Ce(III)对UV-B辐射下大豆幼苗水分代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水培法研究了稀土元素Ce(Ш)对人工模拟紫外辐射(UV-B,280-320nm)下大豆(Glycine max)幼苗叶片含水量(RWC)、水分利用效率(WUE)、气孔行为的影响,旨在揭示稀土对紫外胁迫下大豆幼苗水分代谢的保护作用,为拓展稀土农用方向提供实验依据。实验结果如下:
     1. 20mg·L-1CeCl3处理提高了大豆幼苗叶片自由水含量,Ce(Ш)+UV-B组自由水/束缚水值高于UV-B组。动态曲线显示Ce(Ш)缓解了UV-B辐射胁迫期大豆幼苗叶片含水量的下降,促进恢复期含水量的提升。UV-B辐射对大豆幼苗叶片两种渗透调节物质(游离脯氨酸、可溶性糖)含量的影响不同,使得游离脯氨酸大量积累,而可溶性糖含量急剧下降。Ce(Ш)处理对UV-B辐射表现出拮抗效应,即减弱了游离脯氨酸的积累,同时促进可溶性糖含量的增加。相关性分析结果显示Ce(Ш)改善了游离脯氨酸及可溶性糖调节大豆幼苗叶片含水量的作用。
     2. 20mg·L-1CeCl3处理减轻了UV-B辐射引起的大豆幼苗根系活力、根长和根冠比下降。较之CK,UV-B辐射处理使净光合速率(Pn)、蒸腾速率(Tr)下降,Ce(Ш)+UV-B组Pn、Tr的下降趋势得到缓解,且最终达到较好的恢复效果。低剂量UV-B(0.15W·m-2)辐射胁迫使得大豆幼苗水分利用效率(WUE)高于CK(1-4天),但恢复期(7-9天)WUE急剧下降;高剂量UV-B(0.45W·m-2)辐射下WUE低于CK,降幅明显。Ce(Ш)+UV-B组大豆幼苗WUE下降幅度小于UV-B组,且恢复期(7-9天)迅速提升。
     3. 20mg·L-1CeCl3处理显著提高了大豆幼苗叶片背面近轴气孔密度,高剂量UV-B(T2 0.45W·m-2)辐射降低了气孔密度,与CK差异显著;Ce(Ш)+UV-B处理减轻了UV-B胁迫引起的气孔密度下降。动态结果显示,较之CK,UV-B辐射使气孔导度(Gs)下降,Ce(Ш)+UV-B处理下Gs的下降趋势得到缓解,且最终达到较好的恢复效果。ABA、H2O2、CAT活性的变化趋势与Gs不同,与CK相比,UV-B辐射导致ABA、H2O2积累,CAT活性提高,Ce(Ш)处理降低了UV-B辐射造成的ABA和H2O2的积累,进一步提高了CAT活性。
     实验结果表明Ce(Ш)处理缓解了UV-B辐射对大豆幼苗水分代谢的胁迫伤害作用。
Effect of Ce(III) on water content (RWC), water use efficiency(WUE) and stomatal behaviour in leaves of soybean seedlings exposed to two dosages of ultraviolet-B radiation (0.15, 0.45W·m-2) was studied detaily with hydroponics under laboratory conditions.The aim was to reveal protective effect of Ce(Ш) on water metabolism in soybean seedlings under UV-B radiation which would provide experimental gist for rare earths applied in agriculture. The main results were as follows:
     1. Static experimental results showed that 20mg·L-1 CeCl3 increased free water content in soybean leaves. For Ce(Ш)+UV-B treatments, the ratio of free water content and irreducible water content was higher than that of UV-B treatments. Dynamic results showed that Ce(Ш) eased UV-B radiation stress on water content in soybean leaves, accelerated the recovery pace. UV-B radiation affected two osmolytes (proline, soluble sugar) in soybean leaves oppositively which promated accumulation of free proline, but caused soluble sugar content dropping sharply. Ce(Ш) demonstrated an tagonistic effect on UV-B radiation which weakened free accumulation of proline, while increased the content of soluble sugar. Correlation analysis showed that Ce(Ш) improved the role of free proline and soluble sugar in regulating water content in soybean leaves under UV-B radiation.
