微波和γ射线联合照射对造血和神经系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在细胞和机体水平研究不同剂量微波和γ射线联合照射对神经系统和造血系统的生物学效应以及低剂量微波辐射对γ射线引起的造血损伤的防护效应及机理,初步分析微波辐射对人群神经行为的影响,为探讨微波和γ射线联合作用的分子机制、微波通讯对神经系统的健康影响及低剂量微波对其他有害因素的防护效应提供基础资料。
     方法:原代培养的骨髓细胞分别接受单独的微波辐射、单独γ射线辐射以及微波和γ射线的联合照射,分析细胞增殖活性变化、细胞周期的变化。昆明种小鼠分别接受单独的微波辐射、单独γ射线辐射以及微波和Υ射线的联合照射,根据动物存活率、存活时间、外周血计数等客观指标的变化,建立能够有效减轻电离辐射危害的微波辐射的动物模型;采用骨髓有核细胞计数、造血干/祖细胞数量和增殖能力检测、骨髓组织病理变化观察,分析微波对电离辐射造血损伤的拮抗效应及其规律。神经胶质瘤细胞分为对照组、单独微波组、单独γ射线组以及联合暴露组。对照组不接受任何照射,单独微波组接受2mW/cm2、4mW/cm2和6mW/cm2微波辐射,联合组在微波照射后再接受5Gyγ射线照射,单独电离组只接受5Gyγ射线照射。分析不同组别细胞的生长增殖情况、细胞周期和凋亡的改变、超氧化物岐化酶(superoxide dismutase,SOD)和丙二醛(malondialdehyde,MDA)含量,分析各组细胞HSP70的mRNA和蛋白质表达情况。以原代培养的大鼠神经胶质细胞为研究对象,测定不同处理后细胞的增殖情况、凋亡情况以及ATP酶的表达。昆明种小鼠分别接受1.5mW/cm2、3mW/cm2、6 mW/cm2和9mW/cm2的900MHz微波辐射,开放场实验和避暗实验测定小鼠学习记忆功能,测定海马组织中HSP70的mRNA表达水平。
     选择苏州市区内某移动通讯基站周围长期定居人群作为观察组人群,对照组为非移动基站周围定居人群。对基站周围辐射水平进行测量,收集研究对象的基本情况,采用神经行为测试评价系统对基站周围人群及对照人群进行测试。
     结果:
     原代骨髓细胞实验结果:
     12μW/cm2的900MHz微波辐射能显著提高原代骨髓细胞的增殖活性,影响细胞周期,使G1期细胞比例明显减少(p<0.05),增殖期(S+G2/M)细胞比例显著升高。微波与γ射线联合照射对小鼠造血系统影响的动物实验结果:
     60Coγ射线照射前给予120μW/cm2的900MHz微波辐射能显著提高受照射小鼠的存活率(p<0.05),促进外周血白细胞恢复,提高受照射小鼠的脾脏和胸腺系数,增强γ射线照射后小鼠骨髓有核细胞(bone marrow nucleated cells,BMNCs)增殖活性,促进CFU-GM集落形成,并刺激造血生长因子GM-CSF、IL-3的表达。单独γ射线与复合照射均可导致骨髓组织经历典型的凋亡坏死、空虚、再生修复和恢复4个阶段的病理改变,但复合组的病变轻于电离组,恢复也更快。脾脏系数结果显示,照后9d、12d复合组脾脏系数显著高于电离组(p<0.05)。脾脏病理显示,脾损伤病变过程与骨髓造血组织基本相似,即早期以淋巴细胞凋亡为主,伴随脾小体不同程度的萎缩,中晚期淋巴细胞开始增生、间质纤维组织增生修复;复合组病变轻于电离组。
     神经细胞体外实验结果
     (1)4mW/cm2和6mW/cm2微波辐射组细胞增殖活性显著下降。6mW/cm2微波辐射增强电离辐射引起的细胞增殖活性下降的程度。单独微波组细胞的克隆形成率下降。4mW/cm2和6mW/cm2微波辐射增强电离辐射引起的细胞克隆形成率下降的程度。(2)单独微波辐射后,细胞凋亡率随着微波强度的增加有上升的趋势且呈直线相关,但各组间无统计学差异。4mW/cm2和6mW/cm2微波辐射增强电离辐射诱导的细胞凋亡率。微波与γ射线对细胞凋亡率存在协同促进作用。(3)各单独微波组SOD活性有上升趋势,但各组间没有统计学差异。单独微波组中,6mW/cm2微波辐射组的MDA含量上升。
     微波辐射能增强电离辐射引起的MDA含量上升,6mW/cm2微波辐射增强电离辐射引起的SOD活性下降。微波与γ射线对MDA含量有协同促进作用,对SOD活性的抑制有加强作用。(4)单独微波照射后,HSP70的表达有上升的趋势,但各组间无统计学差异。γ射线照射后HSP70表达显著下降。微波和γ射线对细胞HSP70的表达无交互作用。(5)大鼠原代神经胶质细胞的增殖活性经微波、γ射线和联合照射处理后,与对照组相比均没有统计学差异,仅γ射线组和联合组有下降的趋势。各处理组均无明显凋亡发生。γ射线使ATP酶的活性显著升高。
     电磁辐射对神经行为影响的动物实验结果:
     (1)与对照组相比,1.5 mW/cm2组、6 mW/cm2组、12 mW/cm2组小鼠活动的总路程和活动时间增加,休息时间缩短,潜伏期明显缩短,错误次数增加(p<0.05)。但是3 mW/cm2组小鼠各指标没有显著变化。(2)各照射剂量微波辐射均未引起小鼠海马组织出现病理性改变。(3)与对照组相比,1.5 mW/cm2组、6 mW/cm2组、12 mW/cm2组小鼠海马组织中Hsp70 mRNA表达增加(p<0.05),但是S3组小鼠海马组织Hsp70 mRNA表达没有显著差异。
     人群调查结果:
     (1)基站周围电磁辐射强度未超过国家标准规定的一级标准。(2)调查结果显示,观察组和对照组人群在神经衰弱症状方面无显著性差异,未观察到移动基站微波辐射引起神经衰弱症候群发病率的增高。但随着暴露时间(居住年限)的延长,头痛、头晕、记忆力减退这三项指标的异常率有所增高(p<0.05),说明移动基站微波辐射对人体的健康危害与暴露时间仍有一定的关联。(3)观察组情感状态测试中紧张-焦虑、忧郁-沮丧、愤怒-敌意、疲惫-惰性和半结构投射实验中思、怒、惊得分显著高于对照组(p<0.05),心算、记忆扫描、连续识别、数字检索、曲线吻合等项目得分显著低于对照组(p<0.05),其中记忆扫描、连续识别、数字检索、目标追踪与居住年限呈负相关(p<0.05)。
     结论:
     1.低剂量的微波辐射可在一定程度上减轻γ射线对小鼠造血系统的急性损伤。低剂量微波预处理可刺激造血因子表达,促进骨髓造血细胞(尤其是粒系细胞)增殖,减轻γ射线对造血细胞的增殖抑制作用,同时降低损伤细胞的凋亡率,从而促进造血重建。
     2.在细胞水平上,微波和γ射线对人神经胶质瘤细胞的增殖抑制和氧化损伤有协同作用。联合照射对大鼠原代神经胶质细胞的增殖和凋亡无明显影响,仅可使ATP酶活性增高。在动物整体水平上,微波辐射可引起小鼠学习记忆能力下降和神经行为改变,并导致海马组织热休克反应。
     3.人群调查发现,基站微波辐射可影响附近居民的情感状况、智力、记忆学习、感知和心理运动神经行为的能力,导致负性情绪增加;随着时间的延长,神经衰弱相关症状的异常率有所增高。提示微波辐射对居民健康的影响不容忽视。
