雷帕霉素诱导的CD4~+CD25~+T调节细胞对单倍型相合造血干细胞移植的影响及HLA-Cw位点在单倍型相合造血干细胞移植中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     建立CD4+CD25+Foxp3+调节性T细胞稳定的体外扩增体系,探讨CD4+CD25+Foxp3+调节性T细胞与单倍型相合造血干细胞移植GVHD的相关性以及对植入、GVHD、GVL、长期生存的影响;探讨HLA-Cw位点在单倍型相合造血干细胞移植中的作用,为优化供体的选择提供有价值的指标。
     【方法】
     在论文的第一部分,采用磁珠分选BalB/C小鼠脾脏中的CD4+T细胞,2ug/mlαCD3单克隆抗体包板,在含有1ug/mlαCD28单克隆抗体、rhIL-2 100U/ml和终浓度为10nM雷帕霉素RPMI-1640完全培养基中培养3周,流式细胞仪检测CD4+CD25+T细胞的表达,磁珠分选CD4+CD25+T细胞,实时定量PCR检测Foxp3 mRNA的表达,单向混合淋巴细胞反应和增殖抑制试验,IL-10和TGF-β1的测定,与未加雷帕霉素对照组进行比较,探讨雷帕霉素在体外对CD4+CD25+Foxp3+T细胞扩增的影响。
     论文的第二部分,按照成人给药剂量,给实验小鼠雷帕霉素灌胃3周后,流式细胞仪检测小鼠脾细胞中CD4+CD25+T细胞的含量,实时定量PCR检测脾细胞Foxp3 mRNA的表达,磁珠分选CD4+CD25+T细胞,进行体外抑制试验,ELISA检测小鼠血清中IL-10和TGF-β1的含量,与正常未给药组小鼠比较,了解雷帕霉素在小鼠体内对CD4+CD25+Foxp3+T细胞增殖的影响。
     在第三部分中,通过小鼠GVHD移植模型,观察发生GVHD时小鼠体内CD4+CD25+T细胞以及脾细胞内Foxp3 mRNA表达的变化,与正常未移植和自体移植小鼠对比,明确GVHD与CD4+CD25+Foxp3+T细胞之间的相关性。
     在论文的第四部分,通过尾静脉和腹腔注射两种途径,建立可移植性EL9611红白血病BalB/C和CB6F1小鼠模型,外周血涂片瑞氏-吉姆萨染色以及脏器的病理检查,了解接种EL9611红白血病小鼠脾细胞后,BalB/C和CB6F1小鼠发病规律。
     在第五部分中,通过对发病的CB6F1小鼠进行骨髓移植,观察输注雷帕霉素体外培养扩增的CD4+CD25+Foxp3+T细胞小鼠植入、GVHD、以及白血病复发,与自体移植组和GVHD组小鼠对比,明确CD4+CD25+Foxp3+T细胞对GVHD、植入和GVL方面的影响。
     在论文的最后部分中,采用高分辨的方法,对21例接受单倍型相合的造血干细胞移植的供受者的HLA-Cw位点进行检测,结合临床资料,分析供受者间HLA-Cw相容性对GVHD、白血病复发以及生存的影响。
     【结果】
     (一)在上述培养体系中,CD4+T细胞培养3周后,CD4+CD25+T细胞达(76.05±2.73)%,高于未加雷帕霉素组(52.17±1.36)%(P<0.001),Foxp3 mRNA的表达是对照组的5倍(P<0.001),增殖能力是对照组的0.29倍(P<0.001),对CD4+T细胞增殖抑制能力是对照组的3.6倍(P<0.001),培养上清中IL-10和TGF-β1分别是未加雷帕霉素组的1.8倍和1.6倍(P<0.001)。
     (二)雷帕霉素灌胃小鼠脾细胞CD4+CD25+T细胞是对照组的2.8倍(P<0.001),Foxp3 mRNA的表达是对照组的6倍(P<0.001),磁珠分选CD4+CD25+T细胞对CD4+T细胞增殖的抑制率与对照组相比无差异(57.03% vs 56.95%)(P>0.05)。雷帕霉素组和未给药组小鼠血清中IL-10的含量分别为(166.28±24.07)pg/ml和(79.50±7.68)pg/ml,TGF-β1的含量分别为(166.28±24.07)pg/ml和(88.52±10.06)pg/ml,各组间差异有显著性(P<0.001)。
     (三)在发生GVHD的时间点时,自体移植组和GVHD组小鼠脾脏CD4+CD25+T细胞为15.4%,GVHD组小鼠脾脏CD4+CD25+T细胞为24.03%,而正常未移植小鼠脾脏CD4+CD25+T细胞为8.46%,各组间差异有显著性(P<0.001);Foxp3 mRNA的表达在自体移植组和正常未移植组无差异(与HPRT标化后为0.1144 vs 0.1294)(P>0.05),而GVHD组小鼠Foxp3 mRNA的表达经标化后仅为0.0331(P<0.001)。
     (四)8~10周龄的BalB/C和CB6F1小鼠尾静脉注射1×106 EL9611红白血病小鼠脾细胞,外周血出现白血病细胞的时间分别为接种后的第6天和第7天,死亡时间分别为13.3天和21.7天。腹腔接种1×106 EL9611红白血病小鼠脾细胞,外周血出现白血病细胞的时间分别为接种后的第17.2天和第24.6天,死亡时间分别为21.7天和27.5天。