     2. Static experiment results showed that 20mg·L-1 CeCl3 reduced decreasement of root activity, root length and root/shoot ratio induced by UV-B radiation. UV-B radiation caused the decline of Photosynthesis rate(Pn), Transpiration rate(Tr), while for Ce(III)+UV-B treatment the decline was eased. Water use efficiency (WUE) of soybean seedlings increased under low dosage of UV-B radiation(0.15W·m-2) stress(1st to 4th), then decreased sharply during the recovery periods(7th to 9th). Compared to CK, high dosage of UV-B radiation(0.45W·m-2) made WUE decreasing obviously. For Ce(Ш)+UV-B treatment, the decline rate of WUE was less than that of UV-B treatment, and WUE increased more rapidly during the recovery periods (7th to 9th).
     3. Static experiment showed that 20mg·L-1 CeCl3 improved stomatal density and high dosage of UV-B radiation(T2 0.45W·m-2) caused its’decline obviously compared to CK. For Ce(Ш)+UV-B treatments, the decline of stomatal density was lower than the corresponding UV-B treatments. UV-B radiation caused the decreasing of stamotal conductance(Gs), while under Ce(Ш)+UV-B treatments the Gs was larger than UV-B radiation, but smaller than CK. Diferent changes happened between ABA、H2O2、CAT and Gs. UV-B radiation caused accumulations of ABA, H2O2 and improvement of CAT’s activity. Ce(Ш) reduced contents of ABA and H2O2 induced by UV-B radiation stress in leaves of soybean seedlings, improved CAT’s activity.
     The experiment showed that Ce(III) played an effective role in defensing damage induc- ed by UV-B radiation stress on water metabolism of soybean seedlings.
引文
[1]吴鲁阳,王美丽,张振文.紫外线(UV)-B增强对植物的影响研究[J].中国农学通报,2005,21(9):222-227
    [2]王少彬,苏维瀚,魏鼎文.太阳紫外线的生物有效辐射与大气臭氧含量减少的关系[J].环境科学学报,1993,13(1):114-120
    [3] McKenzie R L, Bj?rn L O, Alkiviadis Bais,et al. Changes in biologically active ultraviolet radiation reaching the Earth's surface[J].Photochemistry and Photobiology Sciences,2003,2(1),5-15
    [4]马金玉,刘晶淼,李世奎,等.华北平原北部紫外UV-B辐射特征及生态效应[J].资源科学, 2007, 29(6):32-39
    [5] Kakni V G, Reddy K R, Sailaja K, et al.Field crop responses to ultraviolet-B radiation:a review[J].Agricultural and Forest Meteorology,2003,120(3),191-218
    [6]侯扶江,贲桂英. UV-B辐射对大豆和黄瓜幼苗某些生理特性的影响[J].应用与环境生物学报,1999,5(5):455-458
    [7]王传海,郑有飞,王鑫,等. UV-B辐射增加对黑麦草生长及产量影响的初步研究[J].草业学报,2005,14:78-81
    [8] Hu Y F, Shi W L, Ling X, et al. The interactive effects of enhanced UV-B radiation and soil drought on spring wheat[J]. South African Journal of Botany,2007,73:429-434
    [9]陈兰,张守仁.增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响[J].植物生态学报,2006,30(1):47-56
    [10]王霞,侯平,尹林克,冯大千,潘伯荣.水分胁迫对柽柳组织含水量和膜透性的影响[J].干旱区研究,1999,16(2):12-15
    [11] Salvador N, Damian J A, James I L, et al. Ultraviolet-B Radiation Effects on water Relations, Leaf Development and Photosynthesis in Droughted Pea Plants[J].Plant Physiology,1998, 117:173-181