Objective To study the joint biological effects of different doses of microwave radiation andγ-ray on the nervous system and hematopoietic system, as well as the protective effects of low doses of microwave radiation on theγ-ray-induced damage of hematopoietic system at the cellular and organism levels, to provide with imformation in exploring molecule mechanisms of combined effects of microwave andγ-rays.
     Methods Primary cultured bone marrow cells were exposed with microwave radiation,γ-ray radiation, as well as combined radiation of microwave andγ-ray, changes of cell proliferation and cell cycle were analyzed. Kunming mice were treated with a separate microwave radiation, a separateγ-ray radiation, as well as combined radiation of microwave andγ-ray. According to changes of animal survival rate, survival time, as well as peripheral blood cell count, animal model was set up for microwave radiation scheme which could effectively reduce the hazards of ionizing radiation; bone marrow nucleated cells(BMNCs) were counted, number and proliferative ability of hematopoietic stem/ progenitor cells were detected, and histopathological changes in the bone marrow were observed,GM-CSF and IL-3 levels in blood serum were analyzed using ELISA assay method.
     SHG44 human glioma cells were first randomly divided into 4 groups including Group control (C), Group ionizing radiation ( I), Group microwave(M) and Combined group (M + I). Group M + I samples received an initial exposure to microwave radiation and then subsequently to ionizing radiation. Standard MTT assay was used to observe the proliferation activity of the SHG44 human glioma cells. Changes in cell cycle and apoptosis were measured by means of flow cytometry. The activity of the superoxide dismutase (SOD) and malondialdehyde levels (MDA) were determined by applying commercial SOD Test Kits and MDA Test Kits, with procedures according to instructions of the manufacturer. Total RNA was extracted from each sample, performed with a commercial kit according to the manufacturer’s protocol. The level of Hsp70 expression was analyzed by a RT-PCR procedure. HSP70 protein level was analyzed using western blot analysis. Primary cultured rat glial cells were exposed with microwave radiation,γ-ray radiation, as well as combined radiation of microwave andγ-ray, cell proliferation and apoptosis were analyzed. Kunming mice were irradiated with 1.5mW/cm2, 3mW/cm2, 6mW/cm2 and 9mW/cm2 900MHz microwave, Changes of learning and memory ability after radiation were measured by open field test and step-through test. The levels of Hsp70 were detected with RT-PCR.
     Two hundred and four residents near and around a base station have been investigated. The intensity of electromagnetic field near the base station was measured. General information correlated with the investigation was collected by questionnaire. Neurobehavioral functions of the residents were examined by the B.NESC assessment system.
