血管内皮细胞hCASK-Id1通路对p53表达调控的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     多脏器功能不全综合征(multiple organ dysfunction syndrome, MODS)是严重烧伤病人死亡的重要原因之一,它的发生和发展与烧伤严重程度、烧伤后休克期渡过是否平稳以及烧伤感染有密切关系,提高烧伤的救治水平,必须重视MODS的防治。组织血液灌流不足及细胞缺血缺氧性损害是严重烧伤后脏器功能损害的病理生理基础。烧伤后多种因素可导致血管内皮细胞的激活和损伤,损伤的血管内皮细胞使毛细血管通透性增加,导致脏器间质水肿,加重脏器的缺血缺氧性损害。同时,激活的血管内皮细胞还可释放大量的细胞因子、炎症介质,直接参与炎症反应、影响血管的收缩/舒张平衡、导致血液的高凝状态、促进中性粒细胞与血管内皮细胞的黏附。黏附的中性粒细胞可释放多种炎症介质加重血管内皮细胞的损伤,使微循环功能障碍加重,进一步减少重要脏器的血供和氧气交换,最终导致多脏器功能不全综合征。可以说,血管内皮细胞活化与损伤是导致烧伤、创伤后器官功能障碍的中心环节之一。
     内皮细胞的损伤早期表现为细胞活化,此时细胞释放大量细胞因子和炎症介质参与全身的炎症反应。当损伤因素得不到及时纠正时,内皮细胞损伤加重,自血管壁剥脱、死亡,内皮下胶原纤维暴露引发血管内凝血,进一步加重微循环障碍。微循环功能的恢复依赖血管内皮细胞结构及功能的修复,因此,如何加速损伤内皮细胞的修复是烧伤后脏器功能障碍防治研究的重要内容之一。
     损伤修复过程涉及细胞的运动、黏附、通讯、增殖和分化,也包含细胞内外物质代谢基因的启动、调控等一系列生化和分子生物学反应。细胞的增殖反应是其中重要环节之一,许多细胞因子及信号转导通路参与这个复杂的过程,它们相互促进、制约,共同发挥作用。如果能全面揭示细胞增殖调控的信号网络,我们就可以主动参与内皮细胞损伤的修复进程,在治疗大面积烧创伤、防治内脏并发症时就可以掌握主动权。
     CASK是膜相关鸟苷酸激酶同源家族(membrane-associated guanylate kinase homologs family, MAGUK)成员,主要功能是作为脚手架蛋白质(scaffold protein),利用其多蛋白结构域,结合功能相关的蛋白分子,形成多蛋白复合物,参与许多重要的细胞生理过程。既往的研究通过酵母双杂交技术、免疫共沉淀和激光共聚焦等方法,在ECV-304细胞中证实了内源性hCASK和Id1蛋白分子的相互作用;发现诱导表达hCASK的ECV-304细胞增殖缓慢,并且能诱导细胞周期相关蛋白p21、p16等表达上调,E蛋白家族成员(如E12、E47及HEB)参与了这一信号调节过程,并由此提出hCASK-Id1通路抑制ECV-304细胞增殖的信号机制:hCASK通过与Id1结合,抑制Id1对bHLH转录因子的负调控作用,促进bHLH转录因子(如E蛋白家族的E12、E47和HEB)与p21启动子E-box的结合,转录活化p21等基因,抑制细胞G1/S期转换,抑制细胞增殖。
     本组研究发现,诱导表达hCASK可使p53表达升高,由于p53表达升高可通过调控细胞周期导致细胞增殖功能的抑制,因此hCASK-Id1信号通路是否可以通过调控p53的表达发挥细胞增殖抑制的功能值得进一步研究。
     研究目的
     本研究的重点是考察hCASK-Id1信号通路调控细胞增殖的机制,探讨hCASK-Id1通路是否可通过影响p53表达发挥其在细胞增殖调节中的调控作用,并初步探讨该通路调节p53表达的机制。
     研究方法
     1.采用RNA干扰技术(RNAi),应用质粒载体介导的细胞内小干扰RNA(siRNA)表达策略,将针对CASK的RNA干扰质粒pGenesil-1-hCASK转染ECV-304细胞,筛选并建立CASK抑制表达细胞株,采用MTT、流式细胞技术和Western Blot印迹技术研究其对细胞增殖功能及p53表达的影响。
     2.构建Id1强制表达载体pIRES2-EGFP-Id1,转染ECV-304细胞,筛选并建立了Id1强制表达细胞株,用MTT、流式细胞技术和Western Blot印迹技术分析其对细胞增殖及p53表达的影响。
     3.构建针对p53基因启动子的荧光素酶报告基因载体,并在此基础上构建含p53基因启动子不同截短片段的载体,了解在p53基因启动子上起主要作用的转录因子结合区域,为深入研究hCASK-Id1通路影响p53表达的信号机制提供信息。
     结果
     1. RNA干扰对于hCASK的抑制率与其作用位点直接相关,本研究中2号靶点的抑制率约70%,而1号靶点几乎没有明显的抑制效果。hCASK抑制表达可以使ECV-304细胞的生长曲线左移,促进细胞增殖,细胞周期分析也发现抑制hCASK表达可导致细胞群中G2M+S期细胞比率升高,是细胞增殖能力增强的表现。
     2.通过克隆Id1全长编码基因,成功的构建了Id1真核表达载体,转染ECV-304细胞,经G418筛选得到稳定Id1强制表达的细胞亚系。在所得到的ECV-304-Id1(+)细胞株中,转染阳性细胞比率达到90%以上,为今后深入研究hCASK-Id1通路功能奠定了基础。Id1的强制表达可以使细胞增殖曲线左移,细胞群中G2M+S期细胞比率升高,促进细胞增殖。
     3. Western Blot印迹实验表明hCASK抑制表达和Id1强制表达均可使p53蛋白的表达下降。
     4.成功构建含p53基因启动子的荧光素酶报告基因质粒,同未转染ECV-304细胞相比,hCASK抑制表达细胞株和Id1强制表达细胞株都能使p53基因启动子报告基因质粒活性降低,提示hCASK、Id1对p53表达的调节至少部分是通过影响p53基因转录水平造成的。
     5.构建了系列截短的p53基因启动子荧光素酶报告基因质粒。通过将这些质粒转染hCASK抑制表达和Id1强制表达细胞株,发现p53基因启动子3’端约150bp的序列(从-150到-1)是激活p53基因表达必须的,在这段序列中,包含了E-box、Ets、AP-2、HIF-1、HES1、Sum1等潜在的转录因子结合位点。
     6.将Id1强制表达和抑制表达质粒与PGL3-p53p-luc共转染已筛选出的CASK抑制表达细胞株,检测Id1表达变化对p53基因启动子活性的影响,结果Id1抑制可使p53基因启动子活性较hCASK抑制表达细胞株升高,而Id1强制表达可使hCASK抑制表达细胞p53基因启动子的活性进一步下降。
     结论:
     1. hCASK抑制表达及Id1强制表达均可促进细胞增殖、下调p53蛋白表达。
     2. hCASK-Id1通路对p53蛋白表达的调节至少部分是在转录水平发挥的, p53基因启动子3’端约150bp的序列(从-150到-1)是激活p53基因表达必须的,这段序列中包含了E-box、Ets、AP-2、HIF-1、HES1、Sum1等潜在的转录因子结合位点。
     3. Id1的表达变化可以影响hCASK抑制表达细胞p53基因启动子活性,是Id1直接参与hCASK对p53表达调节的证据。
     4. p53在细胞周期调节、细胞增殖、细胞老化及细胞损伤修复等过程中起到十分重要的作用,hCASK-Id1通路可能通过对p53表达的调控发挥广泛的的生物学效应。
Background
     Multiple organ dysfunction syndrome (MODS) was one of the most important causes of burn mortality. The hypoperfusion of tissues and ischemia-hypoxia injury were the pathophysiological bases of postburn organ dysfunction. Many factors could activate and harm vascular endothelial cells (VECs), which could elevate vascular permeability and lead to organ edema and aggravate organ dysfunction. The activated vascular endothelial cells could release cytokines and inflammatory mediators contributing to inflammation, influencing vasomotion, causing hypercoagulable state and promoting neutrophil-vascular endothelial cell adhesion. The adhesive neutrophils release large amount of inflammatory mediators and in turn deteriorate vascular injury, worsen microcirculation dysfunction,decrease blood supply of important organs and lead to MODS. Thus, the activation and injury of vascular endothelial cells plays a key role in post-burn MODS.