    [12]李亚敏,岳明.补充UV-B辐射对浙贝母生长和光合作用的影响[J].西北植物学报,2006,14(3):122-125
    [13]赵广琦,王勋陵,岳明,等.增强UV-B辐射和CO2复合作用对蚕豆幼苗生长和光合作用的影响[J].西北植物学报,2003,23(1):6-10
    [14]罗南书,刘芸,钟章成,等.田间增加UV-B辐射对丝瓜光合作用日变化及水分利用效率的影响[J].西南师范大学学报,2003,28(3):436-439
    [15] Teramura A H, Tevini M, Iwanzik W. Effects of ultraviolet-B irradiation on plants duringmild water stress.I.Effects on diurnal stomatal resistance[J].Physiologia Plantarum, 1983,57, 175-180
    [16] Dennis C, Gitz III, Lan L G, et al. Ultraviolet-B effects on stomatal density, water-use efficiency and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars[J].Environmental and Experimental Botany,2005,53:343-355
    [17] Salvador N, Damian J A, James I L, et al. Characterization of Stomatal Closure Caused by Ultraviolet-B Radiation[J].Plant Physiology,1999,121:489-496
    [18] Cooley N M , Holmes M G , Attridge T H. Growth and stomatal responses of temperate meadow species to enhanced levels of UV-A and UV-B+A radiation in the natural environment[J]. Journal of Photochemistry and Photobiology,2000,57:179-185
    [19]孟朝妮,佘小平.增强UV-B辐射对高等植物的作用以及植物的适应[J].陕西师范大学学报,2004,32:123-128
    [20]蔡恒江,唐学玺,张培玉,等. UV-B辐射对孔石莼生长及生理生化特征的影响[J].科学技术与工程,2005,5(5):283-286
    [21]李元,张翠萍,祖艳群.紫外辐射增强对植物糖代谢的影响[J].生态学杂志,2006,25(10):1265-1268
    [22]牛传坡,蒋静艳,黄耀. UV-B辐射强度变化对冬小麦碳氮代谢的影响[J].农业环境科学学报,2007,26(4):1327-1332
    [23] Liu L X, Xu S M, Woo K C. Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus[J].Environmental and Experimental Botany,2002,54:121-130
    [24]田继远,唐学玺,于娟,等.海洋微藻对UV-B辐射的生理生化响应[J].海洋科学,2006,30(4):54-58
    [25]董铭,李海涛,廖迎春,等.大田条件下模拟UV-B辐射滤减对水稻生长及内源激素含量的影响[J].中国生态农业学报,2006,14(3):122-125
    [26]黄少白,戴秋杰,刘晓忠.紫外光B辐射增强对水稻叶片内IAA和ABA含量的影响.植物学通报[J],1998,15:87-90
    [27] Zhang X, Zhang L, Dong F, et al. Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba[J]. Plant Physiology,2001,126:1438-1448
    [28]徐华,贺军民,黄辰,等.UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H2O2有关[J].西北植物学报,2006,26(1):78-85
    [29]陈拓,安黎哲,冯虎元,等. UV-B辐射对蚕豆叶膜脂过氧化的影响及其机制[J].生态学报,2001,21(4):579-583
    [30]韩燕,佘小平.环境胁迫下一氧化氮在植物中的作用[J].陕西师范大学继续教育学报,2006,23(3):114-118
    [31]安国勇,宋纯鹏,张骁.过氧化氢对蚕豆气孔运动和质膜K+通道的影响[J].植物生理学报, 2000,26(5):458-464
    [32] Pei Z M, Murata Y, Benning G. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J].Nature,2000,406(17):731-734
    [33] Hamilton D W, Hills A, Kohler B, et al. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid[J]. National Academy of Sciences USA,2000,97:4967-4972
    [34] Carcia M C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiology,2001,126:196-120
    [35]刘恩侠.稀土对向日葵种子萌发与根系生长的影响[J].稀土,1996,17(3):64-66
    [36]董倍,许亮.稀土元素对农业增产作用的研究Ⅲ.黄瓜根系对稀土的吸收及对根系伤流的影响[J].中国稀土学报,1992,10(4):73-76
    [37]魏幼璋.稀土在农业中应用的生理学基础[J].植物营养与肥料学报,2000,6(4):464-470
    [38]贺爱国,彭福元,肖苏林,等.稀土在作物上应用研究进展[J].湖南农业科学,2007,(3):97-99
    [39]罗建美,季宏兵.稀土元素在环境中的行为及其生态效应[J].首都师范大学学报,2005,26(3):60-64