     Results
     Pre-exposure of 120μW/cm2 900MHz microwave significantly improved the survival rate ofγ-ray irradiated mice, promoted the recovery ofγ-ray induced decline of peripheral white blood cells, improved spleen and thymus idex, enhanced BMNCs proliferative activity, promoted CFU-GM colony formation, and stimulated the hematopoietic growth factor GM-CSF, IL-3 expression ofγ-ray irradiated mouses. Bothγ-ray radiation alone and combined radiation led to pathological changes of bone marrow, which experienced four stages : apoptotic necrosis, emptiness, regeneration and repair, and restoration, but pathological damages of mice in combined group were less severe, and recovered faster than that of ionizing group. Spleen index of mice in combined group was significantly higher than that ofγ-ray group 9d, 12d after irradiation (p <0.05). Splenic pathological change was similar with that of bone marrow. Splenic pathological injuries in combined group were lighter than that ofγ-ray group.
     4mW/cm2 and 6mW/cm2 microwave radiation decreased proliferation activity and cloning efficiency of SHG44 human glioma cells.Combination of Microwave andγ-ray showed synergistic effect on both cell proliferation activity and the cloning efficiency.Compared to the microwave radiation groups,the percentage of G1 phase cells obviously increased in the combination groups,while that of G2 and S phase decreased.The rate of apoptosis increased with the does of microwave in the microwave radiation groups and so did the I+M4 and I+M6 Group,indicating a synergistic effect ofγ-ray and microwave on apoptosis rate. The MDA level increased in all combination groups,and the SOD activity decreased in the group with combined radiation ofγ-ray and 6mW/cm2 microwave.Expression of HSP70 at both mRNA and protein levels increased slightly in the microwave exposure groups, but no interaction ofγ-ray and microwave on HSP70 expression was found for SHG44 human glioma cells.Proliferation of primary cultured rat glial cell inγ-ray group and combined radiation group withγ-ray and 6mW/cm2 microwave decreased slightly, and the ATPase activity was significantly increased.
     In animal experiment for neurobehavial effect, the time and total distance of movement at 1.5 mW/cm2, 6 mW/cm2 and 12 mW/cm2 microwave group increased, with a decrease in rest and latency time and a high frequency of mistake(p<0.05). The levels of Hsp70 in hippocampus of 1.5 mW/cm2, 6 mW/cm2 and 12 mW/cm2 microwave group were significantly increased (p<0.05).
     The intensity of electromagnetic radiation from this base station was below the national standard. No significant difference was found between the exposure group and the control group in the neurasthenia symptom. However, as the time of exposure extended, abnormal incidences of headache, dizziness, and memory drop increased (p<0.05). In addition, exposure of electromagnetic radiation could lead to an increase in scores of profile of mood state (POMS) test and semi-structural project test.
     Conclusions
     1. Low dose of microwave radiation could reduceγ-ray induced mice hematopoietic damages to some extent.
     2. Microwave andγ-ray could inhibit the proliferation of SHG44 cells with a synergistic effect, but such effect was not observed in primary rat glial cells.900MHz microwave radiation could impair neurobehavioral of mice such as learning and memory ability. The over expression of Hsp70 could be an early index of neuron functional damage induced by microwave.
     3. Microwave radiation from the mobile base station could affect the emotional status of the residents nearby.
引文
1曹毅,童建.电磁辐射生物效应研究综述.环境与职业医学,2007, 24(2):222-226.
    2牛中奇,侯建强,王海彬等.电磁波的生物学窗效应.中国生物医学工程学报,2003,22:126-132.
    3刘亚宁.非热效应的几种理论和假说.郭鹞,陈景藻.电磁辐射生物效应及其医学应用.西安:第四军医大学出版社,2003.
    4范凌云,吕星,张成岗.微波致中枢神经系统损伤研究进展.中华航空航天医学杂志, 2004, 15(1):59-61.
    5郭九吉,朱玉华,曹钟兴等,微波作业人员健康的动态观察.职业卫生与应急救援, 2000,18(2):62-64.
    6 A.W.preece, S.Goodfellow ,M.G.Wright et al. Effect of 902 MHz mobile phone Transmission on congnitive function in children. Bioelectromagnetics Supplement, 2005, 1: s1-s10.
    7 Sabine H., Maria G., Thomas J.,et al. Combined effects of radiation with other agents: is there a synergism trap? International Congress Series, 2002,1225:191– 198.
    8曹毅,童建.不同类型辐射的联合毒效应,毒理学杂志,2006,20(3): 188-191.
    9郭朝华,孔佩艳,邹仲敏等. E838等5种辐射防护药对放烧复合伤防治作用的实验观察.第三军医大学学报,2001,23(5):544-546.
    10 W.Grundler. Intensiy- and frequency-dependent effects of microwaves on cell growth rates. Bioelectrochemistry and Bioenergetic.1992, 27(3):361-365.
    11宋立华,蔡东联,颜宏利等.大豆异黄酮抗辐射效果的观察.中国临床营养杂志,2005, 13:220-224.
    12席亚明,席亚荣,孙延庆等.梁金菇多糖对辐射损伤小鼠造血功能的影响.中国放射医学与防护杂志,2002,22(4):291-293.
    13周永,糜漫天,杨镇洲,朱俊东,许红霞.三羟异黄酮对正常和辐射损伤小鼠骨髓造血细胞周期的影响.中华放射医学与防护杂志,2006,26(5):434-437.
    14 Grigor’ev IG, Beskhlebnova LI, Mitiaeva ZI, et al. Combined effect of microwaves and gamma-rays on the imprinting of chickens, irradiated in early embryogenesis. Radiobiologiya , 1984,24: 204-207.