     In early stage, vascular endothelial cells were activated and produced cytokines and mediators which functioned in inflammation. While injury persisted, the VECs would shed off from vascular wall and even proceed to cell death; the exposure of collagens under endothelium could trigger DIC and worsen microcirculation disturbance. Reconstruction of vascular function relys on damage repair of vascular cells, which was very important in the rehabilitation of MODS.
     There are many cellular factors and pathways involved in this process. The interfering of vascular repair could only be achieved after the thorough understanding of the complicated networks of cellular proliferation signal pathways.
     hCASK (human calcium/calmodulin-dependent serine protein kinase)is a member of the membrane associated guanylate kinase (MAGUK) family. As a scaffolding protein, it participates in many physiological and pathological processes including cytoskeleton assembly, cell junction formation and adhesion, protein sub-cellular localization, signal transduction and gene expression by binding associated protein with its multi-protein domain.
     Previous studies, using mammalian two-hybrid protein-protien interaction assays, immunoprecipitation and laser con-focal microscopy techniques, have shown that hCASK could interact with Id1 in vivo, compelling expression of hCASK could restrain cell proliferation and induce the expression of p21WAF1/CIP1 and p16INK4a.The regulation of p21 expression by hCASK attributes to the E-box in p21 gene promoter, which could bind the E protein family members like E12,E47and HEB.Thus a putative signal pathway involving proliferation effects of hCASK on ECV-304 cell might be: the binding of hCASK with Id1 repress the dominant negative effect of Id1 on bHLH protein,which promotes the binding of bHLH transcription factors (E12,E47 and HEB) with the E-box on p21 gene promoter. The activated p21 expression could lead to G1/S arrest and inhibit cell proliferation.
     It was also found that compelling expression of hCASK could increase the expression of p53, which may also inhibit cell proliferation and involve in cell cycle and differentiation control. It was speculated that p53 might also be one of the downstream signals of the hCASK-Id1 pathway.
     Aim
     The study was focused on cell proliferation regulation function of hCASK-Id1 pathway and whether it could promote cell proliferation via regulating p53 expression and try to find out the mechanism of p53 regulation by hCASK-Id1 pathway.
     Methods
     1. Recombinant siRNA expression plasmids, pGenesil-1-hCASK, were transfected into ECV-304 cells. Stable hCASK knockdown cell strain of ECV-304 cells was obtained under sustained pressure of G418.The influences on cell proliferation and p53 expression were examined in the screened cell strain using MTT, flow cytomytry and Western Blot techniques.
     2. Recombinant Id1 compelling expression plasmids were constructed using pIRES2-EGFP vector and were transfected into ECV-304 cells. Stable Id1 compelling expression cell strain of ECV-304 cells were obtained under sustained pressure of G418.The influences on cell proliferation and p53 expression were examined in screened cell strain using MTT,flow cytomytry and Western Blot techniques.
     3. p53 gene promoter was subcloned into the luciferase reporter vector, PGL3-basic, as wild type PGL3-p53p-luc vector.To create truncated PGL3-p53p-luc constructs, a series of 5’truncated p53 gene promoter sequences were obtain by PCR using PGL3-p53p-luc as template. The reporter gene constructs were transiently transfected into ECV-304 cells, hCASK knock down and Id1 compelling expression cell lines. Luciferase activity of cell lysate was detected using a dual-luciferase reporter assay kit. The ratio of firefly luciferase activity to renilla luciferase activity was taken as the relative activity of the PGL3 plasmids.