     (五)Treg移植组小鼠GVHD的累积发生率为28.6%,GVHD对照组累计发生率为100%,经Log Rank检验,P=0.000,自体移植组白血病复发率为57.14%,Treg移植组未发现白血病复发。在移植后第10天、20天和30天,Treg移植组小鼠测得的嵌合度均高于GVHD组小鼠。
     (六)在HLA-Cw位点相合组,II~IV度aGVHD的累积发生率为77%,而在HLA-Cw位点不相合组,II~IV度aGVHD的累积发生率只有14.3%,明显低于相合组,差异有显著性(P<0.01);HLA-Cw不合组28个月累积生存率为85.7%,相合组28个月累积生存率为49%,差异无显著性(P>0.05),可能与病例数较少有关。
     【结论】
     (一)雷帕霉素在体内和体外都能促进CD4+CD25+Foxp3+T调节细胞的增殖,而且增殖的CD4+CD25+Foxp3+T调节细胞仍具有免疫调节作用。
     (二)发生GVHD时,CD4+CD25+T细胞增高,而CD4+CD25+Foxp3+T调节细胞的数量是降低的。
     (三)给CB6F1小鼠尾静脉注射1×106可移植性BalB/C小鼠EL9611红白血病脾细胞,可以建立稳定可靠的CB6F1小鼠白血病模型,但以尾静脉接种的EL9611红白血病小鼠适合于观察白血病小鼠的骨髓移植模型中GVL效应。
     (四)CD4+CD25+Foxp3+T调节细胞不但能有效的减轻小鼠移植GVHD的发生,同时能促进植入,不削弱GVL效应。
     (五)在单倍型相合的造血干细胞移植中,供受者间HLA-Cw位点的检测可以作为优化供体选择的指标之一。
Objective
     Establish a stable system of expanding CD4+CD25+Foxp3+ regulatory T cells in vitro, investigate the relationship between CD4+CD25+Foxp3+ regulatory T cells and haploidentical GVHD, and explore the effect of the CD4+CD25+Foxp3+ regulatory T cells on engraftment, GVHD, GVL and long-term survival. Explore the role of HLA-Cw loci in haploidentical haemopoietic stem cell transplantation; afford a useful parameter in dornor selection.
     Methords
     In the first part, CD4+T cells derived from BalB/C mice spleen were selected by Mini MACS, and cultured in 24 wells plate for 3 weeks, which coated with 2ug/mlαCD3 monoclonal antibody, the medium system included 1ug/mlαCD28 monoclonal antibody, rhIL-2 100U/ml and 10nM RAPA (Rapamycin) with RPMI 1640 medium and 15% FBS, under the 37oC, 5%CO2 and saturated humidity incubator. After 3 weeks, CD4+CD25+T cells were detected by FCM, CD4+CD25+T cells were sorted by Mini MASC, the expression of Foxp3 mRNA was measured with real-time RT-PCR, MLR and proliferation inhibition were used to exam the function of CD4+CD25+T cells, IL-10 and TGF-β1 of supernatant were measured by ELISA, by comparing with CD4+CD25+T cells expanded without RAPA in vitro, to explore the effect of RAPA on expanded CD4+CD25+Foxp3+T cells.