    15 Grigor’ev IG, Stepannov VS, Batanov GV, et al. Combined effect of microwave and ionizing radiation. Kosm Biol Aviakosm Med, 1987,21: 4-9.
    16周永,糜漫天,杨镇洲.三羟异黄酮对照射小鼠造血系统损伤的防护作用.中华放射医学与防护杂志。2005,25(1):21-24.
    17周永.三羟异黄酮对放射性造血损伤的防护作用及其机理研究.第三军医大学博士论文. 2005.
    18 Cleary SF, Liu U , Merchan t RE.In vitro lymphocyte proliferation induced by radio- frequency electromagnetic radiation under isothermal conditions.Bioelectromagnetics. 1990,11(1): 47—56.
    19 Paul D , Sonja E, Alice p, et al. Structure of the complete extracellular domain of the commonβsubunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell, 2001, 104:291-300.
    20 Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997,90: 1345–1364.
    21 Basu S, Dunn A, Ward A. G-CSF: function and modes of action. Int J Mol Med. 2002; 10:3–10.
    22 Richard S, Schuster MW. Stem cell transplantation and hematopoietic growth factors. Curr Hematol Rep. 2002; 1:103–109.
    23 Nothdurft W, Kreja L, Selig C. Acceleration of hemopoietic recovery in dogs after extended-field partial-body irradiation by treatment with colony-stimulating factors: rhG-CSF and rhGM-CSF. Int J Radiat Oncol Biol Phys. 1997;37:1145–1154.
    24 Wei Li, Guanjun Wang, Jiuwei Cui, Lu Xue, and Lu Cai. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Experimental Hematology , 2004,321088–1096.
    25 Buckner CD. Autologous bone marrow transplants to hematopoietic stem cell support with peripheral blood stem cells: a historical perspective. J Hematother. 1999;8:233–236.
    26 Jansen J, Thompson JM, Dugan MJ, et al. Peripheral blood progenitor cell transplantation. Ther Apher. 2002;6:5–14.
    27刘及,张卿西.辐射血液学.北京,原子能出版社,1991,215-216.
    28 Chang CM, Elliott TB, Dobson ME, et al. Ionizing radiation and bacterial challenge alter spleenic cytokine gene expression. J Radiat Res(Tokyo), 2000,41(3): 259-277.
    29郭鹞,陈景藻.电磁辐射生物效应及其医学应用.西安:第四军医大学出版社,2002. 13-16
    30王金峰,孙贝加,王巧莲,等.微波辐射家兔子宫对外周血细胞的影响。中国优生与遗传杂志, 1994, 2(1): 13-14
    31宋国丽,季百苗,张小云.旋转恒定磁场对化疗损伤小鼠造血功能保护作用的研究.中国康复理论与实践,2006, 12(3): 213-216.
    32 Hutter HP, Moshammer H,Wallner P, et al.Subjective Symptoms,Sleeping Problems, and Cognitive Performance in Subjects Living near Mobile Phone Base Stations. Occup. Environ.Med., 2006,63:307-13.
    33 Moshammer H, Hutter HP, Wallner P, et al.Subjective Symptoms,Sleeping Problems, and Cognitive Performance in Subjects Living near Mobile Phone Base Stations. Occup. Environ.Med., 2006,63:307-13.
    34 Rubin G J, Hahn G, Everitt BS, et al. Are Some People Sensitive to Mobile Phone Signals? Within Participants Double Blind Randomised Provocation Study. BMJ., 2006,332:886-91.
    35 Balikci K,Cem Ozcan I,Turgut-Balik D,et al.A Survey Study on Some Neurological Symptoms and Sensations Experienced by Long Term Users of Mobile Phones. Pathol.Biol., 2005, 53:30-4.
    36 Chia SE,Chia HP,Tan JS.Prevalence of Headache among Handheld Cellular Telephone Users in Singapore:A Community Study. Environ.Health Perspect. 2001,108: 1059-62.
    37 Sandstrom M,Wilen J,Oftedal G,et al.Mobile Phone Use and Subjective Symptoms. Comparison of Symptoms Experienced by Users of Analogue and Digital Mobile Phones. Occup. Med., 2001,51:25-35.
    38 Wilen J, Sandstrom M, Bjerle P, et al. Subjective Symptoms among Mobile Phone Users-aconsequence of Absorption of Radiofrequency Fields? Bioelectromagnetics, 2003, 24:152-159.
    39 Wang BM,Lai H. Acute exposure to pulsed 2450-MHz microwaves affects water maze performance of rats. Bioelectromagnetics,2000,21:52-56.
    40 CobbBl,JauchemJR, AdairER.Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics,2004,25(1):49-57.
    41王丽峰,胡向军,彭瑞云,等.高功率微波辐射后小鼠行为学变化研究.中国行为医学科学,2005,14(1):32-34.
    42武慧欣,刘苹,黄春桃等. 1800MHz电磁波辐射对大鼠海马细胞DNA的损伤[J].环境与健康杂志,2006,09: 23(5).
    43 BEN SHACHAR D,GAZAWI H,RIBOYAD-LEVIN J,et al. Chronic repetitive transcranial magnetic stimulation altersβ-adrenergic and 5-HT2 receptor characteristics in rat brain[J].Brain Res,1999,816(1):78-83.
    44 JAMOT L,NIATTHES H W,SIMONIN F, et al. Differential involvement of the mu andκopioid receptors in spatial learning[J]. Genes Brain Behav, 2003,2(2):80-92.