     Results
     1. The inhibition rate of hCASK interfering was associated with sequences selected in siRNA design, the pGenesil-1-hCASK based on the No.2 target sequence exhibited 70% inhibition rate compared with that of No.1, which had nearly no effect. The inhibition of CASK expression could promote proliferation of ECV-304 cells, which was revealed by the left shift of growth curve and the increase of G2M+S cells in hCASK-knockdown ECV-304 cells.
     2. Id1 compelling expression plasmid (pIRES2-EGFP-Id1)was successfully constructed and was transfected into ECV-304 cells. The stable cell strain of Id1 compelling expression , with EGFP positive rate over 90%, was achieved by G418 screening. Id1 compelling expression could lead to a left shift of cell growth curve and increase of G2M+S ratio and promote the proliferation of ECV-304 cells.
     3. hCASK inhibition and Id1 compelling expression could decrease the expression of p53 protein.
     4. The luciferase reporter gene vector containing p53 gene promoter was constructed successfully. The activation of p53 gene promoter was decreased under CASK inhibition and Id1 compelling expression, which implied that hCASK and Id1 transactivates the expression of p53 by stimulating the promoter activity of p53 and regulate its expression at transcription level.
     5. Deletion analysis of the p53 gene promoter revealed that a 150bp sequence in the 3’end of p53 gene promoter, containing potent transcription factor binding sequences of E-box, Ets, AP-2, HIF-1, HES1 and Sum1, was required for the activation of p53 gene expression by hCASK and Id1.
     6. The expression of Id1 could influence p53 gene promoter activity in hCASK knock down cells. The inhibited activation of p53 gene promoter by hCASK down-regulation was elevated at Id1 inhibition and even lower at Id1 compelling expression.
     Conclusion
     1. Id1 compelling expression and hCASK inhibition could promote cell proliferation and inhibit p53 expression.
     2. hCASK and Id1 regulated p53 expression at transcriptional level, and a 150bp sequence in the 3’end of the promoter , containing binding sequences of E-box, Ets, AP-2, HIF-1, HES1 and Sum1, was required for its trans-activation by hCASK and Id1 stimulation.
     3. Influence of Id1 expression on p53 gene promoter activity in hCASK-knockdown cells proved a direct effect of Id1 in the p53 regulation by hCASK.
     4. p53 plays very important rolls in cell proliferation, cell cycle regulation and repair, as a downstream molecule of hCASK-Id1 pathway, it might endow this pathway with more physiological and pathological significances and shine a new light on the hCASK gene function .
引文
1赵克森,金丽娟主编。休克的细胞和分子基础。北京:科学出版社,2002
    2 Volk T, Kox WJ.Endothelium function in sepsis. Infamm. Res. 2000, 49: 185-198
    3 Curry FE, Adamson RH. Transendothelial pathways in venular microvessels exposed to agents which increase permeability: The gaps in our knowledge. Microcirculation. 1999,6:3-5
    4 Hui-ming Jin, Qing-hang Liu, Xiang Cao, et al. Dysfunction of microvascular endothelial cells induced by TNFα: cellular and molecular mechanism. Clinical Hemorheology and microcirculation. 2000, 23(2-4): 109-112
    5 Curry FE, Adamson RH. Transendothelial pathways in venular microvessels exposed to agents which increase permeability: The gaps in our knowledge. Microcirculation. 1999,6:3-5
    6 Pasteres SM, KatzD P, Kvetan V. Sp. lanchnic ischemia and gutmucosal injury in sepsis and the multiple organ dysfunction syndrome.Am J Gastroenterol.1996. 91∶1697 - 1710.
    7杨宗城,黎鳌.提高烧伤治疗水平的展望.解放军医学杂志,1997; 22 (1) : 11- 13
    8 Konrad R, Ole B, Frank B, et al. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med.2002. 30∶S302 -S312.
    9 Marcshall JC, SweeneyD. Microbial infection and the sep tic response in critical surgical illness: Sepsis, not infection, determines outcome . Arch Surg. 1990. 125∶17 - 23.
    10 Roumen RMH, Redl H, Schlag G, et al. Inflammatory mediators in relation to the development of multip le organ failure in patients after severe blunt trauma. Crit CareMed. 1995. 23∶474 - 480.
    11金惠铭,卢建,殷莲华主编。细胞分子病理生理学。郑州:郑州大学出版社,2202.4
    12 Shakespeare P. Burn wound healing and skin substitutes. Burns. 2001;27(5):517-22
    13 Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair.Ann Surg. 1994 Jul;220(1):10-8
    14 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514-25.
    15 Dimitratos SD, Woods DF, Bryant PJ. Camguk, Lin-2, and CASK: novel membrane- associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev. 1997 Apr;63(1):127-30.
    16 Blair HJ , Rced V , Gormally E,et al.Positioning of five genes (CASK,ARX,SAT,IMAGE cDNAs 248928 and 253949)from the human X chromosone short arm wilh respect to evolutionary breakpoints on the mouse X chromosome. Mamm Genome.2000, 11(8):710~712.
    17 Dimitratos SD, Woods DF, Bryant PJ. Camguk, Lin22, and CASK: novel membrane- associated guanylate kinase homologs that also contain CaM kinase domains. Mech Deve, 1997, 63∶127-130.
    18 Hoskins R, Hajnal AF, Harp SA, Kim SK. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996, 122: 97-111.
    19 Cho KO, Hunt CA, Kennedy MB. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron. 1992;9:929–942.
    20 Anton Maximov, Thomas C. Südhof, Ilya Bezprozvanny. Association of Neuronal Calcium Channels with Modular Adaptor Proteins. JBC. 1999 .274( 35):24453–24456.
    21 Hsueh Y.-P., Wang T.-F., Yang F.-C., Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404:298-302.
    22 Butz S, Okamoto M, Su¨dhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998; 94:773–782.
    23 Kaech, S. M., Whitfield C. W., and Kim S. K.. The LIN-2/LIN-7/ LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998;94:761–771.
    24 Pawson T., and Scott J.D. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997,278: 2075-2080.
    25 Hsueh YP, Wang TF, Yang FC, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2.NATURE. 2000.404:298-302
    26 Bredt DS. Reeling CASK into the nucleus. Nature. Cell biology.2000;404(6775): 298-302.
    27 Qi J, et al. CASK inhibits ECV304 cell growth and interacts with Id1. Biochem Biophys Res Commun, 2005. 328(2): p. 517-21.