     RAPA was administrated to Balb/C mice 0.4mg/day intragastrically as the dose of person, the control group mice of same age and weight were given with sterile water in the second part. After three weeks, CD4+CD25+T cells of splenocyte were detected by FCM; the relative levels of Foxp3 mRNA were determined by real-time quantitative RT-PCR in total splenocytes. CD4+CD25+T cells were sorted by Mini MACS for examination of inhibition, levers of IL-10 and TGF-β1 of blood serum were assessed by ELISA, the results were compared to the control group, to probe the effect of RAPA on CD4+CD25+ Foxp3+T cells proliferations in vivo.
     In the third part, the amount of CD4+CD25+ T cells and Foxp3 mRNA were examined among the GVHD group, autotransplantation and nontransplantation group, to identify the correlation of GVHD and CD4+CD25+Foxp3+T cells.
     The transferability EL9611 erythroleukemia mice model was established via injecting spleen cells of mice with EL9611 erythroleukemia into BalB/C and CB6F1 mice caudal vein and cavum abdominis in the fourth part, to learn the proceeding of EL9611 erythroleukemia in BalB/C and CB6F1 mice.
     In the fifth part, CB6F1 mice with EL9611 erythroleukemia were performed haploidentical bone marrow transplantation with or without CD4+CD25+Foxp3+T cells, The development of GVHD, engraftment, and leukemia relapse were observed to investigate the effect of CD4+CD25+Foxp3+T cells on GVHD, engraftment and GVL.
     In the last part, HLA-Cw of donors and recipients were detected by PCR-SSP, the effect of HLA-Cw in haploidentical hematopoietic stem cell transplantation was analyzed by collecting the clinical data, including incidence of GVHD, leukemia replase and long- term survival.
     Results
     Cultured in these medium for 3 weeks, CD4+CD25+T cells developed from CD4+T cells rose from 8.84% to (76.05±2.73)%, higher than control group(52.17±1.36)%(P<0.001), Real-time quantitative RT-PCR showed that the levels of Foxp3 mRNA of CD4+CD25+T cells in RAPA group was 5 folds higher than the group without RAPA(P<0.001), the ability of proliferation was 0.29 folds higher than the control group(P<0.001), the ability of inhibition to CD4+T cells was 3.6 folds higher than the control group(P<0.001), the level of IL-10 and TGF-β1 of supernatant was 1.8 and 1.6 folds higher than control group, respectively (P<0.001).
     The CD4+CD25+T cell of experimental mice splenocytes was (24.13±10.06) %, while control group was (8.48±3.19) % (P<0.001). Real-time quantitative RT-PCR showed that the levels of foxp3 mRNA of experimental mice splenocytes was 6 folds higher than the control group (P<0.001). CD4+CD25+T cells sorted from experimental mice and control mice splenocytes inhibited CD4+T cells (57.03±3.63) % and (56.95±1.93) % respectively (P>0.05). The levels of IL-10 and TGF-β1 of blood serum were(166.28±24.07)pg/ml and (165.27±22.95)pg/ml in experimental group, while (79.50±7.68)pg/ml and (88.52±10.06) pg/ml in control group (P<0.001).
     CD4+CD25+T cells were detected by FCM at the point of GVHD development; the proportion of CD4+CD25+T cells was 15.4% and 24.03% in the autotransplantation group and allotransplantation group, respectively. But the proportion of CD4+CD25+T cells was 8.46% in nontransplantation group, the levels of Foxp3 mRNA of allotransplantation group mice were lower than autotransplantation or nontransplantation group significantly (P<0.001).
     1×106 EL9611 erythroleukemia cells were injected into BalB/C and CB6F1 mice (8 to 10 weeks) caudal vein and cavum abdominis. The time of leukemia cell appearance in peripheral blood was at day 6 and 7, and the mice were dead at day 13.3 and 21.7 respectively. The time of erythroleukemia cell appearance in peripheral blood was at day 17.2 and 24.6 when 1×106 EL9611 erythroleukemia cells were injected into BalB/C and CB6F1 mice cavum abdominis, but the mice were dead at day 21.7 and 27.5.
     The cumulative incidence of GVHD was 28.6% and 100% in Treg transplantation group and control group respectively. 4/7(57.14%) relapsed in autotranplantation group, but no one in Treg transplantation group.
     In haploidentical HSCT for person, The cumulative incidence of grades II–IV acute GVHD were 76.9% in HLA-Cw matched group and 14.3% in HLA-Cw mismatched group(P<0.05), 28 months disease-free survival probabilities was 46.2% in HLA-Cw matched group, and 85.7% in HLA-Cw mismatched group(P>0.05).