    45田野,包仕尧,刘春风等.大鼠海马内神经胶质细胞放射反应性的研究.中华放射肿瘤学杂志,2001,10(4):255-257.
    46 Hintenlang, D.E. Synergistic effects of ionizing radiation and 60 Hz magnetic fields. Bioelectromagnetics. 1993, 14:545-451.
    47 Frazier, M. E., Reese, J. A., Morris, J. E., Jostes, R. F. and Miller, D. L., Exposure of mammalian cells to 60 Hz magnetic or electric fields: Analysis of DNA repair of induced single strandbreak. Bioelectromagnetics . 1990,11:229-234.
    48 Cain, C.D., Thomas, D.L., and Adey, W.R. 60Hz magnetic field acts as co-promoter in focus formation of C3H/10T1/2 cells. Carcinogenesis. 1993,14: 955-960.
    49柯山.对蜂房手机近场平均功率密度测试的探讨.电子质量, 2000, 9:33-36.
    50 Dutta S.K., Subramoniam A., Ghosh B., Parshad R.. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture. Bioelectromagnetics 1989, 5:71–78.
    51 Matsumura, S., Matsumura, T., and Ozeki, S. Comparative analysis of G2 arrest after irradiation with 75 keV carbon-ion beams and 137Cs Gamma-rays in a human lymphoblastoid cell line. Cancer Detect. Prev. 2003, 27 :222-228.
    52 Zhao, T.Y., Zou, S.P., and Knapp, P.E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci . Lett. 2007, 412 :34-38.
    53 Panagopoulos, D. J., Chavdoula, E. D., and Nezis, I.P. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat. Res. 2007,626 :69-78.
    54 Lagroye, I., and Poncy, J.L. The effect of 50 Hz electromagnetic fields on theformation of micronuclei in rodent cell lines exposed to gamma radiation. Int. J. Radiat Biol. 1997, 72 :249-254.
    55 Marek Zmyslony, Piotr Politanski, Elzbieta Rajkowska, Wieslaw Szymczak, Jolanta Jajte. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics. 2004, 25:324-328.
    56 Moustafa, Y.M., Moustafa, R.M., Belacy, A., Abou-El-Ela, S.H., Ali, F.M. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharm. Biomed. Anal. 2001, 26:605–608.
    57 Stopczyk, D., Gnitecki,W., Buczynski, A., Markuszewski, L., Buczynski, J. Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1) and the level of malonyldialdehyde (MDA)—In vitro study. Med. Pract . 2002, 53:311-314.
    58 Akoev, I.G., Pashovkina, M.S., Dolgacheva, L.P., Semenova, T.P., Kalmykov, V.L. Enzymatic activity of some tissues and blood serum from animals and humans exposed to microwaves and hypothesis on the possible role of free radical processes in the nonlinear effects and modification of emotional behavior of animals. Radiat. Bio.l Radioecol. 2002, 42:322–330.
    59 Bernd Junkersdorf, Hartmut Bauer, Herwig O. Gutzeit1. Electromagnetic fields enhance the stress response at elevated temperatures in the nematode caenorhabditis elegans. Bioelectromagnetics. 2000, 21:100-106.
    60 Bernardini, C., Zannoni, A., Turba, M.E., Fantinati, P., Tamanini, C., Bacci, M.L., Forni, M. Heat shock protein 70, heat shock protein 32, and v-ascular endothelial growth factor production and their effects on lipopolysaccharide-induced apoptosis in porcine aortic endothelial cells. Cell Stress Chaperones. 2005,10:340–348.
    61 Alfieri, R.R., Bonelli, M.A., Pedrazzi, G., Desenzani, S., Ghillani, M., Fumarola, C., Ghibelli, L., Borghetti, A.F., Petronini, P.G. Increased levels of inducible Hsp70 in cells exposed to electromagnetic fields. Radiat. Res. 2006, 165:95–104.
    62 Chiara, B., Augusta, Z., Maria, E.T., Maria, L.B., Monica, F., Pietro, M.D. Gastone, C., and Ferdinando,B. Effects Of 50 Hz Sinusoidal Magnetic Fields On Hsp27,Hsp70,Hsp90 Expression in Porcine Aortic Endothelial Cells (PAEC).Bioelectromagnetics. 2007, 28:231-237.
    63 Kittel A, Siklos L, Thuroczy G, et a1.Qualitative enzyme histoehemistry and microanalysis reveals changes in ultrastructural distribution of calcium and calcium-activated ATPases after microwave irradiation of the medial habenula. Acta Neuropathol.1996, 92:362-368.
    64孟丽,彭瑞云,高亚兵等.高功率微波辐射后下丘脑神经元凋亡和线粒体膜电位与Ca2+的变化.中华劳动卫生职业病杂志.2006, 24(12):739-741.
    65王强,曹兆进,白雪涛.900MHz微波电磁辐射对原代培养的大鼠脑皮质神经元的谷氨酸AMPA受体2及胞内钙离子浓度的影响.卫生研究.2005, 34(2):155-157.
    66 Shtemberg AS,Uzbekov MG,Shikhov SN,et al.Species specificity,age factors,and various neurochemical correlates of the animal spontaneous behavior after exposure to electromagnrtic field of the ultra low intensity. Zh Vyssh Nerv Deiat Im IP Pavlova,2000,50:703-715.