    28 Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms, Mol. Cell. Biol. 2000;20: 429–440.
    29 Yokota Y. Id and development, Oncogene. 2001;20:8290–8298.
    30 Benezra R., Rafii S, Lyden D. The Id proteins and angiogenesis. Oncogene. 2001;20: 8334–8341.
    31 Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363 - 366.
    32 Brummelkamp TR, Bernads R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550 - 553.
    33 J.萨姆布鲁克,D.W.拉塞尔。分子克隆(第三版),2003:96
    34边兴艳,尹学念. MTT比色法及其应用.国外医学临床生物化学与检验分册,1998 ,19 (2) :83 - 84
    35 Dimitratos SD, Woods DF, Stathakis DG, et al. Signaling pathways are focused at specialized regions of plasma membrane by scaffolding proteins of the MAGUK family. Bioessays. 1999;21:912-921.
    36 Hannon GJ. RNA interference.Nature,2002,418(6894) :244-251
    37 Gubin AN, Reddy B,Njoroge JM, et al. The long-term ,stable expression in green fluoresent protein in mammalian cells. Biochem Biophy Res Commun ,1997 ,236 (2) :347-350
    38 Shapiro GI, Edwards CD, Rollins BJ. The physiology of p16(INK4A)-mediated G1 proliferative arrest. Cell Biochem Biophys. 2000;33(2):189-97.
    39 Liu G, Lozano G. p21 stability: linking chaperones to a cell cycle checkpoint. Cancer Cell. 2005 Feb;7(2):113-4.
    40 Pinstaff J K, Chappell SA. Imemal initiation of translation of five dendriticallylocalized neuronal mRNAs. Proc Natl Acad Sci USA ,2001 ;98 :2770 - 2775.
    41 Wagstaff MJD, Lilley CE. Gene transfer using a disabled herpes vires vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo. Gen Ther .1998 ;5 :1566- 1570.
    42 Yokota Y, Mori S. Role of Id family proteins in growth control. J Cell Physiol. 2002 Jan;190(1):21-8.
    43 Norton JD. Id helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci. 2000 Nov;113 ( Pt 22):3897-905.
    44 Zhu W , Dahmen J , Bulfone A , et al. Id gene expression during development and molecular cloning of the human Id1 gene. Mol Brain Res, 1995, 30∶312-326.
    45 Riechmann V, Crüchten I, Sablitzky F.The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, 1d2 and Id3 .Nucleic Acids Research, 1994, 22( 5): 749-755.
    46 Forrest S, McNamara C. Id family of transcription factors and vascular lesion formation. Arterioscler Thromb Vasc Biol. 2004 Nov;24(11):2014-20.
    47 Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003 Aug;13(8):410-8
    48 Lyden D, Young AZ, Zagzag D, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature. 1999; 401(6754):670-7.
    49 Nehlin JO , Hara E, Kuo WL , et al. Genomic organization,sequence, and chromosomal localization of the human helix-loop-helix Id1 gene. Biochem Biophys Res Commun, 1997, 231∶628-634.
    50 Tamura Y, Sugimoto M , Ohnishi K, et al. Differential activity of a variant form of the human Id1 protein generated by alternative splicing. FEBS Lett, 1998, 436∶169-173.
    51 Norton JD. Id helix-loop-helix proteins in cell growth , differentiation and tumorigenesis. J Cell Sci , 2000 , 113 ( Pt .22) : 3897~3905
    52 Barone MV, Pepperkok R, Peverali FA,et al. Id Proteins Control Growth Induction in Mammalian Cells .Proc Nati Acad Sci. 1994;91, 4985-4988.
    53 Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–1512.
    54 Prabhu S, Ignatova A, Park ST, Sun XH. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol. 1997;17:5888–5896.
    55 Peverali FA, Ramqvist T, Saffrich R, Pepperkok R, Barone MV, Philipson L. Regulation of G1 progression by E2A and Id helixloop-helix proteins. EMBO J. 1994;13:4291– 4301.
    56 Pagliuca A, Gallo P, De Luca P, Lania L. Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors’promoter activity and negatively affect cell growth. Cancer Res. 2000;60:1376–1382.
    57 Tanner FC, Boehm M, Akyurek LM, San H, Yang ZY, Tashiro J, Nabel GJ, Nabel EG. Differential effects of the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and p16(Ink4) on vascular smooth muscle cell proliferation. Circulation. 2000; 101:2022–2025.
    58 Nielsen AL, Norby PL, Pedersen FS, Jorgensen P. E-box sequence and context-dependent TAL1/SCL modulation of basic helix-loop-helix protein-mediated transcriptional activation. J Biol Chem. 1996 Dec 6;271(49):31463-9.
    59贺强,王立峰.bHLH蛋白家族的功能.国外医学·生理、病理科学与临床分册. 2004;24(6): 545-547.
    60 Dang W, Sun XH, Sen RJ.ETS-Mediated Cooperation between Basic Helix-Loop-Helix Motifs of the ImmunoglobulinμHeavy-Chain Gene Enhancer.Mol Cell Biol. 1998; 18(3):1477-1488.
    61 Brown L, Boswell S, Raj L,et al. Transcriptional targets of p53 that regulate cellular proliferation. Crit Rev Eukaryot Gene Expr. 2007;17(1):73-85.
    62 Livneh Z. Keeping mammalian mutation load in check: regulation of the activity of error-prone DNA polymerases by p53 and p21. Cell Cycle. 2006 ;5(17):1918-22.
    63 Ghosh, D. Object-oriented transcription factors database (ooTFD) .Nucleic Acids Res. 2000; 28: 308-10.
    64 Lane DP, Crawford LV.T antigen is bound to a host protein in SV40 transformed cell.Nature, 1979; 278 (5701): 261-3.
    65 Deiry WS , Tokino T , Velculescu VE , et al. WAF1 , a potential mediator of p53 tumor suppression.Cell.1993.75 :817- 825.