     Conclusion
     RAPA can promote CD4+CD25+Foxp3+T cells proliferation in vitro and vivo. The proporation of CD4+CD25+T cells could rise while CD4+CD25+Foxp3+T cells were reduced when GVHD happened. The CB6F1 EL9611 erythroleukemia mice model established by injected EL9611 erythroleukemia cells into caudal vein was reliable. CD4+CD25+Foxp3+T cells could reduce GVHD effectively, while not impair GVL. HLA-Cw mismatched in donor and receipt of haploidentical SCT for person was benefited to reducing II-IV aGVHD, and it was in favor of long-term survival. HLA-Cw might be one of the optimized parameter in dornor selection.
引文
1. Sakaguchi S, Sakaguchi N, Asano M, et a1. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases J lmmunol, 1995; 155:1151-l164.
    2. Cederbom L, Hall H, Ivars F.CD4+CD25+ regulatory T cells down-regulate co-stimul- atory molecules on antigen-presenting cells.Eur J Immunol, 2000; 30:1538-1543.
    3. Bystry RS, Aluvihare V, Welch KA. et a1.B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol, 2001; 2:1126-l132.
    4. Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J Immunol. 2001; 167:1245.
    5. Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect, 2004; 6(8): 745-51.
    6. Trenado A, Charlotte F, Fisson S, et a1.Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest, 2003; 112:1688-1696.
    7. Zeiser R, Nguyen VH, Hou JZ, et al. Early CD30 signaling is critical for adoptively transferred CD4+CD25+ regulatory T cells in prevention of acute graft-versus-host disease. Blood. 2007;109(5):2225-33.
    8. Joffre O, Gorsse N, Romagnoli P, et a1.Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood, 2004; 103:4216-4221.
    9. Jones SC, Murphy GF, Korngold R.Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus- leukemia response. Biol Blood Marrow Transplantl, 2003; 9:243-256.
    10. Schneider M, Munder M, Karakhanova S, et al. The initial phase of graft-versus-host disease is associated with a decrease of CD4+CD25+ regulatory T cells in the peripheral blood of patients after allogeneic stem cell transplantation. Clin Lab Haematol. 2006; 28(6):382-90.
    11. Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood. 2006;15;108(4):1291-7.
    12. Patricia A, Taylor C, Lee J, et a1.The infusion of ex vivo activated and expanded CD4+ CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood, 2002; 99:3493-3499.
    13. Taylo PA, Panoskaltsis-Mortari A, Swedin JM, et a1. L-Selectinhi but not the L-selectinlo CD4+CD25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection.Blood, 2004; 104:3804-3812.
    14. Cohen JL, Trenado A, Vasey D, et a1.CD4+CD25+ Immunoregulatory T Cells: New Therapeutics for Graft-Versus-Host Disease. J Exp Med, 2002; 196:401-406.
    15.Godfrey WR, Spoden DJ, Le vine BL, et a1.In vitro–expanded human CD4+CD25+T regulatory cells can markedly inhibit allogeneic dendritic cell–stimulated MLR cultures. Blood, 2004; 104:453-461.
    16. Karakhanova S, Munder M, Schneider M, et al. Highly efficient expansion of human CD4+CD25+ regulatory T cells for cellular immunotherapy in patients with graft- versus-host disease. J Immunother. 2006;29(3):336-49.
    17. Trenado A, Sudres M, Tang Q, et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol. 2006; 15;176(2):1266-73.
    18.Chang CC, Satwani P, Oberfield N, et al. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol. 2005;33(12):1508-20.
    19.Guliang X, Mike K, Robert L. et a1. Tracking ex vivo-expanded CD4+CD25+ and CD8+CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion- induced lethal acute graft-versus-host disease. Transplant, 2004; 10:748-760.
    20.Begum, N., and L. Ragolia. cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J. Biol.Chem. 1996; 271: 31166–31171.
    21. Peterson, R. T., B. N. Desai, J. S. Hardwick, and S. L. Schreiber. Protein phosphatase
    2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12- rapamycin-associated protein. Proc. Natl. Acad. Sci. USA, 1999; 96:4438– 4442.
    22. Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002; 16:1472–1487.
    23. Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+regulatory T cells. J Immunol. 2004;172:5287-5296.
    24. Ruggeri L, Capanni M,Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 2002; 295: 2097-2100.
    1. Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 1970; 18:723-35.