    67 Semenova TP, Medvinskaia NI, Bliskovka GI,et al. Influence of electromagnetic field on the emotional behavior of rats.Radiats Biol Radioecol, 2000, 40:693-695.
    68 Sienkiewicz ZJ,Biachwell RP ,Haylock R,et al. Low level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics. 2000,21:151- 158.
    69 Higashi H, Meno JR,Marwaha AS,Winn HR.Hippocampa(injury and neurobehavioral deficits following hyperglycem iccerebral ischemia:Effect of theophylline and ZM 241385 .J Neurosurg, 2002,96(1):117-126.
    70 Bachevalier J, Mishkin M.Mnemonic and neuropathological effects of occluding the posterior cerebral artery in Macaca mulatta. Neuropsychologia, 1989,27(1):83-105.
    71 Hironaka N, Tanaka K.Izaki Y.Hori K.Nomura M.Memroy-related acetylchline efflux from rat prefrontal cortex and hippocampus:a microdialysis study. Brain Res, 2001, 901(1):143-150.
    72杨学森,龚茜芬,张广斌,等.电磁辐射对大鼠学习记忆和海马神经元的影响.解剖学研究,2004,26(2):91-94.
    73陈娟,王德文,左红艳.电磁辐照对海马病理形态学及相关因子表达的影响.解放军预防医学杂志,2007,4,25(2):82-86.
    74张剑宁,章翔,易声禹.微波辐射对海马CA1区神经元的损害及其防治.中华神经外科杂志,1999,1,10(1):18-20.
    75艾志伟,潘传芳,陈云.电磁辐射对小鼠神经系统超微结构影响的分析.武汉大学学报,2001,7,22(3):222-223.
    76金侃,张亮.湖南省GSM移动通信基站电磁辐射环境影响分析.环境保护. 2005,8:32-33.
    77赵清波,金永哲,张云生,等.通讯微波辐射对作业人员健康影响的调查.中国工业医学杂志,1994,7(5):292-294.
    78王少光,周安寿,杨文娟,等.比较微波与高频对人体健康危害的研究.中华预防医学杂志,1992,2:112-114.
    79林潮,林宏亮,王建平.年龄、性别及文化程度对神经行为功能指标测试的影响[J].工业卫生与职业病,1995,21 (1):43-44.
    80袁正泉,李锋,王登高.低强度超短波电磁辐射对机体的影响.中华劳动卫生职业病杂志,2004,8,22(4):267-269.
    81段骊,单永乐,于夕山.高频作业工人神经行为功能改变的观察.中华预防医学杂志,1998,3,32(2):109-111.
    82朱启星,杨传文,徐国民.低场强微波对人体神经行为功能影响.现代预防医学,1997,24(1):34-36.
    83冯养正,刘亚杰,张惠敏,等.接触微波对神经行为功能的影响.工业卫生与职业病,1985,l0(1):18-20.
    [1]牛中奇,侯建强,王海彬等.电磁波的生物学窗效应〔J〕.中国生物医学工程学报,2003,22:126-132.
    [2]刘亚宁.非热效应的几种理论和假说〔J〕.郭鹞,陈景藻主编.电磁辐射生物效应及其医学应用,西安:第四军医大学出版社,2003.
    [3]丁桂荣,姜荣,郭鹞等.极低频电磁场暴露健康危害的流行病学研究现状〔J〕.郭鹞,陈景藻主编.电磁辐射生物效应及其医学应用,西安:第四军医大学出版社,2003.
    [4] Kheifets L, Shimkhada R. Childhood Leukemia and EMF:Review of the Epidemiologic Evidence [J]. Bioelectromagnetics Supplement, 2005, 7:S51-S59.
    [5] Santini MT, Ferrante A, Rainaldi G, et al. Indovina P, Indovina PL.Extremely low frequency (ELF) magnetic fields and apoptosis: a review[J]. Int J Radiat Biol, 2005,81(1):1-11.
    [6] Harada SI, Yamada S, Kuramata O, et al. Effects of High ELF Magnetic Fields on Enzyme-Catalyzed DNA and RNA Synthesis InVitro and on a Cell-Free DNA Mismatch Repair[J]. Bioelectromagnetics, 2001, 22:260-266.
    [7] Preece AW, Hand JW ,Clarke RN et al. Power frequency electromagnetic fields and health. Where's the evidence? [J]. Phys Med Biol, 2000, 45(9): 139-54.
    [8] Baure Koch C.L.M, Sommarin M, Persson B.R.R, et al. Interaction Between Weak Low Frequency Magnetic Fields and Cell Membranes [J]. Bioelectromagnetics,2003, 24:395-402.
    [9] Al-Akhras M, Elbetieha A, Hasan M, et al. Effects of Extremely Low Frequency Magnetic Field on Fertility of Adult Male and Female Rats [J]. Bioelectromagnetics,2001, 22:340-344.
    [10] Al-Akhras M, Darmani H, Elbetieha A. Influence of 50 Hz Magnetic Field on Sex Hormones and Other Fertility Parameters of Adult Male Rats [J]. Bioelectromagnetics, 2006, 27. published online.
    [11] Harakawa S, Inoue N, Hori T. Effectsof a 50 Hz Electric Fieldon Plasma Lipid Peroxide Level and Antioxidant Activity in Rats [J]. Bioelectromagnetics, 2005, 26:589-594.
