华北大黑鳃金龟中肠cDNA文库的构建及其围食膜靶标蛋白的分离与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北大黑鳃金龟(Holotrichia oblita)为鞘翅目鳃金龟科昆虫,是国内外公认的难防治的土栖性害虫。围食膜(peritrophic membrane, PM)是昆虫体内保护其中肠的第一道天然屏障,在昆虫中肠的消化过程及保护昆虫免受微生物和寄生虫侵害等方面发挥着重要作用。昆虫中肠围食膜蛋白的分离鉴定能够为深入研究害虫的生防机制,寻找生物防治新靶标,以及进一步明确围食膜与病原微生物之间相互作用的分子机理等提供前提和基础。本研究在构建华北大黑鳃金龟中肠cDNA表达文库的基础上,对其进行免疫筛选,并对筛选得到的围食膜靶标蛋白进行了分离与鉴定,所得的主要结果如下:
     1.提取华北大黑鳃金龟幼虫中肠总RNA,分离得到mRNA,利用Uni-ZAP XR载体,成功构建高质量的华北大黑鳃金龟幼虫中肠cDNA表达文库。经鉴定,该cDNA文库滴度为5.18×10~6pfu/mL,重组率为98.8%,扩增后文库滴度为2.36×109pfu/mL,插入cDNA片段的长度平均为1.85kb。其后,以棉铃虫(Helicoverpa armigera)围食膜蛋白血清为抗体,对该文库进行免疫筛选。经过筛选,共得到阳性克隆254个。其中包括4个全长基因HoCBP2、HoCBP76、HoSCP、HoChi,以及1个基因片段HoIIM。
     2. HoCBP2基因及HoCBP76基因,编码华北大黑鳃金龟幼虫围食膜几丁质结合蛋白。其中HoCBP2基因全长2226bp,GenBank登录号为JF681185,开放阅读框长1947bp,编码649个氨基酸。HoCBP2蛋白N-端具有19个氨基酸的前导信号序列,预期蛋白分子量70.2kDa,等电点3.52。Blast比对结果显示,其序列与鞘翅目昆虫赤拟谷盗(Tribolium castaneum)围食膜蛋白PMP14(GenBank登录号GU12810~6)相似性最高,为35%。结构域分析表明HoCBP2蛋白包含8个具有peritrophin-A结构特征的几丁质蛋白结合功能域(CBD, chitin binding domain)。HoCBP76基因全长2019bp,GenBank登录号为JF681186,开放阅读框长1725 bp,编码575个氨基酸。HoCBP76蛋白N-端具有19个氨基酸的前导信号序列,预期蛋白分子量62.3kDa。等电点3.51。Blast比对结果表明,其序列与Tribolium castaneum围食膜蛋白PMP14相似性最高,为34%。结构域分析表明HoCBP76蛋白包含7个CBD。成功构建原核表达载体pET21b-HoCBP2和pET21b-HoCBP76,分别表达了约120 kDa及110 kDa的目的蛋白。
     利用Bac-to-Bac昆虫杆状病毒表达系统成功构建了重组表达载体Bac-HoCBP2及Bac-HoCBP76,转染BTI-Tn-5B1-4细胞,实现了其在昆虫细胞中的成功表达。Western blot检测表明,重组后的HoCBP2和HoCBP76蛋白表达的蛋白分子量约为120kDa和110kDa。几丁质结合活性试验结果表明,HoCBP2和HoCBP76重组蛋白均具有几丁质结合活性,重组蛋白经PBS及1M NaCl处理后,不能从几丁质/蛋白复合物中解离,而用强变性剂6M尿素及1% Calcoflour处理后,重组蛋白从几丁质/蛋白复合物中大量释放。成功分离得到HoCBP2及HoCBP76的特异抗体,Western blot检测发现HoCBP2和HoCBP76在华北大黑鳃金龟幼虫中肠前、中,后部均匀分布,围食膜、中肠、粪便及卵中均存在CBP蛋白,而在其体壁、消化液、脂肪体、蜕及马氏管中未见阳性信号。
     3. HoChi基因,编码华北大黑鳃金龟幼虫几丁质酶,该基因全长1636bp,GenBank登录号为HM596340,开放阅读框长1458bp,编码486个氨基酸,预期蛋白分子量为51.8kDa,等电点为5.58。其5’端和3’端各有一个长27bp和145bp的非翻译区,在polyA末端上游39bp处有一个多聚腺甘酸终止信号序列AAGAAA。该蛋白具有典型的几丁质酶特性,即一个信号肽、一个几丁质酶活性位点、一个C端苏氨酸富集区和一个几丁质结合域,属于几丁质酶18家族。其氨基酸序列与赤拟谷盗几丁质酶蛋白(GenBank登录号NM001044629)具有较高的相似性。将该基因与pET28b载体重组后,经IPTG诱导,Western blot鉴定,该蛋白在大肠杆菌中得到表达。利用Bac-to-Bac昆虫杆状病毒表达系统成功构建重组表达载体pFastBac-HoChi,转染BTI-Tn-5B1-4细胞后,实现了其在昆虫细胞中的成功表达。
     4. HoSCP基因,编码华北大黑鳃金龟幼虫丝氨酸羧肽酶,GenBank登录号为JF681184。该基因全长1830bp,开放阅读框长1371 bp,编码457个氨基酸。推导的蛋白质分子量为51.2kDa,等电点为6.12。其5’端具有78bp的非翻译区及起始密码子ATG,3’端具有381bp的非翻译区,并且含有终止密码子TAA,在polyA末端上游14bp处有一个多聚腺甘酸终止信号序列AATAAA。N-末端具有15个氨基酸的前导信号序列,表明其是分泌型蛋白。序列分析表明,HoSCP含有一个保守的S10肽酶结构域、一个丝氨酸活性位点序列IAGESYAG、一个组氨酸活性位点序列FAFLkVYGAGHMVPMDQP以及两个N-联糖基化位点,并且含有丝氨酸羧肽酶保守催化三联体位点Ser-185,Asp-361,His-418。将该基因与pET28b载体重组后,经IPTG诱导,Western blot鉴定,该蛋白在大肠杆菌中得到表达。利用Bac-to-Bac昆虫杆状病毒表达系统成功构建重组表达载体pFastBac-HoSCP,转染BTI-Tn-5B1-4细胞后,实现了其在昆虫细胞中的成功表达。
     5. HoIIM基因,编码华北大黑鳃金龟肠幼虫围食膜粘蛋白,长1879bp,最长读码框长1707bp,编码569个氨基酸,GenBank登录号为JF681187。结构域分析表明,HoIIM蛋白5个具有peritrophin-A结构特征的几丁质结合功能域、5个粘蛋白结构域。其粘蛋白结构域富含苏氨酸(Thr,T)、脯氨酸(Pro,P)和丝氨酸(Ser,S),分别占29.3%、15.5%及3.91%,并含有大量重复序列,其中PTTTPTT共重复15次,PTSTTTPTTITT及STTTT分别重复5次,TTPTTP重复4次。对华北大黑鳃金龟幼虫围食膜蛋白组分的银染分析表明,其围食膜蛋白种类较多。其中分子量大小大约为160kDa和80kDa的两条蛋白条带,与经PAS方法检测到的呈明显红色的两种糖蛋白大小相符。从粉纹夜蛾颗粒体病毒中分离得到增效蛋白Enhancin,离体处理华北大黑鳃金龟幼虫围食膜后,Western blot检测发现有一条分子量较大的围食膜蛋白条带明显消失,而相应的一些小分子量的围食膜蛋白条带有所增加。
Holotrichia oblita is one of the most destructive agricultural and landscape pests in the world, and belongs to the family Scarabaeidae (Coleoptera, Scarabaeidae). Peritrophic membrane is a physical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes, and pathogens infectious peros. Identifying and characterizing of the peritrophic membrane proteins can lay a solid foundation for its using as biological control targets and the understanding of the interaction between peritrophic membrane and pathogenic microorganism. We have constucted a cDNA expression library of the Holotrichia oblita midgut, identified and chacterized several peritrophic membrane target proteins. Main achievements summarized as follows:
     1. Midgut RNA and mRNA were isolated from the Holotrichia oblita larvae using the RNeasy total RNA isolation kit and the Oligotex mRNA isolation kit, and a cDNA library was constructed from Holotrichia oblita midgut mRNA using the ZAP-cDNA Gigapack Cloning Kit.The cDNA was unidirectionally ligated into the Uni-ZAP XR vector. The library had a complexity of 5.18×10~6 plaques, of which over 98.8% were recombinants. Titer of the amplified library was 2.36×109pfu/mL, and the average length of the inserted fragments was about 1.85kb by PCR analysis. About 254 positive clones were obtained by screening the library with an aitiserum specific to the PM protein of Helicoverpa armigera, including HoCBP2, HoCBP76, HoSCP, HoChi and HoIIM.
     2. HoCBP2 and HoCBP 76 encoded the chitin binding protein. The cDNA HoCBP2 (GeneBank Accession No. JF681185) was 2226 bp in length, containing an ORF of 1947 bp. The deduced protein sequence showed that HoCBP2 was synthesized as a preprotein of 649 amino acid residues with the predicted molecular weight of 70.2 kDa, pI of 3.52 and a 19-amino acid signal peptide predicted by the software SignaIP. The cDNA HoCBP76 (GeneBank Accession No. GU12810~6) was 2019 bp in length, containing an ORF of 1725 bp, The deduced protein sequence showed that HoCBP76 was synthesized as a preprotein of 575 amino acid residues with the predicted molecular weight of 62.3 kDa, pI of 3.51 and a 19-amino acid signal peptidel. Search of the GenBank database using blastp programs showed that HoCBP2 and HoCBP76 had sequence similarity with PMP14 (GeneBank Accession No. GU12810~6) from Tribolium castaneum (Coleoptera: Tenebrionidae), the identity were 35% and 34% respectively. Deduced amino acid sequence analysis indicated that HoCBP2 and HoCBP76 contained eight and seven tandem putative chitin binding domains which belonged to the peritrophin-A domains, respectively. The HoCBP2 and HoCBP76 were recombined into pET21b vector, transformed into E.coli., and were successfully expressed after IPTG induction.
     Recombinant HoCBP2 and HoCBP76 were successfully expressed in insect cells (Tn-5B1-4) as secreted proteins using recombinant baculoviruses. Western blot analysis showed that the apparent molecular weight for recombinant HoCBP2 and HoCBP76 were about 120 and 110kDa. Subsequent chitin binding assays demonstrated that both of the recombinant HoCBP2 and HoCBP76 had chitin binding a?nity. The HoCBP2 and HoCBP76 tightly bound to chitin and did not dissociate from the chitin following treatment with PBS and 1 M NaCl. However, they were solubilized from the bound chitin by 6M Urea or by 1% Calco?uor. Immunolocation analysis using the antibodies reacting to HoCBP2 and HoCBP76 showed that the abundance of HoCBP2 and HoCBP76 in the anterior, middle and posterior regions of the midgut was similar, HoCBP2 and HoCBP76 was mainly present in the peritrophic membrane, midgut and ovum, some weak postitive staining was detected in the extract from the fecal pellet, integument, digesive fluid, fat body, exuviae and Malpighian tubules extracts did not show any positive reaction.