    2. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology, 1971; 21: 903-14.
    3. Sakaguchi S, Fukuma K, Kuribayashi K, et al. Organ-specific autoimmune diseases induced in mice by elimination of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med, 1985; 161: 72-87.
    4. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self tolerance maintained by activated T cells expressing IL-2 receptorα-chains. J Immunol, 1995; 155: 1151-64.
    5. Stephens LA, Mottet C, Mason D, et al. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity. Eur J Immunol, 2001;31: 1247–54.
    6. Taams LS, Smith J, Rustine MH, et al. Human anergic suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol, 2001;31: 1122–31.
    7. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+T cells with regulatory properties from human blood. J Exp Med, 2001;193:1303–10.
    8. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193:1285–94.
    9. Levings MK, Sangregorio R, Roncarolo M-G..Human CD4+CD25+T cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of suppressor function. J Exp Med 2001;193:1295–302.
    10.Baecher-Allen C, Brown JA, Freeman GJ, et al. CD4+CD25+ regulatory cells in human peripheral blood. J Immunol 2001;167:1245–53.
    11. Shevach EM. CD4+CD25+suppressor T cells: more questions than answers. Nat RevImmunoI, 2002; 2(6):389-400.
    12. Tai X, Cowan M, Feigenbaum L, et a1. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat ImmunoI, 2005; 6(2):152-162.
    13. Tang Q, Henriksen K J, Boden E K, et a1. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+regulatory T cells. J Immunol, 2003; 171(7): 3348- 3352.
    14. Levings M K, Gregori S, Tresoldi E, et a1. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+Tr cells. Blood, 2005; 105(3): 1162-1169.
    15. Manavalan J S, KIM-Schulze S, Scotto L, et a1. Alloantigen specific CD8+CD28- FOXP3+T suppressor cells induce ILT3+ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol, 2004; 16(8): 1055-1068.
    16. Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J Exp Med, 2004; 199: 1679
    17. Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF- in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol, 2001; 166: 7282
    18. Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10–producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med, 2000; 192 : 1213
    19. Hoffman P, Eder R, Kunz-Schughart LA, et a1. Large-scale in vitro expansion of polyclonal human CD4+CD25high regulatory T cells. Blood, 2004; 104(3):895-903.
    20. Horwitz DA, Zheng SG, Gray JD, et a1. Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin Immunol, 2004; 16(2): 135-143.
    21. Battaglia M, Stabilini A, Draghici E, et al. Induction of tolerance in type 1 Diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes. 2006;55(6):1571-80.
    22. Tang Q, Henriksen KJ, Bi M, et a1. In vitro expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med,2004; 199(11): 1455-1465.
    23. Mekala DJ, Geiger TL. Immunotherapy of autoimmune encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Blood, 2005; 105(5):2090-2092.
    24. Strauss L, Whiteside TL, Knights A, et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol.2007;178(1):320-9.
    25. Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients.J Immunol. 2006; 15;177(12):8338-47.
    26. Coenen JJ, Koenen HJ, van Rijssen E, et al. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood. 2006;107(3):1018-23.
    27. Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin Promotes Expansion of Functional CD4+CD25+FOXP3+Regulatory T Cells of Both Healthy Subjects and Type 1 Diabetic Patients. J Immunol. 2006; 177: 8338-8347.
    28. Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+regulatory T cells. J Immunol. 2004; 172:5287-5296.
    1. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu. Rev. Immunol. 1996; 14:483–510.
    2. Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantion without calcineurin inhibitor drugs: a prospective randomized trail of sirolimus versus cyclosporine. Transplant, 2002; 74(8):1070-6.
    3. Steiner D, Brunicki N, Bachar-Lustig E, et al. Overcoming T cell-mediated rejection of bone marrow allografts by T-regulatory cells: synergism with veto cells and rapamycin. Exp Hematol. 2006;34(6):802-8.
    4. Cotterell AH, Fisher RA, King AL, et al. Calcineurin inhibitor-induced chronic nephrotoxicity in liver transplant patients is reversible using rapamycin as the primary immunosuppressive agent. Clin Transplant, 2002;10(suppl 7):49-51.
    5. Mqadmi A, Zheng X, Yazdanbakhsh K. . CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. Blood, 2005; 105: 3746-8.
    6. Stephens LA, Gray D, Anderton SM. CD4+CD25+ regulatory T cells limit the risk ofautoimmune disease arising from T cell receptor crossreactivity. PNAS, 2005; 102: 17418 -23.