    [40]邵建华,韩永圣,高芝祥.复合氨基酸稀土元素螯合物的生产和应用研究进展[J].稀土,2001,22(5):59-62
    [41]王辉,黄久常,许言和,等.植物激素稀土配合物的合成及对小麦胚芽鞘生长影响的研究[J].稀土, 1996,17(3):67-69
    [42]胡瑞芝,李元沅,王惠群,等.离子稀土对水稻叶片脂质过氧化作用和细胞透性及产量的影响[J].湖南农学院学报,1995,21(3):231-234
    [43]何友昭,汪建飞,陈世龙.喷施稀土对小麦产量的影响[J].稀土,1997,18(4):54-56
    [44]郜红建,常江,张自立,等.稀土在植物抗逆中的生理作用[J].中国稀土学报,2003,21(5):487-490
    [45]方能虎,洪法水,赵贵文.稀土元素对水稻种子萌发初期的酶活性和内源激素含量的动态影响[J].稀土.2001,22(1):31-34
    [46]李永裕,潘腾飞,邱栋梁.稀土元素对植物生物学作用机制的研究进展[J].中国农学通报,2005,21(12):217-221
    [47]焦根林,汤锡珂,吴兆明.氯化镧对玉米根组织膜透性的影响[J].中国稀土学报, 1992,3(15):286-290
    [48]杨先科,李敏,李义,等.稀土农用对环境的影响[J].地球与环境,2005 33(1):68-70
    [49]彭安,朱建国.稀土元素的环境化学及生态效应[J].中国环境科学出版社,北京:2003
    [50]安建平,陈靠山,周燮.氯化钕对渗透胁迫引起的膜损伤和ABA含量的影响[J].中国稀土学报,1994,12(4):348-351
    [51]薛隽,刘文,周青,等. La对UV-B辐射下大豆幼苗NRA和可溶性蛋白的影响[J].中国油料作物学报,2006,28(3): 298-301
    [52] Hare P D,Cress W A,Van S J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction[J].Journal of Experimental Botany, 1999,50(22):413-434
    [53]肖用森,王正直,郭绍川.渗透胁迫下稻田中脯氨酸累积与膜脂过氧化的关系[J].武汉植物学研究,1996,14(4):334-340
    [54]邵艳军,山仑.植物耐旱机制研究进展[J].中国生态农业学报,2006,14(4):16-20
    [55]陈章和,朱素琴,李韶山,等. UV-B辐射对南亚热带森林木本植物幼苗生长的影响[J].云南植物研究,2000,22(4):467-477
    [56]刘芸,钟章成,龙云,等.α-NAA及UV-B辐射对栝楼幼苗生长及蒸腾作用的影响[J].植物生态学报,2003,27(4):454-458
    [57]迟永刚,黄占斌.钇元素对玉米幼苗水分利用效率的调控[J].西北植物学报,2005,25(5):948-952
    [58]周青,黄晓华,曾庆玲,等.稀土环境植物学效应[J].自然杂志,2003,25(5):264-267
    [59]潘琦,孙云毅,邵立红,等. 2004年黑龙江省大豆生产情况及对2005年的建议[J].大豆通报,2005,(1):13-14
    [60]冯君,尹秀英,许文良,等.吉林省主要大豆种植区稀土元素的组成及其与产量的关系[J].吉林农业大学学报,2004,26(3):305-309
    [61]梁婵娟,李娟,黄晓华,等. Ce对UV-B辐射胁迫下大豆幼苗光合作用影响:Ⅰ对光合色素与希尔反应活性的影响[J].农业环境科学学报,2006,25(3):576-579
    [62] Jo Bright, Radhika Desikan, John T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J].The Plant Journal, 2006,45(1):113-122.
    [63]陈拓,安黎哲,冯虎元,等. UV-B辐射对蚕豆叶膜脂过氧化的影响及其机制[J].生态学报,2001,21(4):579-583
    [64]谢祖彬,朱建国,褚海燕,等.分根法研究镧对水稻生长及其生理参数的影响[J].中国稀土学报, 2003, 21(1):71-76
    [65]杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响[J].生态学报,2000,20(1):40-42
    [66]梁建生,张建华.根系逆境信号ABA的产生和运输及其生理机理[J].植物生理学通报,1998,34(5):329-338
    [67] Dennis C, Gitz III, Lan L G, et al. Ultraviolet-B effects on stomatal density, water-use efficiency and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars[J]. Environmental and Experimental Botany,2005,53:343-355
    [68]郑玉龙,姜春玲,冯玉龙.植物的气孔发生[J].植物生理学通讯.2005,41(6):847-850
    [69]彭安,庞欣.稀土对植物抗逆作用的自由基机制[J].环境化学,2002,21(4):313-317
    [70] Radhika Desikan, Man-Kim Cheung, Jo Bright, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J].Journal of Experimental Botany, 2004,55(395):205-212
    [71] Jiuplang Yan, Nobue Tsuichihara, Takeomi Etoh, et al. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening[J].Plant,Cell and Environment,2007,30(10):1320-1325
    [72]闫生荣,黄晓华,李春辉,等.镧对UV-B辐射胁迫下大豆幼苗活性氧代谢的动态效应[J].中国油料作物学报,2006,28(4):431-435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700