     3. HoChi encoded the chitinase protein. The cDNA was 1636bp in length (GenBank Accession No. HM596340), containing an ORF of 1458bp, and flanked by a 5’untranslated region of 27bp and a 3’untranslated region of 145bp. The deduced protein sequence showed that HoChi was synthesized as a preprotein of 486 amino acid residues with the predicted molecular weight of 51.8 kDa, pI of 5.58. A potential polyadenylation signal sequence AAGAAA was located at 39bp upstream of the polyA tail. It shared the typical character of chitinase protein, including a signal peptide, a chitinase active site, a C-terminal threonine-rich region and a chitin-binding domain, belonging to the chitinases family 18. The deduced amino acid sequence showed a high identity to reported chitinases from other insect, especially the Coleopteran insect Tribolium castaneum (GenBank Accession No. NM001044629). The HoChi was recombined into pET28b vector, and transformed into E.coli. Western blot analysis demonstrated that HoChi protein was successfully expressed after IPTG induction, and recombinant HoChi was successfully expressed in insect cells (Tn-5B1-4) using recombinant baculoviruses.
     4. HoSCP encoded the serine carboxypeptidases protein. The cDNA was 1830 bp in length (GenBank Accession No. JF681184), containing an ORF of 1830 bp, and flanked by a 5’untranslated region of 78bp and a 3’untranslated region of 381bp. The deduced protein sequence showed that HoSCP was synthesized as a preprotein of 457 amino acid residues with the predicted molecular weight of 51.2 kDa, pI of 6.12 and a 15-amino acid signal peptide. A potential polyadenylation signal sequence AATAAA was located at 14bp upstream of the polyA tail. Deduced amino acid sequence analysis showed that HoSCP contained an eonserved peptidase S10 domain, the serine active site IAGESYAG, the histidine active site AFLkVYGAGHMVPMDQP, and two potential sites for N-glycosylation. The sequence also indicated the presence of a catalytic triad (Ser-185,Asp-361,His-418). The HoSCP was recombined into pET28b vector, and transformed into E.coli. Western blot analysis demonstrated that HoSCP protein was successfully expressed after IPTG induction, and recombinant HoSCP was successfully expressed in insect cells (Tn-5B1-4) using recombinant baculoviruses.
     5. HoIIM encoded the insect intestianl mucin protein. The cDNA was 1879 bp in length (GenBank Accession No. JF JF681187), Deduced amino acid sequence analysis indicated that the HoIIM protein contained five tandem putative chitin binding domains which belonged to the peritrophin-A domains, and five mucin domains which riched in threonine, proline and serine, and also contained several repeating units, PTTTPTT, STTTT PTSTTTPTTITT and TTPTTP, which repeated 15, 5, 5 and 4 times, respectively. The periodic acid-Schiff (PAS) stained SDS-PAGE analysis showed that the two red glycoprotein bands accorded with the 160kDa and 80kDa protein bands of the PM proteins from the Holotrichia oblita larvae by the silver-stained SDS-PAGE analysis. Western blot analysis showed that the bigger molecular weight PM protein band disappeared after the treatment of the PM from the Holotrichia oblita larvae with the enhancin isolated from the Trichoplusia ni granulosis virus (TnGV), and some smaller molecular weight PM proteins increased correspondingly.
引文
[1] Dow J.A.T. Insect midgut function[J]. Advances in Insect Physiology. 1987, 19:187-328.
    [2] Hegedus D., Erlandson M., Gillott C., et al. New insights into peritrophic matrix synthesis, architecture, and function[J]. Annual review of entomology. 2009, 54:285-302.
    [3] Peters W.. Peritrophic membranes[M]. Springer,New York, 1992.
    [4] Richards A.G., Richards P.A.. The peritrophic membranes of insects[J]. Annual review of entomology. 1977, 22:219-240.
    [5] Mercer E.H., Day M.F.. The fine structure of the peritrophic membranes of certain insects[J]. The Biological Bulletin. 1952, 103(3):384.
    [6] Tellam R.L., Wijffels G., Willadsen P.. Peritrophic matrix proteins[J]. Insect biochemistry and molecular biology. 1999, 29(2):87-101.
    [7] Waterhouse D.F.. Digestion in insects[J]. Annual review of entomology. 1957, 2(1):1-18.
    [8] Tristram J.N.. Normal and cocoon-forming peritrophic membrane in larvae of the beetle Gibbium psylloides[J]. Journal of Insect Physiology. 1977, 23(1):79-83, 85-87.
    [9] Wigglesworth V.B.. The Formation of the Peritrophic Membrane in Insects, with Special Reference to the Larvae of Mosquitoes[J]. Quarterly J. Microscop. Sci. 1930, 73(4):593-616.
    [10] Peters W., Heitmann S., d'Haese J.. Formation and fine structure of peritrophic membranes in the earwig, Forficula auricularia (Dermaptera: Forficulidae) [J]. Entomol Gen. 1979, 5:241-254.
    [11] Lehane M.J.. Peritrophic matrix structure and function[J]. Annual review of entomology. 1997, 42(1):525-550.