    66 Liu G, Lozano G. p21 stability: linking chaperones to a cell cycle checkpoint. Cancer Cell. 2005 Feb;7(2):113-4.
    67 Bunz F , Dutriaux A , Lengauer C , et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Scienc. 1998 .282 :1497 - 1501.
    68 Chen D, Li MY, Luo JY, Gu W. Direct Interactions between HIF-1 and Mdm2 Modulate p53 Function. J. Biol. Chem., 2003;278(6):3595-13598.
    69 Li H, Watts GS, Oshiro MM, Futscher BW, Domann FE. AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene. 2006 ;25(39):5405-15.
    70 Stabach PR, Thiyagarajan MM, Woodfield GW, Weigel RJ. AP2alpha alters the transcriptional activity and stability of p53. Oncogene. 2006;25(15):2148-59
    71 Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato N. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol. 2005;25(10):4262-71
    72 Kageyama R, Ohtsuka T, Tomita K. The bHLH gene Hes1 regulates differentiation of multiple cell types. Mol Cells. 2000 29;10(1):1-7
    73 Kabos P, Kabosova A, Neuman T. Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J Biol Chem. 2002 ;277(11):8763-6.
    74 Qihong Huang, Angel Raya, Paul DeJesus,et al. Identification of p53 regulators by genome-wide functional analysis. PNAS. 2004; 101(10):3456–3461.
    75 Humphrey T, Enoch T. Sum1, a highly conserved WD-repeat protein, suppresses S-M checkpoint mutants and inhibits the osmotic stress cell cycle response in fission yeast. Genetics.1998;148(4):1731-42.
    76 Shapiro GI, Edwards CD, Ewen ME. P16 INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol.1998;18:378-87.
    77 Blackburn EH.Switching and signaling at the telomere.Cell, 2001;106: 661-73.
    78 Tyner SD, Choi J, Jones S, et al.p53 mutant mice that display early aging-associated phenotypes.Nature. 2002;415:45-53.
    79 Di K, Ling MT, Tsao SW, Wong YC, Wang X. Id-1 modulates senescence and TGF-beta1 sensitivity in prostate epithelial cells.Biol Cell. 2006;98(9):523-33.
    80 Zheng W, Wang H, Xue L, Zhang Z, Tong T. Regulation of cellular senescence and p16INK4a expression by Id1 and E47 proteins in human diploid fibroblast.J Biol Chem. 2004;279(30):31524-32.
    81 Baror RL, Ruth M, Segel Lee A, et al.Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study.Proc Natl Acad Sci USA, 2000; 97: 11250-5.
    82 Woo RA,Mclure KG, Lees-Miller SP, et al.DNA dependent protein kinase acts up stream of p53 in response to DNA damage.Nature,1998; 394 (6694):700-4.
    83 Bunz F , Dutriaux A , Lengauer C , et al . Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science ,1998;282:1497-1501.
    84 Hsueh YP, Yang FC, Kharazia V, Naisbitt S, Cohen AR, Weinberg RJ, Sheng M. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol. 1998;142(1):139-51.
    85 Cohen AR, Wood DF, M arfatia SM , et al. Human CASK/LIN-2 binds syndecan-2 and protein 4. 1 and localizes to the basolateral membrane of epithelial cell. J Cell Bio l, 1998, 142∶129-137.
    86 Eugene Tkachenko, J.M.R.a.M.S., Syndecans: New Kids on the Signaling Block.Circ. Res. 2005;96;488-500.
    87 Oh ES, Couchman JR. syndecans2 and 4 :close cousins,but not identical twins. mol cells 2004.17 (2):181-187.
    88 Dealy CN, et al.. FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3. Dev Biol, 1997. 184(2): 343-50.
    89 Hsueh YP, Sheng M. Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J Neurosci. 1999;19(17):7415-25.
    90 Iwabuchi T,Goetinck PF, Syndecan-4 dependent FGF stimulation of mouse vibrissae growth. Mech Dev, 2006. 123(11):831-41.
    91 Bernfield M, Hooper KC. Possible regulation of FGF activity by syndecan, an integral membrane heparan sulfate proteoglycan. Ann N Y Acad Sci. 1991;638:182-94.
    92 Cohen AR, Wood DF, Marfatia SM,et al. Human CASK/LIN-2 Binds Syndecan-2 and Protein 4.1 and Localizes to the Basolateral Membrane of Epithelial Cells. J. Cell Biol. 1998;142 (1):129-138.
    93 Chen LG, Couchman JR, Smith J, et al. Molecular characterization of chicken syndecan-2 proteoglycan. Biochem J. 2002 ;366(2): 481–490.
    94 Hsueh YP ,Sheng M. Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development. J Neurosci.1999;19(17):7415–7425.
    1 Butler JE,Kadonaga JT. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 2002;16:2583–2592.
    2 Glass CK,Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors.Genes Dev.2000; 14: 121–141.
    3 Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000;14:2551–2569.
    4 Lewis BA,Reinberg D. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci. 2003;116:3667–3675.
    5 Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A,Sugano S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library. Gene .1997;200:149–156.
    6 Yamashita R, Suzuki Y, Wakaguri H, Tsuritani K, Nakai K, Sugano S. DBTSS: DataBase of Human Transcription Start Sites, progress report 2006. Nucleic Acids Res. 2006; 34: D86–D89.
    7 Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET,Ruan Y. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods. 2005;2: 105–111.
    8 Hashimoto S, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J, Morishita S, Sugano S ,Matsushima K. 5′-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol. 2004;22: 1146–1149.
    9 Kasai Y, Hashimoto S, Yamada T, Sese J, Sugano S, Matsushima K,Morishita S.
    5′SAGE: 5′-end Serial Analysis of Gene Expression database. Nucleic Acids Res. 2005;33: D550–D552.
    10 Shiraki T,Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA. 2003;100: 15776–15781.
    11 Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB,et al. The transcriptional landscape of the mammalian genome. Science.2005;309:1559–1563
    12 Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006; 38: 626–635.
    13 Kim TH , Ren B. Genome-wide analysis of protein- DNA interactions. Ann. Rev. Genomics Hum Genet. 2006; 7: 81-102.
    14 Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B. A high-resolution map of active promoters in the human genome. Nature.2005;436: 876–880.