    [12] Portaccio M, De Luca P, Durante D, et al. Modulation of the catalytic activity of free and immobilized peroxidase by the presence of extremely low frequency electromagnetic fields:Dependence on the frequency [J]. Bioelectromagnetics, 2005,26:145–152.
    [13] Salamino F, Minafra R, Grano V, Effect of Extremely Low Frequency Magnetic Fields on Calpain Activation [J]. Bioelectromagnetics,2006, 27:43-50
    [14] Orbach-Arbouys S, Abgrall S, Bravo-Cuellar A. Recent data from the literature on the biological and pathologic effects of electromagnetic radiation, radio waves and stray currents. Pathol Biol,1999,47(10):1085-1093.
    [15]郭九吉,朱玉华,曹钟兴,等,微波作业人员健康的动态观察[J].职业卫生与应急救援, 2000,18(2):62-64.
    [16]袁正泉,王登高,李锋,等.超短波电磁辐射对环境和人体的影响情况调查[J].人民军医,2000,4(8):441-442.
    [17] Sandstrom M, Wilen J. Mobile phone use and subjective symptoms. Comparison of symptoms experienced by users of analogue and digital mobile phones [J] .Occup Med(Lond),2001,51(1):25-35.
    [18]曹兆进,赵晓琳,陶勇,等.移动电话手机对神经衰弱症状影响的调查[J].卫生研究,2000,11,29(6):366-368.
    [19] Preece A.W, Goodfellow S, Wright M.G, et al. Effect of 902 MHz mobile phone Transmission on congnitive function in children [J]. Bioelectromagnetics Supplement, 2005, 1: s1-s10.
    [20]解恒革,王晓红,王鲁宁,等.军队离退休干部痴呆患病率及危险因素的初步研究.解放军医学杂志,2000,25(5):365-367.
    [21] Cooper D, Saunders P. Cancer incidence near radio and television transimitters in Great Braintain [J]. Am J Epidemiol, 2001, 153:202-206
    [22] Stang A, Anastassiou G ,Ahrens W et al. The possible role of radiofrequency radiation in the development of uveal melanoma [J]. Epidemiolgy, 2001, 12:7-12.
    [23] Lalic H, Lekic A,Radosevic-Stasic B. Comparison of chromosome aberrations in peripheral blood lymphocytes from people occupationally exposed to ionizing and radio-frequency radiation[J]. Acta Med Okayama, 2001,55:117-127.
    [24] Morgan RW, Kelsh MA ,Zhao K, et al. Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoietic systems[J]. Epidemiology, 2000, 11:118-127.
    [25] Muscat JE,Malkin MG ,Thompson S et al. Handheld cellular telephone use and and risk of brain cancer[J]. JAMA,2000, 284:3001-3007.
    [26] Muscat JE,Malkin MG ,Shore RE et al. Handheld cellular telephones nd risk of acoustic neuroma[J]. Neurology, 2002,58:1304-1306.
    [27] Inskip PD, Tarone RE ,Hatch EE et al. Cellular-telephone use and brain tumors[J]. New Engl J Med, 2001,344:79-86.
    [28] Hardell L, Hallquist A ,Mild KH et al. cellular and cordless phones and the risk for malignant brain tumors[J]. Eur J Cancer Prev,2002, 11:377-386.
    [29] Utteridge TD, Gebski V ,Finnie JW et al. Long-term exposue of Eμ-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence[J]. Radiat Res, 2002, 158:357-364.
    [30] Zook BC, Simmens SJ. The effects of 860 MHz radio-frequency radiation on the induction or promotion of brain tumors and other neoplasms in rats[J]. Radiat Res, 2001, 155:572-583.
    [31] Bartsch H, Bartsch C ,Seebald E et al. Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats:Results of three consecutive studies[J]. Radiat Res,2002, 157:183-190.
    [32] Maes A, Collier M and Verschaeve L. Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes[J]. Bioelectromagnetics, 2001,22:91-96.
    [33] Roti Roti JL, Malyapa RS ,Bisht KS et al. Neoplastic transformation in C3H 10T1/2 cells after exposure to 835.62 MHz FDMA and 847.74 MHz CDMA radiatios[J]. Radiat Res,2001, 155:239-247.
    [34] Li L, Bisht KS ,LaGroye I et al. Measurement of DNA damage in mammalian cells exposed in vitro to radiofrequency fields at SARs of 3-5W/kg[J]. Radiat Res, 2001, 156: 328-332.
    [35] Vijayalaxmi, Belinda Z. Leal A, et al. Primary DNA damage in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation[J]. Radiat Res, 2000, 153:479-486.
    [36] Natarajan M, Reiter RJ, MELTZ ML, et al. Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA) [J]. Rdiat Res., 2001, 155:113-121.
    [37] Louis N, Heynick ,Sheila et al. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity[J]. Bioelectromagnetics Supplement, 2003, 6:s74-s100.
    [38] Suleyman Dasdag, M. Zulkuf Akdag and Feyzan Aksen. Whole body exposure of rats to microwaves emittedfrom a cell phonedoes not affect the testes[J]. Bioelectromagnetics, 2003, 24:182-188.
    [39]王勇,宁竹之,王登高等,微波辐照对离体淋巴细胞Ca2 +浓度及Ca2 +、Mg2+ ATP酶活力的影响[J]中国公共卫生学报, 1996 , 15 (5)∶299-300.