    [12] Bolognesi R., Ribeiro A.F., Terra W.R., et al. The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes[J]. Archives of Insect Biochemistry and Physiology. 2001, 47(2):62-75.
    [13] Cristofoletti P.T., Ribeiro A.F., Terra W.R.. Apocrine secretion of amylase and exocytosis of trypsin along the midgut of Tenebrio molitor larvae[J]. Journal of Insect Physiology. 2001, 47(2):143-155.
    [14] Eisemann C., Wijffels G., Tellam R.L.. Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia[J]. Archives of Insect Biochemistry and Physiology. 2001, 47(2):76-85.
    [15] Binnington K.C.. Ultrastructure of the peritrophic membrane-secreting cells in the cardia of the blowfly, Lucilia cuprina[J]. Tissue and Cell. 1988, 20(2):269-281.
    [16] Adang M.J., Spence K.D.. Biochemical comparisons of the peritrophic membranes of the lepidopterans Orgyia pseudotsugata and Manduca sexta[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1982, 73(3):645-649.
    [17] Becker B.. Effects of polyoxin D on in vitro synthesis of peritrophic membranes in Calliphora erythrocephala[J]. Insect Biochemistry. 1980, 10(1):101-106.
    [18] Kramer K.J., Hopkins T.L., Schaefer J.. Applications of solids NMR to the analysis of insectsclerotized structures[J]. Insect biochemistry and molecular biology. 1995, 25(10):1067-1080.
    [19] Zimmermann U., Mehlan D., Peters W.. Investigations on the transport function and structure of peritrophic membranes. V. Amino acid analysis and electronmicroscopic investigations of the peritrophic membranes of adult Calliphora erythrocepha[J]. Comparative Biochemistry and Physiology. 1975, 51 B: 181-186.
    [20] Tellam R.L., Eisemann C.. Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina[J]. Insect biochemistry and molecular biology. 2000, 30(12):1189-1201.
    [21] Tellam R.L.. The peritrophic matrix[J]. Biology of the insect midgut. 1996:86-114.
    [22] Stamm B., D'Haese J., Peters W.. SDS gel electrophoresis of proteins and glycoproteins from peritrophic membranes of some Diptera[J]. Journal of Insect Physiology. 1978, 24(1):1-8.
    [23] Rner R.D., Peters W.. Localization of sugar components of glycoproteins in peritrophic membranes of larvae of Diptera (Culicidae, Simuliidae)[J]. Entomologia generalis. 1988, 14(1):11-24.
    [24] Derksen A.C.G., Granados R.R.. Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity[J]. Virology. 1988, 167(1):242-250.
    [25] Moskalyk L.A., Oo M.M., Jacobs-Lorena M.. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti[J]. Insect Molecular Biology. 1996, 5(4):261-268.
    [26] Rupp R.A., Spence K.D.. Protein alterations in Manduca sexta midgut and haemolymph following treatment with a sublethal dose of Bacillus thuringiensis crystal endotoxin[J]. Insect Biochemistry. 1985, 15(2):147-154.
    [27] Ramos A., Mahowald A., Jacobs-Lorena M.. Peritrophic matrix of the black fly Simulium vittatum: formation, structure, and analysis of its protein components[J]. Journal of Experimental Zoology. 1994, 268(4):269-281.
    [28] Campbell P.M., Cao A.T., Hines E.R., et al. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera[J]. Insect biochemistry and molecular biology. 2008,38:950-958.
    [29] Pauchet Y., Muck A., Svatos A., et al. Mapping the Larval Midgut Lumen Proteome of Helicoverpa armigera, a Generalist Herbivorous Insect[J]. Journal of Proteome research. 2008, 7(4):1629-1639.
    [30] Shen Z., Jacobs-Lorena M.. A Type I Peritrophic Matrix Protein from the Malaria Vector Anopheles gambiae Binds to Chitin[J]. Journal of Biological Chemistry. 1998, 273(28):17665.
    [31] Shi X., Chamankhah M., Visal-Shah S., et al. Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains[J]. Insect biochemistry and molecular biology. 2004, 34(10):1101-1115.
    [32] Wang P., Li G., Granados R.R.. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut[J]. Insect biochemistry and molecular biology. 2004, 34(3):215-227.
    [33] Casu R., Eisemann C., Pearson R., et al. Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host[J]. Proceedings of the NationalAcademy of Sciences of the United States of America. 1997, 94(17):8939-8944.
    [34] Tellam R.L., Eisemann C., Casu R., et al. The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein[J]. Insect biochemistry and molecular biology. 2000, 30(1):9-17.
    [35] Wang P., Granados R.R.. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA[J]. Journal of Biological Chemistry. 1997, 272(26):16663-16669.
    [36] Sarauer B,L,, Gillott C., Hegedus D.. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella[J]. Insect Molecular Biology. 2003, 12(4):333-343.
    [37] Guo W., Li G., Pang Y., et al. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni[J]. Insect biochemistry and molecular biology. 2005, 35(11):1224-1234.
    [38] Harper M.S., Hopkins T.L.. Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis) [J]. Tissue and Cell. 1997, 29(4):463-475.
    [39] Hopkins T.L., Harper M.S.. Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure[J]. Archives of Insect Biochemistry and Physiology. 2001, 47(2):100-109.
    [40] Wang P., Granados R.R.. An intestinal mucin is the target substrate for a baculovirus enhancin[J]. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94(13):6977-6982.
    [41] Peters W.. The fine structure of peritrophic membranes of mosquito and blackfly larvae of the genera Aedes, Anopheles, Culex, and Odagmia (Diptera: Culicidae/Simuliidae) [J]. Entomologia Generalis. 1979, 5:289-299.