    7. Hanash AM, Levy RB. Donor CD4+CD25+T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood, 2005; 105: 1828-36.
    8. Battaglia M, Stabilini A, Roncarolo MG.. Rapamycin selectively expands CD4+CD25+ Foxp3+ regulatory T cells. Blood, 2005;105: 4743-4748.
    10.Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu. Rev. Immunol, 1996;14:483–510.
    11.Begum N, Ragolia L. cAMP counter-regulates insulin-mediated protein phosphatase-
    2A inactivation in rat skeletal muscle cells. J. Biol.Chem. 1996; 271: 31166–31171.
    12.Peterson RT, Desai BN, Hardwick JS, et al. Protein phosphatase 2A interacts with the
    70-kDa S6 kinase and is activated by inhibition of FKBP12- rapamycin-associated protein. Proc. Natl. Acad. Sci. USA, 1999; 96:4438– 4442.
    13.Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16:1472–1487.
    14.Chung J, Kuo CJ, Crabtree GR, et al. Rapamycin-FKBP specifically blocks growth- dependent activation of and signaling by the 70kd S6 protein kinases. Cell, 1992;69: 1227–1236.
    15.Lin TA, Kong X, Haystead TA, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science, 1994;266:653–656.
    16.Price DJ, Grove JR, Calvo V, et al. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science,1992;257: 973–977.
    17. Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12- rapamycin complex in mammalian cells. J. Biol. Chem. 1995; 270: 815-22.
    18. Takuwa N, Fukui Y, Takuwa Y. Cyclin D1 expression mediated by phosphatidylino- sitol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor- stimulated NIH 3T3 fibroblasts. Mol. Cell. Biol.1999; 19: 1346-58.
    19. Shi Y, Hsu JH, Hu L, et al. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J. Biol. Chem. 2002; 277:15712-20.
    20. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immuno- suppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem.1998;31: 335-40.
    21. Dennis P B, Jaeschke A, Saitoh M, et al. Mammalian TOR: a homeostatic ATP sensor.Science, 2001;294: 1102-5.
    22. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Rapamycin Inhibits the Generation of Graft-Versus-Host Disease- and Graft-Versus-Leukemia-Causing T Cells by Interfering with the Production of Th1 or Th1 Cytotoxic Cytokines. J Immunol, 1998; 160: 5355.
    23. Foley JE, Jung U, Miera A, et al. Ex Vivo Rapamycin Generates Donor Th2 Cells That Potently Inhibit Graft-versus-Host Disease and Graft-versus-Tumor Effects via an IL-4-Dependent Mechanism. J Immunol, 2005; 175: 5732 - 5743.
    24. Battaglia M, Stabilini A, Draghici E, et al. Induction of Tolerance in Type 1 Diabetes via Both CD4+CD25+ T Regulatory Cells and T Regulatory Type 1 Cells. Diabetes, 2006; 55: 1571 - 1580.
    25. Coenen JJ, Koenen HJ, van Rijssen E,et al. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells.Blood. 2006;107(3):1018-23.
    1. Billingham R. The biology of graft-versus-host reactions. The Harvey Lectures, Vol.62. Academic Press, 1966; 21-78.
    2. Johnson BD,Konkol MC,Truitt RL. CD25+ immunoregulatory T cells of donor origin suppress alloreaetivity after BMT. Biol Blood Marrow Transplant, 2002; 8(10): 525-535.
    3. Cohen JL,Trenado A,Vasey D,et al. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med,2002; 196(3): 401-406.
    4. Hofman P,Ermann J,Edinger M,et a1.Donor-type CD4+CD25+ regulatory T cells suppress lethal acute grafl-versus-host disease after allogeneic bone marrow transplantation. J Exp Med, 2002; 196(3): 389-399.
    5. Stanzani M, Martins SL, Saliba RM, et a1. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identicaI stem cell transplantation in human. Blood, 2004;103(3): 1140- 1146.
    6. Schneider M, Munder M, Karakhanova S, et al. The initial phase of graft-versus-host disease is associated with a decrease of CD4+CD25+ regulatory T cells in the peripheral blood of patients after allogeneic stem cell transplantation. Clin Lab Haematol. 2006;28(6):382-90.
    7. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood, 1996; 88(8): 3230-3239.
    8. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 +CD25+ regulatory T cells. Nat Immunol ,2003; 4(4) :330-336.
