [24] Qing Cao and Philippe Lalanne. Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits. [J]. Phys. Rev. Lett. 2002, 88: 057403-057406.
    [25] K. L. van der Molen, and N. F. van Hulst et al. Influence of hole size on the extraordinary transmission through subwavelength hole arrays. [J]. Appl. Phys. Lett. 2004, 85, 4316.
    [26] Kunihiko Ishihara and Keishi Ohashi.strong influence of surface structures on enhanced transmission through subwavelength hole arrays. [J]. Jpn. J. Appl. Phys. 2005, 44 (30): L973-975.
    [27] K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. E. van Hulst and L. Kuipers, Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. [J]. Phys. Rev. Lett. 2004, 92 (18): 183901-183904.
    [28] Sergio G. Rodrigo, et al. Influence of material properties on extraordinary optical transmission through hole arrays. [J]. Phys. Rev. B. 2008, 77, 075401.
    [29] Irina Puscasu, Martin U. Prallea, et al. Frequency Selective Surfaces Enable MEMS Gas Sensor. [J]. Mat. Res. Soc. Symp. Proc. 2002, 722: L3.4.1-L3.4.6.
    [30] Photonic Band Gap Materials, NATO, ASI, edited by CM. Soukoulis (Kluwer, Dordrecht, 1996).
    [31] J. D. Joannopoulos, R. D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, NJ, 1995).
    [32] TAFLOVE A. Computational Electrodynamic: The Finite-Difference Time-Domain Method [M]. 2nd ed. Boston: Artech House, 2000.
    [33] M. A. Ordal, R. J. Bell, and C. A. Ward, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared [J]. Appl. Opt. 1983, 22: 1099-1119.
    [1]Abul K.Azad,Yuguang Zhao,Weili Zhang and Mingxia He.Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays.[J].Opt.Lett.2006,31:2637-2639.
    [2]F.Przybilla,A.Degiron,J.-Y.Laluet,C.Genet,and T.W.Ebbesen.Optical transmission in perforated noble and transition metal films[J].Opt.A:Pure Appl.Opt.2006,8:458-463.
    [3]Sergio G.Rodrigo,et al.Influence of material properties on extraordinary optical transmission through hole arrays.[J].Phys.Rev.B.2008,77,075401.
    [4]Xiang Shou,Amit Agrawal and Ajay Nahata.Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures[J].Optics Express.2005,13,9834-9840.
    [5]Je Hong Kim and Patrick J.Moyer,Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,[J].Opt.Express.2006,14,6595-6603.
    [6]D.E.Grupp,H.J.Lezec,T.W.Ebbesen,K.M.Pellerin,and T.Thio.Crucial role of metal surface in enhanced transmission through subwavelength apertures[J].Appl.Phys.Lett.2000,77(11):1569-1571.
    [7]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,P.A.Wolff.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature.1998,391:667-669.
    [8]Raether,H.Surface Plasmons(ed.Hohler,G.)(Springer,Berlin,1998).
    [9]H.Raether,Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag,1988):7-30.
    [10]K.J.Webb and J.Li.Analysis of transmission through small apertures in conducting films.[J].Phys.Rev.B.2006,73,033401.
    [11]Martin-Moreno,L.et al.Theory of extraordinary optical transmission through subwavetength hole arrays.[J].Phys.Rev.Lett.2001,86,1114-1117.
    [12]Marquier,F.,Greffet,J.-J.,Collin,S.,Pardo,F.& Pelouard,J.L.Resonant transmission through metallic film due to coupled modes.[J].Opt.Express.2005,13,70-76.
    [13]顾本源,表面等离子体亚波长光学原理和新颖效应[J].物理2007,36(4)280-287.
    [14]M.A.Ordal,L.L.Long,R.J.Bell,S.E.Bell,R.R.Bell,R.W.Alexander and C.A.Ward.Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,and W in the infrared and far infrared[J].Appl.Opt.1983,22:1099-1119.
    [15]A.Krishnan,T.Thio,et al.Evanescently coupled resonance in surface plasmon enhanced transmission[J].Opt.Commun.2001,200:1-7.
    [16]Barnes,W.L.,Murray,W.A.,Dintinger,J.,Devaux,E.& Ebbesen,T.W.Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film.[J].Phys.Rev.Lett.2004,92,107401.
    [17]Lalanne,P.,Rodier,J.C.& Hugonin,J.P.Surface plasmons of metallic surfaces perforated by nanohole arrays.[J].Opt.Pure Appl.Opt.2005,7,422-426.
    [18]Liu,W.-C.& Tsai,D.P.Optical tunnelling effect of surface plasmon polaritons and localized surface plasmon resonance.[J].Phys.Rev.B.2005,65,155423.
    [19]TAFLOVE A.Computational Electrodynamic:The Finite-Difference Time-Domain Method [M].2nd ed.Boston:Artech House,2000.
    [20]F.Przybilla,A.Degiron,J.-Y.Laluet,C.Genet,and T.W.Ebbesen.Optical transmission in perforated noble and transition metal films[J].Opt.A:Pure Appl.Opt.2006,8:458-463.
    [1] Yong-Hong Ye, Jia-Yu Zhang. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays [J]. Opt. Lett. 2005, 30 (12): 1521-1523.
    [2] Z. H. Tang, R. W. Peng, Mu Wang et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays [J]. Phys. Rev. B. 2007, 76: 195405-8.
    