    [42] Schorderet S., Pearson R.D., Vuocolo T., et al. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein,'Peritrophin-48', from the larvae of Lucilia cuprina[J]. Insect biochemistry and molecular biology. 1998, 28(2):99-111.
    [43] Miller,N. Lehane M.J. Ionic environment and the permeability properties of the peritrophic membrane of Glossina morsitans morsitans[J]. Journal of Insect Physiology. 1993, 39(2):139-144.
    [44] Abedi Z.H., Brown A.W.A.. Peritrophic membrane as vehicle for DDT and DDE excretion in Aedes aegypti larvae[J]. Annals of the Entomological Society of America. 1961, 54(4):539-542.
    [45] Rayms-Keller A., McGaw M., Oray C., et al. Molecular cloning and characterization of a metal responsive Aedes aegypti intestinal mucin cDNA[J]. Insect Molecular Biology. 2000, 9(4):419-426.
    [46] Devenport M., Alvarenga P.H., Shao L., et al. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein[J]. Biochemistry. 2006, 45(31):9540-9549.
    [47] Summers C.B., Felton G.W.. Peritrophic envelope as a functional antioxidant[J]. Archives of Insect Biochemistry and Physiology. 1996, 32(1):131-142.
    [48] Sudha P.M., Muthu S.P.. Damage to the midgut epithelium caused by food in the absence ofperitrophic membrane[J]. Current Science. 1988, 57:624-625.
    [49] Peng J., Zhong J.. A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae[J]. Journal of Insect Physiology. 1999, 45(2):159-166.
    [50] Wang P., Granados R.R.. Calcofluor disrupts the midgut defense system in insects[J]. Insect biochemistry and molecular biology. 2000, 30(2):135-143.
    [51] Zimmermann D., Peters W.. Fine structure and permeability of peritrophic membranes of Calliphora erythrocephala (Meigen)(Insecta: Diptera) after inhibition of chitin and protein synthesis[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1987, 86(2):353-360.
    [52] Edwards,M.J. Jacobs-Lorena M.. Permeability and disruption of the peritrophic matrix and caecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae[J]. Journal of Insect Physiology. 2000, 46(9):1313-1320.
    [53] Jentoft N.. Why are proteins O-glycosylated?[J]. Trends in Biochemical Sciences. 1990, 15(8):291-294.
    [54] Strous G.J., Dekker J.. Mucin-type glycoproteins[J]. Critical reviews in biochemistry and molecular biology. 1992, 27(1-2):57-92.
    [55] Roelvink P.W., Corsaro B.G., Granados R.R.. Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes[J]. Journal of general virology. 1995, 76(11):2693-2705.
    [56] Bischoff D.S., Slavicek J.M.. Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus[J]. Journal of virology. 1997, 71(11):8133-8140.
    [57] Kuzio J., Pearson M.N., Harwood S.H., et al. Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar[J]. Virology. 1999, 253:17-34.
    [58] Hayakawa T., Ko R., Okano K., et al. Sequence analysis of the Xestia c-nigrum granulovirus genome[J]. Virology. 1999, 262(2):277-297.
    [59] Brandt C.R., Adang M.J., Spence K.D.. The peritrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata[J]. Journal of Invertebrate Pathology. 1978, 32(1):12-24.
    [60] Kramer K.J., Muthukrishnan S.. Insect chitinases: molecular biology and potential use as biopesticides[J]. Insect biochemistry and molecular biology. 1998, 27(11):887-900.
    [61]邓春梅,葛玉强,刘丽,等.外源基因表达系统的研究进展[J].现代生物医学进展.2010(19):3744-3746.
    [62]郭广君,吕素芳,王荣富.外源基因表达系统的研究进展[J].科学技术与工程.2006(05):582-587.
    [63]沈卫锋,牛宝龙,翁宏飚,等.枯草芽孢杆菌作为外源基因表达系统的研究进展[J].浙江农业学报.2005(04):234-238.
    [64] Smith G..E., Summers M.D., Fraser M.J.. Production of human beta interferon in insect cells infected with a baculovirus expression vector[J]. Molecular and Cellular Biology. 1983, 3(12):2156-2165.
    [65] Maeda S., Kawai T., Obinata M., et al. Characteristics of human interferon-a produced by a gene transferred by a baculovirus vector in the silkworm, Bombyx mori[J]. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences. 1984, 60(10):423-426.
    [66] Luckow V.A., Summers M.D.. Trends in the development of baculovirus expression vectors[J]. Nature Biotechnology. 1988, 6(1):47-55.
    [67]刘永平,王方海,苏志坚,等.昆虫杆状病毒表达载体系统的研究及应用[J].昆虫知识.2006(01):1-5.
    [68]曹翠平,吴小锋.重组昆虫杆状病毒构建和筛选技术进展[J].昆虫学报.2004(06):837-843.
    [69] Ailor E., Betenbaugh M.J.. Modifying secretion and post-translational processing in insect cells[J]. Current opinion in biotechnology. 1999, 10(2):142-145.
    [70] Joshi L., Davis T.R., Mattu T.S., et al. Influence of baculovirus-host cell interactions on complex N-linked glycosylation of a recombinant human protein[J]. Biotechnology progress. 2000, 16(4):650-656.
    [71] Hu Y.. Baculovirus as a highly efficient expression vector in insect and mammalian cells[J]. Acta Pharmacologica Sinica. 2005, 26(4):405-416.