    9. Khattri R , Cox T, Yasayko SA , et al . An essential role for Scurfin in CD4+CD25+ regulatory T cells. Nat Immunol,2003; 4 (4) :337-342.
    10. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cells development by the transcription factor Foxp3. Science, 2003; 299 (5609):1057-1061.
    11.Annacker O, Pimenta-Araujo R, Burien-Defranoux O, et al. On the ontogeny and physiology of regulatory T cells. Immunol Rev, 2001; 182:5-17.
    12.Clark FJ, Gregg R, Piper K, et a1. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood, 2004;103(6):2410-2416.
    13.Stanzani M, Martins SL, Saliba RM, et a1. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease afterHLA-identical stem cell transplantation in humans. Blood, 2004; 103(3):1140- 1146.
    14.Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood, 2006; 108:1291-1297.
    15.Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of FOXP3+CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood, 2005; 106(8): 2903-11.
    16.Ikemoto T, Tashiro S, Yasutomo K, et al. Donor-specific tolerance induced by simultaneous allogeneic islet transplantation with CD4+CD25+ T-cells into hepatic parenchyma in mice.J Med Invest. 2004;51(3-4):178-85.
    17.Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1117-8.
    18.Nguyen VH, Zeiser R, Dasilva DL,et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood. 2007;109(6):2649-56.
    19.Zhai Z, Sun Z, Li Q,et al. Correlation of the CD4(+)CD25(high) T-regulatory cells in recipients and their corresponding donors to acute GVHD.Transpl Int. 2007 Feb 19;[Epub ahead of print]
    20.Schneider M, Munder M, Karakhanova S,et al. The initial phase of graft-versus-host disease is associated with a decrease of CD4+CD25+ regulatory T cells in the peripheral blood of patients after allogeneic stem cell transplantation.Clin Lab Haematol. 2006;28(6):382-90.
    21.王志东,冯四洲,周世勇等.急性GVHD发生与未发生者移植物Foxp3 mRNA表达的差异性研究.中国实验血液学杂志,2006,14(6):1215-1220.
    22. Miura Y, Thoburn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood, 2004;104:2187-2193.
    1.丁顺利,褚建新、赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性明.中华血液学杂志,1998, 19 (12): 638-41.
    2.Joshi S, Vaidya S, Nerurkar V, et al. Gamma radiation induced leukemia in ICRC strain of mice: a marine model closely simulating human disease for experimental chemotherapy. Indian J Cancer 1997; 34(2): 59-67.
    3.段连宁,郭坤元,褚建新,等.小鼠红白血病细胞在半相合型小鼠体内的生物特性.中国实验血液学杂志,2002,10(3): 218-221.
    4.吴细丕,钱林法.实验动物与肿瘤研究.第一版.北京:中国医药科技出版社.2000, 185-193.
    5.包娜然.小鼠白血病实验模型.生物学杂志,1989, 6:28-9.
    6.《现代白血病学》,艾辉胜,罗荣城,乐晓锋主编.现代白血病学.北京:人民军医出版社, 1997, 24~27.
    7.林芸,孟凡义,顾为望. (C57BL/6×615) F1代小鼠L 615白血病模型的建立.福建医药杂志,2002,24(4): 95~95.
    1. Goker H, Haznedaroglu IC, Chao NJ. Acute graft-vu-host disease: Pathobiology and magnagement. Exp Hematology, 2001; 29:259-277.
    2. Kemper C, Chan A, Green JM, et a1. Activation of human CIM cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype[J].Nature, 2003; 42l(23): 388-392.
    3. Johnson BD, Konkol MC, Truitt RL. CD25+ immunoregulatory T-cells of donor origin suppres alloreaetivity after BMI. Biol Blood Marrow Transplant, 2002; 8(10): 525- 535.
    4. Cohen JL, Trenado A, Vasey D, et ol. CD4+CD25+ immunoregulatory T cells:new therapeutics for graft-versus-host disease. J Exp Med, 2002; 196(3): 401-406.
    5. Hofman P, Ermann J, Edinger M, et a1.Donor-type CD4+CD25+regulatory T cells suppress lethal acute grafl-versus-host disease after allogeneic bone marrow trans- plantation. J Exp Med, 2002; 196(3):389-399.