    [40] Cleary S F, Liu L M, Merchant R E. Glioma proliferation modulated in vitro by isothermal radiofrequency radiation exposure[J]. Radiat Res , 1990 , 121 (1)∶38-45.
    [41]许正平,姜槐.对确定中国电磁场暴露限值依据的探讨[J].中华预防医学杂志2004, 38(1):58-61.
    1. Burkart W, Jung T. Health risks from combined exposures: mechanistic consideration on deviation from additivity. Mutat Res,1998,411:119-128.
    2. United Nations. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the Geneeral Assembly with Scientific Annexes. New York, 2000, 200.
    3.Randall K, Coggle KE. The effect of whole-body gamma-irradiation on localized beta-irradiation-induced skin reactions in mice. Int J Radiat Biol, 1992,62:729-733.
    4. Brezani P, Kalina I, Ondrussekova A. Changes in cellularity,CFU-S number and chromosome aberrations in bone marrow and blood of rats after neutron andcontinuous gamma irridation. Radiobiol Radiother,1989,30:431-438.
    5. Bukhtoiarova ZM, Spirina SS. Characteristics of osteosarcomas and morphological changes in rat thymus during the combined action of gamma-radiation and 239Pu. Radiobiologiya, 1989,29: 804-808.
    6. Lundgren DL, Hahn FF, Griffith WC et al. Effects of combined exposure of F344 rats to 239PuO2 and whole-body x-irradiation. In: Annual Report 1992-1993. (Finch GL, et al.,eds.), Inhalation Toxicology Research Institute, ITRI-140,1993,61-63.
    7.Lundgren DL, Hahn FF, Griffith WC et al .Effects of combined exposure of F344 rats to 239PuO2 and whole-body x-irradiation. In: Annual Report 1991-1992. (Finch GL, et al.,eds.), Inhalation Toxicology Research Institute, LMF-138, 1992, 115-117.
    8.Brooks AL, Monchaux G,Chameaud J et al. The combined effects of alpha-particles and X-rays on cell killing and micronuclei induction in lung epithelial cells. Int J Radiat Biol, 1990,58:799-811.
    9. Lam GKY. The combined effects of mixtures of ionizing radiations. J Theor Biol, 1998,134:531-546.
    10. Shore RE. Overview of radiation-induced skin cancer in human. Int J Radiat Biol Med, 1991,10:211-216.
    11. Spitkovsky DM, Ermakov AV, Gorina AI et al. Peculiarities of unscheduled DNA synthesis and human lymphocyte nuclear parameter alterations induced by x-rays and with following UV-irradiation. Radiat Biol Radioecol, 1994,34:23-30.
    12. Voskanian KS, Simon NV, Avakian TM et al. Modification of the damaging effect of alpha-particles of Escherichia coli K-12 by low intensity laser irradiation. Radiobiologiya., 1986,26: 375-377.
    13. Boorman GA, Rafferty CN, Ward JM, et al. Leukemia and lymphoma incidence in rodents exposed to low-frequency magnetic fields. Radiat Res, 2000, 153:627-636.
    14. Thndall DA. MRI effects on the teratogenecity of x-irradiation in the C57BL/6J mouse. Magn Reson Imaging,1990,8: 423-433.
    15. Grigor’ev IG, Beskhlebnova LI, Mitiaeva ZI, et al. Combined effect of microwaves and gamma-rays on the imprinting of chickens, irradiated in early embryogenesis. Radiobiologiya , 1984,24: 204-207.
    16. Grigor’ev IG, Stepannov VS, Batanov GV, et al. Combined effect of microwave and ionizing radiation. Kosm Biol Aviakosm Med, 1987,21: 4-9.
    17. Boorman,GA, Owen RD, Lotz WG, et al. Evaluation of in vitro effects of 50 and 60 Hz magnetic fields in regional EMF exposure facilities. Radiat Res,2000,153:648-657.
    18. Kobayashi H, Sakuma S. Biological effects of static gradient magnetic field on cultured mammalian cells and combined effects with 60Co gamma rays. Nippon Acta Radiologica, 1992,52:1679-1685.
    19. Lagroye I., Poncy JL. The effect of 50 Hz electromagnetic fields on the formation of micronuclei in rodent cell lines exposed to gamma radiation. Int J Radiat Biol. 1997,72:249-54.
    20. Ding GR,Yaguchi H, Yoshida M, et al. Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5mT) in NF-kappaB-inhibited cells. Biochem Biophys Res Commun, 2000,276:238.
    21.郭鹞,陈景藻主编.电磁辐射生物效应及其医学应用,西安:第四军医大学出版社,2002,13-16.
    22. F. Tian, T. Nakahara, M. Yoshida, et al. Exposure to Power Frequency Magnetic Fields Suppresses X-Ray-Induced Apoptosis Transiently in Ku80-Deficient xrs5 Cells1.Bioelectromagnetics.2002,292:355-361.
    23. Mikhail N. Zhadin. Review of Russian literature on biological action of DC and low frequency AC magnetic fields. Bioelectromagnetics. 2001, 22:27-45.
    24. Koifman S. Electromagnetic fields: a cancer promoter? Med Hypotheses. 1993,41:23-27.
    25. Sabine H., Maria G. and Thomas J.,et al. Combined effects of radiation with other agents: is there a synergism trap? International Congress Series, 2002,1225:191– 198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700