    15 Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev. 2006;16:203–208.
    16 Bucher P,Trifonov EN. Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res. 1986; 14:10009–10026.
    17 http://www.ncbi.nlm.nih.gov/
    18 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,Haussler D. The human genome browser at UCSC. Genome Res.2002;12:96–1006.
    19 Heintzman ND, Ren B。The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome.Cell Mol Life Sci. 2007;64: 386–400
    20 Breathnach R,Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50: 349–383.
    21 Struhl K. Yeast transcriptional regulatory mechanisms. Annu Rev Genet. 1995; 29:651–674.
    22 Burley SK,Roeder RG. Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem.1996;65:769–799.
    23 Berk AJ. TBP-like factors come into focus. Cell.2000;103: 5–8
    24 Smale ST, Baltimore D. The‘initiator’as a transcription control element. Cell.1989;57:103–113.
    25 Smale ST, Schmidt MC, Berk AJ, Baltimore D. Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA . 1990;87:4509– 4513.
    26 Chalkley GE , Verrijzer CP. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II)150 complex recognizes the initiator. EMBO J. 1999; 18:4835–4845.
    27 Kadonaga JT. The DPE, a core promoter element for transcription by RNA polymerase II. Exp Mol Med. 2002;34:259–264.
    28 Burke TW, Kadonaga JT. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 1996 ; 10: 711–724.
    29 Burke TW ,Kadonaga JT. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 1997; 11: 3020–3031.
    30 Butler JE,Kadonaga JT. Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev.2001;15:2515–2519.
    31 Willy PJ, Kobayashi R, Kadonaga JT. A basal transcription factor that activates or represses transcription. Science.2000;290:982–985.
    32 Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 1998;12:34– 44.
    33 Evans R, Fairley JA,Roberts SG. Activatormediated disruption of sequence-specific DNA contacts by the general transcription factor TFIIB. Genes Dev.2001;15:2945– 2949.
    34 Ohler U, Liao GC, Niemann H ,Rubin GM. Computational analysis of core promoters in the Drosophila genome. Genome Biol. 2002; 3: 87.
    35 Lim CY, Santoso B, Boulay T, Dong E, Ohler U,Kadonaga JT. The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev. 2004;18:1606–1617.
    36 Blake MC, Jambou RC, Swick AG, Kahn JW,Azizkhan JC. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol. 1990;10: 6632–6641.
    37 Heintzman ND ,Ren B. The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cell Mol Life Sci.2007;64:386–400
    38 Bernstein BE, Liu CL, Humphrey EL, Perlstein EO,Schreiber SL. Global nucleosome occupancy in yeast. Genome Biol. 2004;5:R62.
    39 Lee CK, Shibata Y, Rao B, Strahl BD ,ieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet. 2004;6:00–905.
    40 Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell.2005;8:35–748.
    41 Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP , Groudine M. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev.2004;18: 1263–1271.
    42 Bannister AJ. ,Kouzarides T. Reversing histone methylation. Nature.2005;436: 1103–1106.
    43 Lemon B ,Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000;14:2551–2569.
    44 Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell. 2004;116:247–257.
    45 Li JJ, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science. 1993;262:1870-1873
    46 Liu JD, Wilson TF, Milbrandt J, Johnston M. Identifying DNAbinding sites and analyzing DNA-binding domains using a yeast selection system. Methods. 1993;5:125-137
    47 Ishida H, Ueda K, Ohkawa K, Kanazawa Y, Hosui A, Nakanishi F, Mita E, Kasahara A, Sasaki Y, Hori M, Hayashi N. Identification of multiple transcription factors, HLF, FTF, and E4BP4, controlling hepatitis B virus enhancer II. J Virol. 2000;74:1241-1251
    48 Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a hepatitis B virus X binding protein that inhibits viral replication. J Virol. 1998;72:1737-1743
    49萨姆布鲁克J拉塞尔DW.分子克隆实验指南.黄培堂译.第3版.北京:科学出版社, 2002:147-377
    50 Blond-Elguindi S, Swirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ. Affinity panning of a library of peptides display on bacteriophages reveals the binding specificity of Bi P. Cell. 1993;75:717-728
    51 Doorbar J, Winter G. Isolation of a peptide antagonist to the thrombin receptor using phage display. J Mol Biol. 1994;244: 361-369
    52 Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380:364-366
    53 Isalan M, Klug A, Choo Y. A rapid, generally applicable method to engineer zinc fingers illustrate by targeting the HIV-1 promoter. Nat Biotechnol. 2001;19:656-660
    54 Cicchini C, Ansuini H, Amicone L, Alonzi T, Nicosia A, Cortese R, Tripodi M, Luzzagao A. Searching for DNA-protein interactions by lambda phage display. J Mol Biol 2002;322:697-706
    55朱玉贤,李毅.现代分子生物学.第2版.北京:高等教育出版社, 2002:166-170
    56 Kwon JA, Rho HM. Transcriptional repression of the Human P53 gene by hepatitis B viral core protein (HBc) in human liver cells. Bio Chem 2003;384:203-212
    57 Rho HR, Kwon JA. Hepatitis B viral core protein activities the hepatitis B viral enhancer II/pregenomic promoter through the nuclear factor B binding site. Biochem Cell Biol 2002;80: 445-455
    58 Johnson JJ, Raney AK, Mclachlan A. Characterization of a functional hepatocyte nuclear factor 3 binding site in the hepatitis B virus nucleocapsid promoter. Virology 1995;208:147-158
    59 Garuti R, Croce MA, Piccinini L, Tiozzo R, Bertolini S, Calandra S. Functional analysis of the promoter of human sterol 27- hydroxylase gene in HepG2 cells. Gene 2002;283:133-143
    60 Nakamura I , Koike K. Identification of binding protein to the X gene promoter region of hepatitis B virus. Virology 1992; 191:533-540
    61 Mclachlan A, Raney A. Characterization of the hepatitis B virus large surface antigen promoter Sp1 binding site. Virology 1995; 208:399-404
    62 Horak CE, Snyder M. ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 2002;350:469-83.
    63 Wu J, Smith LT, Plass C, Huang TH. ChIP-chip comes of age for genome-wide functional analysis.Cancer Res. 2006;66(14):6899-902.