    6. Pontoux C, Banz A, Papiernik M. Natural CD4+CD25+ regulatory T cells control the burst of superantigen-induced cytokine production: the role of IL-10. Int Immunol, 2002; 4(2): 233-239.
    7. Willems F, Marchant A, Delville J P, et a1. Interleukin-10 inhibits B7 and intercellular adhesion moleculel expression on human monocytes. Eur J Immunol, 1994; 24(4): 1007-1009.
    8. Mantel PY, Ouaked N, Rückert B, et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol, 2006;176:3593-3602.
    9. Chang X, Chen L, Wen J, et al. Foxp3 controls autoreactive T cell activation through transcriptional regulation of early growth response genes and E3 ubiquitin ligase genes, independently of thymic selection. Clinical Immunology, 2006; 121(3): 274-285.
    10. Yongqing Wu, Madhuri Borde, Vigo Heissmeyer, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 2006;126(2):375-387.
    11. MacKenzie DA, Schartner J, Lin J, et al. GRAIL is upregulated in CD4+CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem, 2007;10.1074/jbc.M604192200.
    12. Ermann J, Szanya V, Ford G S, et a1. CD4+CD25+ T cells facilitate the induction of T cell anergy. J Immunol, 2001; 167(8): 4271-4275.
    13. Taylor P A, Noelle R J, Blazar B R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med, 2001; 193(11):1311-1318.
    14. Trenado A, Sudres M, Tang Q, et al. Ex vivo expanded CD4+CD25+ immunoregulat-ory T cells prevent graft-versus-host-disease by inhibiting activation /differentiation of pathogenic T cells. J Immunol, 2006; 176:1266-1273.
    15. Ermann J, Hoffmann P, Edinger M, et al. Only the CD62L+ subpopulation of CD4+ CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005;105: 2220 -2226.
    16. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med, 2003;9:1144-1150.
    17. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectinhi but not the L-selectinlo CD4+CD25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood, 2004;104:3804-3812.
    18. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med, 2006; 203:1701-1711.
    19. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med, 2006; 203:1693-1700.
    20. Zou L, Barnett B, Safah H, et al. Bone marrow is a reservoir for CD4+CD25+ regula- tory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res, 2004; 64: 8451 -8455.
    1. Sobecks RM, Ball EJ, Maciejewski JP, et al. Survival of AML patients receiving HLA-matched sibling donor allogeneic bone marrow transplantation correlates with HLA-Cw ligand groups for killer immunoglobulin-like receptors. Bone Marrow Transplant. 2007 Feb 19; [Epub ahead of print].
    2. Couriel D, Caldera H, Champlin R, et al. Acute graft-versus-host disease:Pathophy- siology, clinical manifestations, and management. Cancer. 2004;101:1936-461.
    3. Petersdorf EW, Anasetti C, Martin PJ, et al. Tissue typing in support of unrelated hematopoietic cell transplantation. Tissue antigen, 2003;61:1-11
    4. Gale RP, Horowitz MM, Ash RC, et al. Identical twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120: 646-52.
    5. Goker H, Haznedaroglu IC, Chao NJ. Acute graft-vu-host disease: Pathobiology and magnagement [J]. Experimental Hematology, 2001;29:259-77.
    6. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell–depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med, 1998;339:1186 - 1193.
    7. Aversa F, Terenzi A, Tabilio A,et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: A phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol, 2005; 23: 3447 - 3454.
    8. Ichinohe T, Uchiyama T, Shimazaki C, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)–mismatched family members linked with long-term fetomaternal microchimerism. Blood, 2004; 104: 3821 - 3828.
    9.韩伟,陆道培,黄晓军,等. HLA配型不合造血干细胞移植GIAC方案100例临床分析.中华血液学杂志,2004; 25: 453-457
    10. Lu DP, Dong L, Wu T, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood, 2006;107: 3065-3073.
    11. S-Q Ji, H-R Chen, H-M Yan, et al. Anti-Cd25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant, 2005; 36:349-354.
    12. Ruggeri L, Capanni M,Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 2002; 295: 2097-2100.
    13. Ruggeri L , CapanniM , CasucciM , et al. Role of natural killer cell alloreactivity in HLA-mismatched haematopoietic stem cell transp lantation. Blood, 1999; 94 : 333-339.
    14. Ruggeri L , CapanniM , M ancusi A , et al. Alloreactive natural killer cells in mismatched hematopoietic stem cell transplantation. Blood Cells Mol Dis, 2004; 33 : 216-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700