    [72] Breitbach K., Jarvis D.L.. Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases[J]. Biotechnology and bioengineering. 2001, 74(3):230-239.
    [73]朱帮福,卢兹凡.昆虫杆状病毒表达系统的研究进展[J].细胞与分子免疫学杂志.2002(06):681-684.
    [74] Yue W., Li X., Wu W., et al. Improvement of recombinant baculovirus infection efficiency to express manganese superoxide dismutase in silkworm larvae through dual promoters of Pph and Pp10[J]. Applied microbiology and biotechnology. 2008, 78(4):651-657.
    [75] Kost T.A., Condreay J.P., Jarvis D.L.. Baculovirus as versatile vectors for protein expression in insect and mammalian cells[J]. Nature Biotechnology. 2005, 23(5):567-575.
    [76] Kaba S.A., Salcedo A.M., Wafula P.O., et al. Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins[J]. Journal of virological methods. 2004, 122(1):113-118.
    [77]刘高强,章克昌,王晓玲,等.昆虫杆状病毒表达系统的研究与应用进展[J].中国生物工程杂志.2004(07):40-44.
    [78]朱江,吴祥甫.昆虫杆状病毒表达系统研究进展及其应用展望[J].蚕业科学.2003(02):114-119.
    [79] Boublik Y., Bonito P. Di, Jones I.M.. Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface[J]. Nature Biotechnology. 1995, 13(10):1079-1084.
    [80] Tami C., Peralta A., Barbieri R., et al. Immunological properties of FMDV-gP64 fusion proteins expressed on SF9 cell and baculovirus surfaces[J]. Vaccine. 2004, 23(6):840-845.
    [81] Feng Q., Liu Y., Qu X., et al. Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models[J]. DNA and cell biology. 2006, 25(12):668-673.
    [82] Delaney W.E., Isom H.C.. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus[J]. Hepatology. 1998, 28(4):1134-1146.
    [83] Inceoglu A.B., Kamita S.G., Hinton A.C., et al. Recombinant baculoviruses for insect control[J]. Pest management science. 2001, 57(10):981-987.
    [84] Hink W.F., Thomsen D.R., Davidson D.J., et al. Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines[J]. Biotechnology progress. 1991, 7(1):9-14.
    [85] Kozak M.. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes[J]. Cell. 1986, 44(2):283-292.
    [86] Kumar S., Miller L.K.. Effects of serial passage of Autographa californica nuclear polyhedrosis virus in cell culture[J]. Virus research. 1987, 7(4):335-349.
    [87] Thiem S.M., Miller L.K.. Differential gene expression mediated by late, very late and hybrid baculovirus promoters[J]. Gene. 1990, 91(1):87-94.
    [88] Hill-Perkins M.S., Possee R.D.. A baculovirus expression vector derived from the basic protein promoter of Autographa californica nuclear polyhedrosis virus[J]. Journal of general virology. 1990, 71(4):971.
    [89] Luckow V.A., Summers M.D.. Signals important for high-level expression of foreign genes in Autographa californica nuclear polyhedrosis virus expression vectors[J]. Virology. 1988, 167(1):56-71.
    [90] Luckow V.A., Lee S.C., Barry G.F., et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli[J]. Journal of virology. 1993, 67(8):4566-4579.
    [91] Ciccarone V.C., Polayes D.A., Luckow V.A.. Generation of Recombinant Baculovirus DNA in E. coli Using a Baculovirus Shuttle Vector[J]. Molecular diagnosis of infectious diseases. 1998:213-235.
    [92] Anderson D., Harris R., Polayes D., et al. Rapid generation of recombinant baculovirus and expression of foreign genes using the Bac-to-Bac baculovirus expression system[J]. Focus. 1995, 17:53-58.
    [93]王汉中,黄弋,司艳红,等.一种新颖的棉铃虫单粒包埋核多角体病毒表达系统[J].中国病毒学.2002(04):319-325.
    [94]吴小锋,岳万福,刘剑梅,等.Bac-to-Bac系统的研究进展及在家蚕中的应用[J].蚕业科学.2007(01):146-150.
    [95]王爱东.农田蛴螬发生及综合防治技术[J].现代农业科技.2008(06):101.
    [96]苗春生,苗秀俊,王亚军,等.河北省黑光灯诱集金龟子的种类及其分布和消长规律研究[J].河北农业科学.2007(01):41-45.
    [97]王容燕,范秀华,曹伟平,等.苏云金杆菌新菌株对金龟子幼虫的毒力比较[J].植物保护学报.2003(02):223-224.
    [98]张伟,吴立民,李振永.暗黑和铜绿金龟子的无公害防治技术[J].江苏农业科学.2003(06):67-68.
    [99]吉洪湖,袁哲明.围食膜:害虫生物防治的潜在靶标[J].昆虫学报.2005(06):968-974.
    [100]李斌,李淑文,李长友,等.害虫生防新靶标―昆虫中肠围食膜的研究进展[J].东北农业大学学报.2007(01):130-135.
    [101]相静波,刘惠霞,吴文君.昆虫围食膜的研究进展[J].昆虫知识.2004(02):116-122.
    [102]朱蓉,彭建新,洪华珠.光增白剂对甜菜夜蛾围食膜结构的作用与影响[J].昆虫学报.2003(04):424-428.
    [103]程道军,夏庆友,周泽扬,等.家蚕cDNA文库构建及大规模EST测序[J].蚕业科学.2003(04):335-339.
    [104]杨成君,王军.cDNA文库的构建策略及其应用[J].生物技术通报.2007(01):5-9.