    [3] Ming-Wei Tsai, Chia-Yi Chen, Yu-Wei Jiang, and Si-Chen Lee et al. Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers [J]. Appl. Phys. Lett. 2007,91, 213104.
    
    [4] Yi-Han Ye, and Si-Chen Lee et al. Coupling of surface plasmons between two silver films in a Ag/SiO_2/Ag plasmonic thermal emitter with grating structure [J]. Appl. Phys. Lett. 2008, 93, 263106.
    [5] Chia-Yi Chen, Ming-Wei Tsai, and Si-Chen Lee et al.Coupling of surface plasmons between two silver films in a plasmonic thermal emitter [J]. Appl. Phys. Lett. 2007, 91, 243111.
    [6] Chih-Ming Wang ,Yia-Chung Chang, and Din Ping Tsai Reflection and emission properties of an infrared emitter [J]. Opt. Express. 2007,15, (22):14673.
    
    [7] Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Remotely coupled surface plasmons in a metal/insulator/Si structure perforated with periodic square hole arrays [J]. Appl. Phys. Lett. 2006, 89, 033120.
    
    [8] Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter[J]. Appl. Phys. Lett 2006,89, 173128.
    
    [9] D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, and T. Thio. Crucial role of metal surface in enhanced transmission through subwavelength apertures [J]. Appl. Phys. Lett. 2000, 77(11): 1569-1571.
    
    [10] Chang, S.-H., Gray, S. K. & Schatz, G C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. [J].Opt. Express. 2005, 13, 3150-3165.
    [11] G. J. Kovacs and G. D. Scott Optical excitation of surface plasma waves in layered media [J]. Phys. Rev. B. 1977, 16, 1297-1311.
    [12] Stephane Collin, Fabrice Pardo, and Jean-Luc Pelouard, Waveguiding in nanoscale metallic apertures, [J].Opt. Express. 2007, 15, 4310-4320.
    
    [13] S. A. Darmanyan and A. V. Zayats, Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study[J]Phys.Rev.B.2003,67,035424-1-7.
    [14]Visser,T.D.Surface plasmons at work?[J].Nature Phys.2006,2,509-510.
    [15]Lalanne,P.& Hugonin,J.P.Interaction between optical nano-objects at metallodielectric interfaces.[J].Nature Phys.2006,2,551-556.
    [16]Ritchie,R.H.Plasma losses by fast electrons in thin films.[J].Phys.Rev.1957,106,874-881.
    [17]Worthing,R T.& Barnes,W.L.Efficient coupling of surface plasmon polaritons to radiation using a bi-grating.[J].Appl.Phys.Lett.2001,79,3035-3037.
    [18]Hecht,B.,Bielefeldt,H.,Novotny,L.,Inouye,Y.& Pohl,D.W.Local excitation,scattering,and interference of surface plasmons.[J].Phys.Rev.Lett.1996,77,1889-1892.
    [19]Ditlbacher,H.,Krenn,J.R.,Schider,G.,Leitner,A.& Aussenegg,F.R.Two-dimensional optics with surface plasmon polaritons.[J].Appl.Phys.Lett.2002,81,1762-1764.
    [20]Barnes,W.L.,Kitson,S.C.,Preist,T.W.& Sambles,J.R.Photonic surfaces for surface Plasmon polaritons.[J].Opt.Soc.Am.A 1997,14,1654-1661.
    [21]Darmanyan,S.A.& Zayats,A.V.Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films.[J].Phys.Rev.B.2003,67,035424.
    [22]Smolyaninov,I.I.,Zayats,A.V.,Gungor,A.& Davis,C.C.Single-photon tunneling via localized surface plasmons.[J].Phys.Rev.Lett.2002,88,187402.
    [23]L.Martin-Moreno,F.J.Garcia-Vidal,H.J.Lezec,K.M.Pellerin,T.Thio,J.B.Pendry,and T W.Ebbesen,Yheory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,[J].Phys.Rev.Lett.2001,86,1114-1117.
    [24]A.Christ,T.Zentgraf,S.G.Tikhodeev,N.A.Gippius,J.Kuhl,and H.Giessen,Controlling the interaction between localized and delocalized surface plasmon modes:Experiment and numerical calculations,[J].Phys.Rev.B.2006,74,155435-1-8.
    [25]顾本源,表面等离子体亚波长光学原理和新颖效应[J].物理2007,36(4)280-287.
    [26]M.A.Ordal,L.L.Long,R.J.Bell,S.E.Bell,R.R.Bell,R.W.Alexander and C.A.Ward.Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,and W in the infrared and far infrared[J].Appl.Opt.1983,22:1099-1119.
    [27]Kim,T.J.,Thio,T.,Ebbesen,T.W.,Grupp,D.E.& Lezec,H.J.Control of optical transmission through metals perforated with subwavelength hole arrays[J].Opt.Lett.1999,24,256-258.
    [28]Reuben Bakker,Vladimir Drachev,Hsiao-Kuan Yuan,and Vladimir Shalaev,Enhanced transmission in near-field imaging of layered plasmonic structures[J].Opt.Express.2004,12,3701-3706.
    [29]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,P.A.Wolff.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature.1998,391:667-669.
    [30]A.Krishnan,T.Thio,and T.W.Ebbesen.Evanescently coupled resonance in surface plasmon enhanced transmission.[J].Opt.Commun.2001,200:1-7.
    [31]St'ephane Collin,Fabrice Pardo and Jean-Luc Pelouard etc.Waveguiding in nanoscale metallic apertures[J].Opt.Express.2007,15,(7):4310-4320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700