    64 Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004; 83(3):349-60.
    65 Heintzman N. D., Ren B. The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome.Cell Mol Life Sci. 2007;64: 386–400
    66 Leah O Barrera and Bing Ren The transcriptional regulatory code of eukaryotic cells–insights from genome-wide analysis of chromatin organization and transcription factor binding .Curr Opin Cell Biol. 2006;18:291–298
    67 Keles S. Mixture modeling for genome-wide localization of transcription factors. Biometrics. 2007;63(1):10-21.
    68 Junion G, Jagla T, Duplant S, Tapin R, Da Ponte JP, Jagla K. Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach.Proc Natl Acad Sci U S A. 2005;102(51):18479-84
    69 Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, Hunt DF,Allis CD, Lieb JD, Strahl BD. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification.J Biol Chem. 2007;282(10):7632-40.
    70 Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray- based analysis of protein location. Nat Protoc. 2006;1(2):729-48.
    71胡翔,周建林。真核生物基因启动子的计算机预测及其软件资源.激光生物学报. 2004,13(6):465-467.
    1 Bezakova G, Ruegg MA. New insights into the roles of agrin. Nat Rev Mol Cell Biol. 2003;4:295–308.
    2 De Cat B , David G. Developmental roles of the glypicans.Semin Cell Dev Biol. 2001;12,117–125.
    3 HackerU, Nybakken K, PerrimonN.Heparan sulphate proteoglycans: The sweet side of development. Nat Rev Mol Cell Biol. 2005; 6:530–541.
    4 Iozzo RV. Basement membrane proteoglycans: From cellar to ceiling. Nat Rev Mol Cell Biol.2005;6,646–656.
    5 Jiang X, Couchman JR. Perlecan and tumour angiogenesis.J Histochem Cytochem. 2003; 51, 1393–1410.
    6 Kojima T, Shworak NW, Rosenberg RD. Molecular cloning and expression of two distinct cDNA-encoding heparansulphate proteoglycan core proteins from a rat endothelial cell line.J Biol Chem. 1992; 267:4870–4877.
    7 Mertens G, Cassiman JJ, Van den Berghe H,et al.Cell surface heparan sulphate proteoglycansfrom human vascular endothelial cells. J Biol Chem.1992; 267:20435–20443.
    8 Chernousov MA, Carey DJ. N-syndecan (syndecan 3) from neonatal rat brain binds basic fibroblast growth factor. J Biol Chem.1993; 268:16810–16814.
    9 Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ,Carey DJ. Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.1997; 17:172–180.
    10 Fears CY, Gladson CL, Woods A.Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem. 2006;281:14533–14536.
    11 Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Nakamura E, Ito M, et al. Syndecan-4 deficiency impairs the foetal vessels in the placental labyrinth. Develop. Dynam. 2000;219:539–544.
    12 Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ, Carey DJ. Syndecan-4 is aprimary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997; 17:172–180.
    13 Gallo RL, Kim C, Kokenyesi R, Adzick NS, Bernfield M. Syndecans-1 and -4 are induced during wound repair of neonatal but not foetal skin. J Invest Dermatol. 1996; 107:676–683.
    14 Pierce A, Lyon M, Hampson IN, Cowling GJ, Gallagher JT. Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol Chem (1992); 267:3894–3900.
    15 Hienola A, Tumova S, Kulesskiy E, Rauvala H. Nsyndecan deficiency impairs neural migration in brain. J Cell Biol.2006;174: 569–580.
    16 Tkachenko E, Rhodes JM, and Simons M. Syndecans: New kids on the signalling block. Circ Res. 2005; 96:488–500.
    17 Yoneda A, Couchman JR. Regulation of cytoskeletal rganisation by syndecan transmembrane proteoglycans. Matrix Biol. 2003; 22:25–33.
    18 Rawson JM, Dimitroff B, Johnson KG, Rawson JM., et al. The heparan sulphate proteoglycans Dally-like and syndecan have distinct functions in axon guidance and visual-system assembly in Drosophila. Curr Biol.2005;5:33–838.
    19 Rhiner C, Gysi S, Frohli, Hengartner MO, Hajnal A. Syndecan regulates cell migration and axon guidance in C. elegans. Development.2005;132:4621–4633.
    20 Mohammadi M , Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16:107–137.
    21 Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem. 2006;281:1731–1740.
    22 Yoneda A, Couchman JR. Regulation of cytoskeletal organisation by syndecan transmembrane proteoglycans. Matrix.Biol. 2003;22:25–33.
    23 Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, et al. Disruption of gastrulation and heparan sulphate biosynthesis in EXT1-deficient mice. Develop. Biol. 2000;224:299–311.
    24 Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G. Targeted disruption ofNDST-1 geneleads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 2000;467:7–11.
    25 Bullock SL, Fletcher JM, Beddington SP, Wilson VA. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulphate 2-sulphotransferase. Genes Dev. 1998;12:1894–1906.
    26 Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjell′en L, et al. Heparan sulphate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell. 2006;10: 625–634.
    27 Fears CY, Gladson CL, Woods A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem. 2006;281:14533–14536.
    28 Kojima T, Takagi A, Maeda M, Segawa T, Shimizu A, Yamamoto K, et al. Plasma levels of syndecan-4 (Ryudocan) are elevated in patients with acute myocardial infarction. Thromb Haemost. 2001;85:793–799.
    29 Li L, Couse TL, DeLeon H, Xu CP, Wilcox JN, Chaikof EL. Regulation of syndecan-4 expression with mechanical stress during the development of angioplasty-induced intimal thickening. J Vasc Surg 2002;36: 361–370.
    30 Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, et al. Heparan sulphate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell. 2006;10: 625–634.
    31 Gotte M, Joussen AM, Klein C, Andre P,Wagner DD, Hinkes MT, et al. Role of syndecan-1 in leukocyte–endothelial interactions in the ocular vasculature. Invest. Ophthalmol. Vis Sci. 2002;43:1135–1141.