    [105] Hofstetter H., Schambock A., Van Den Berg J., et al. Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly (dA)·poly (dT) method. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis. 1976, 454(3):587-591.
    [106]刘志刚,黄炯烈,朱振宇,等.美洲大蠊若虫cDNA表达文库的构建和初步鉴定[J].中华微生物学和免疫学杂志.2001(S2):4-6.
    [107]孙秀珍,刘昀.霜天蛾cDNA表达文库的构建和初步鉴定[J].西安交通大学学报(医学版).2005(03):244-246.
    [108]王来元,王金星,赵小凡,等.家蝇cDNA文库的构建[J].动物学研究.2001(02):159-162.
    [109] Suzuki Y., Sugano S.. Construction of a Full-Length Enriched and 5'-End Enriched cDNA Library Using the Oligo-Capping Method[J]. Methods in Molecular Biology. 2003, 221:73-92.
    [110] Efimov V.A., Chakhmakhcheva O.G., Archdeacon J., et al. Detection of the 5'-cap structure of messenger RNAs with the use of the cap-jumping approach[J]. Nucleic Acids Research. 2001, 29(22):4751-4759.
    [111] Zhu Y.Y., Machleder E.M., Chenchik A., et al. Reverse transcriptase template switching: A SMART(TM) approach for full-length cDNA library construction. Biotechniques[J]. 2001, 30(4):892-897.
    [112] Carninci P., Kvam C., Kitamura A., et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper[J]. Genomics. 1996, 37(3):327-336.
    [113] Rondinelli R.H., Tricoli J.V.. CLAR1, a novel gene that exhibits enhanced expression in advanced human prostate cancer[J]. Clinical cancer research. 1999, 5(6):1595-1602.
    [114] Jung J.D., Park H.W., Hahn Y., et al. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags[J]. Plant cell reports. 2003, 22(3):224-230.
    [115] J.S. Wan, S.J. Sharp, M.C.P. Ghislaine, et al. Cloning differentially expressed mRNAs[J]. Nature Biotechnology. 1996, 14(13):1685-1691.
    [116]李明芳,郑学勤.开发SSR引物方法之研究动态[J].遗传.2004(05):769-776.
    [117] Schena M., Shalon D., Davis R.W., et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science. 1995, 270(5235):467-470.
    [118] Lobo C.A., Kar S.K., Ravindran B., et al. Novel proteins of Plasmodium falciparumidentified by differential immunoscreening using immune and patient sera[J]. Infection and immunity. 1994, 62(2):651-656.
    [119]瞿文全,金治平,赵德修,等.快速简便筛选cDNA文库的SSS法[J].遗传.2003(05):583-586.
    [120]段新伟,傅颖慧,卢艳,等.日本血吸虫童虫cDNA文库免疫学筛选及阳性克隆的初步鉴定[J].中国寄生虫学与寄生虫病杂志.2009(01):80-82.
    [121]尚毅,马璐琳,亓增军,等.噬菌体cDNA文库筛选方法的改良[J].生物学杂志.2010(05):91-93.
    [122] Devenport M., Fujioka H., Donnelly-DomaM. n, et al. Storage and secretion of Ag-Aper14, a novel peritrophic matrix protein, and Ag-Muc1 from the mosquito Anopheles gambiae[J]. Cell and tissue research. 2005, 320(1):175-185.
    [123] Elvin C.M., Vuocolo T., Pearson R.D., et al. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina[J]. Journal of Biological Chemistry. 1996, 271(15):8925-8935.
    [124] Yin J., Wei Z.J., Li K.B., et al. Identification and Molecular Characterization of a New Member of the Peritrophic Membrane Proteins from the Meadow Moth, Loxostege Sticticalis[J]. International Journal of Biological Sciences. 2010, 6(5):491-498.
    [125] Hansen J.E., Lund O., Tolstrup N., et al. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility[J]. Glycoconjugate Journal. 1998, 15(2):115-130.
    [126] Wang P., Granados R.R.. Rapid and efficient isolation of highly specific antibodies from an antiserum against a pool of proteins[J]. Biotechnic & Histochemistry. 2003, 78(3-4):201-205.
    [127] Blom N., Sicheritz-Ponten T., Gupta R., et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics. 2004, 4(6):1633-1649.
    [128] Jasrapuria S., Arakane Y., Osman G., et al. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function[J]. Insect biochemistry and molecular biology. 2010, 40(3):214-227.
    [129]蔡秋月.围食膜因子的分子结构及其功能[J].广西轻工业.2007(06):12-13.
    [130]陆秀君,王勤英,李国勋.昆虫围食膜的研究进展[J].河北农业大学学报.2003(S1):205-207.
    [131]张小霞,乔冠华,梁振普,等.昆虫中肠围食膜蛋白研究进展[J].昆虫学报.2009(12):1366-1372.
    [132] Arakane Y., Muthukrishnan S.. Insect chitinase and chitinase-like proteins[J]. Cellular and molecular life sciences. 2010, 67(2):201-216.
    [133] Selvaggini S., Munro C.A., Paschoud S., et al. Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae[J]. Microbiology. 2004, 150(4):921-928.
    [134] Kawamura K., Shibata T., Saget O., et al. A new family of growth factors produced by the fatbody and active on Drosophila imaginal disc cells[J]. Development. 1999, 126(2):211-219.
    [135]张福丽,王志英,王占斌,等.昆虫几丁质酶及其在植物害虫防治中的应用前景[J].中国森林病虫.2007(04):22-25.
    [136] Assenga S.P., You M., Shy C.H., et al. The use of a recombinant baculovirus expressing a chitinase from the hard tick Haemaphysalis longicornis and its potential application as a bioacaricide for tick control[J]. Parasitology research. 2006, 98(2):111-118.
    [137] Bolognesi R., Arakane Y., Muthukrishnan S., et al. Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda[J]. Insect biochemistry and molecular biology. 2005, 35(11):1249-1259.
    [138] Ahmad T., Rajagopal R., Bhatnagar R.K.. Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera[J]. Biochemical and biophysical research communications. 2003, 310(1):188-195.
    [139] Shen Z., Jacobs-Loren M. a. Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae[J]. Journal of Biological Chemistry. 1997, 272(46):28895-28900.
    [140] Shinoda T., Kobayashi J., Matsui M., et al. Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene[J]. Insect biochemistry and molecular biology. 2001, 31(6-7):521-532.
    [141] Zhu Q., Arakane Y., Banerjee D., et al. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects[J]. Insect biochemistry and molecular biology. 2008, 38(4):452-466.
    [142] Zhu Q., Arakane Y., Beeman R.W., et al. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum[J]. Insect biochemistry and molecular biology. 2008, 38(4):467-477.
    [143]黄乾生,谢晓兰,陈清西.几丁质酶的结构特征与功能[J].厦门大学学报(自然科学版).2008(S2):232-235.
    [144] Lu Y., Zen K.C., Muthukrishnan S., et al. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase[J]. Insect biochemistry and molecular biology. 2002, 32(11):1369-1382.
    [145] Thomas C.J., Gooday G.W., King L.A., et al. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene[J]. Journal of general virology. 2000, 81(5):1403-1411.
    [146] Huang X., Zhang H., Zen K.C., et al. Homology modeling of the insect chitinase catalytic domain-oligosaccharide complex and the role of a putative active site tryptophan in catalysis[J]. Insect biochemistry and molecular biology. 2000, 30(2):107-117.
    [147] Zakariassen H., Aam B.B., Horn S.J., et al. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency[J]. Journal of Biological Chemistry. 2009, 284(16):10610-10617.
    [148] Breddam K.. Serine carboxypeptidases. A review[J]. Carlsberg research communications. 1986, 51(2):83-128.
    [149] Lehfeldt C., Shirley A.M., Meyer K., et al. Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism[J]. The Plant Cell Online. 2000, 12(8):1295-1306.
    [150] Remington S.J., Breddam K.. Carboxypeptidases C and D[J]. Methods in enzymology. 1994, 244:231-248.
    [151] Mahoney J.A., Ntolosi B., DaSilva R.P., et al. Cloning and Characterization of CPVL, a Novel Serine Carboxypeptidase, from Human Macrophages[J]. Genomics. 2001, 72(3):243-251.
    [152] Zhou A., Li J.. Arabidopsis BRS1 is a secreted and active serine carboxypeptidase[J]. Journal of Biological Chemistry. 2005, 280(42):35554-35561.
    [153] Dominguez F., Gonzatez M., Cejudo F.J.. A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings[J]. Planta. 2002, 215(5):727-734.
    [154] Motobu M., Tsuji N., Miyoshi T., et al. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis[J]. FEBS Journal. 2007, 274(13):3299-3312.
    [155] Mittapalli O., Wise I.L., Shukle R.H.. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae) [J]. Insect biochemistry and molecular biology. 2006, 36(2):154-160.
    [156] Cho W.L., Deitsch K.W., Raikhel A.S.. An extraovarian protein accumulated in mosquito oocytes is a carboxypeptidase activated in embryos[J]. Proceedings of the National Academy of Sciences of the United States of America. 1991, 88(23):10821-10824.
    [157] Christianson D.W., Lipscomb W.N.. Carboxypeptidase A. Accounts of Chemical Research[J]. 1989, 22(2):62-69.
    [158] Perez-Vilar J., Hill R.L.. The structure and assembly of secreted mucins[J]. Journal of Biological Chemistry. 1999, 274(45):31751-31754.
    [159]李杰,张霞,郭巍,等.棉铃虫中肠cDNA表达文库的免疫筛选及其克隆分析[J].华北农学报.2010(02):18-22.
    [160]李雯,郭巍,张霞,等.甜菜夜蛾围食膜肠粘蛋白基因SeM-8的克隆、序列分析及在不同组织中的表达检测[J].昆虫学报.2010(07):727-733.
    [161] Fang S., Wang L., Guo W., et al. Bacillus thuringiensis Bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin[J]. Applied and environmental microbiology. 2009, 75(16):5237-5243.
    [162]曹佐武.糖蛋白PAGE分离后的糖基显色法[J].生物技术通报.2006(05):87-89.
    [163]尹隽,单梁,宋大新,等.粉纹夜蛾颗粒体病毒增强蛋白锌离子结合域定点突变[J].昆虫学报.2007(11):1111-1115.
    [164] Lepore L.S., Roelvink P.R., Granados R.R.. Enhancin, the granulosis virus protein thatfacilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease[J]. Journal of Invertebrate Pathology. 1996, 68(2):131-140.
    [165] Zhang X., Guo W.. Isolation and Identification of Insect Intestinal Mucin Haiim86-The New Target for Helicoverpa Armigera Biocontrol[J]. International Journal of Biological Sciences. 2011, 7(3):286-296.
    [166] Molano J., Durán A. and Cabib E... A rapid and sensitive assay for chitinase using tritiated chitin[J]. Analytical Biochemistry. 1977, 83(2): 648-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700