    32 Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Nakamura E, Ito M, et al. Syndecan-4 deficiency impairs the foetal vessels in the placental labyrinth. Develop Dynam. 2000;219:539–544.
    33 Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: The sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530–541.
    34 Nybakken K, Perrimon N. Heparan sulphate proteoglycan modulation of developmental signalling in Drosophila. Biochim. Biophys. Act.2002;1573:280–291.
    35 Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP. Substrate specificity and domain functions of extracellular heparan sulphate 6-O endosulphatases, QSulf1 and QSulf2. J Biol Chem. 2006;281: 4969–4976.
    36 Lundin L, Larsson H, Kreuger J, Kanda S, Lindahl U, Salmivirta M, et al. Selectively desulphated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem. 2000;275:24653–24660.
    37 Lyon M, Rushton G, Askari J A, Humphries MJ, Gallagher JT. Elucidation of the structural features of heparan sulphate important for interaction with the Hep-2 domain of fibronectin. J Biol Chem. 2000;275:4599–4606.
    38 Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J. Biol. Chem. 2006;281:1731–1740.
    39 Asundi VK, Carey DJ. Self-association of N-syndecan (Syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem. 1995;270: 26404–26410.
    40 Choi S, Lee E, Kwon S, Park H, Yi JY, Kim S, et al. Transmembrane domain-induced oligomerisation is crucial for the function of syndecan-2 and -4. J Biol Chem. 2005;280:42573–42579.
    41 Couchman JR, Chen L, Woods A. Syndecans and cell adhesion. Int Rev Cytol. 2001; 207:113–150.
    42 Kinnunen T, Kaksonen M, Saarinen J, Kalkkinen N, Peng HB, Rauvala H. Cortactin-Src kinase signalling pathway is involved in N-syndecan-dependent neurite outgrowth. J Biol Chem.1998;273:10702–10708.
    43 Granes F, Urena JM, Rocamora N, Vilaro S. Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci. 2000;113:1267–1276.
    44 Ethell IM, Hagihara K, Miura Y, Irie F,Yamaguchi Y. Synbindin, a novel syndecan-2-binding protein in neuronal dendritic spines. J Cell Biol. 2000;151:53–67.
    45 Gao Y, Li M, Chen W, Simons M. Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J Cell Physiol. 2000;184:373–379.
    46 Zimmermann P, Tomatis D, Rosas M, Grootjans J, Leenaerts I, Degeest G, et al. Characterisation of syntenin, a syndecanbinding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell.2001;13:339–350.
    47 Oh ES,Woods A,Couchman JR. Multimerisation of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J Biol Chem. 1997;272:11805–11811.
    48 Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I, et al. Syndecan-4 regulates localisation, activity and stability of protein kinase C. Biochem J. 2004;378:1007–1014.
    49 Lim ST, Longley RL, Couchman JR, Woods A. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC_) increases focal adhesion localisation of PKC. J Biol Chem. 2003;278: 13795–13802.
    50 Kramer KL, Yost HJ.. Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cellnonautonomous VG1 cofactor. Dev Cell. 2002;2: 115–124.
    51 Kramer KL, Barnette JE, Yost HJ. PKC_ regulates syndecan-2 inside–out signalling during Xenopus left-right development. Cell.2002;111:981–990.
    52 Berge N, Loganadane LD, Vassy J, Monnet E, Legrand C, Fauvel-Lafeve F. Adhesion-induced intracellular signaling in endothelial cells depends on the nature of the matrix. Cell Adhes Commun. 1999;7:29–41.
    53 Chakravarti R, Sapountzi V, Adams JC. Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell. 2005;16:3678–3691.
    54 Kato M, Saunders S, Nguyen H, Bernfield M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell. 1995;6:559–576.
    55 Leppa S, Vleminckx K,Roy FV,Jalkanen M. Syndecan- 1 expression in mammary epithelial tumour cells is E-cadherin dependent. J Cell Sci. 1996;109: 1393–1403.
    56 Chen E, Hermanson S, Ekker SC. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood.2004;103:1710–1719.
    57 Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem. 2006;281:1731–1740.
    58 Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K. Heparin regulates vascular endothelial growth factor mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. J Biol Chem.2005;280: 31508–31515.
    59 Fears CY, Gladson CL, Woods A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem. 2006;281:14533–14536.
    60 Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, Meng X, et al. Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth associated molecule (HB-GAM). J Cell Biol.1998;143: 1113–1128.
    61 Pacifici M, Shimo T, Gentili C, Kirsch T, Freeman TA, Enomoto-Iwamoto M, et al. Syndecan-3: A cell-surface heparan sulphate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. J Bone Miner Metab.2005; 23:191–199.
    62 Hienola A, Tumova S, Kulesskiy E, Rauvala H. Nsyndecan deficiency impairs neural migration in brain. J Cell Biol. 2006;174:569–580.
    63 Woods A, Couchman JR, Johansson S, Hook M. Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J. 1986;5:665–670.
    64 Volk R, Schwartz JJ, Li J, Rosenberg R D, Simons M. The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem. 1999;274:22417–22424.
    65 Munoz R, Moreno M, Oliva C, Orbenes C, Larrain J. Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extensionmovements in Xenopus embryos. Nat Cell Biol. 2006;8: 492–500.
    66 Kojima T, Takagi A, Maeda M, Segawa T, Shimizu A, Yamamoto K, et al. Plasma levels of syndecan-4 (Ryudocan) are elevated in patients with acute myocardial infarction. Thromb Haemost.2001;85:793–799.
    67 Yung S, Woods A, Chan TM, Davies M, Williams JD, Couchman JR. Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organisation. FASEB J. 2001;15:1631–1633.
    68 Van Horssen J, Otte-Holler I, David G, Maat-Schieman MLC, van den Heuvel LPWJ, Wesseling P, et al. Heparan sulphate proteoglycan expression in cerebrovascular amyloid _ deposits in Alzheimer’s disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol. 2001;102: 604–614.
    69 Ishiguro K, Kadomatsu K,Kojima T, Muramatsu H, Matsuo S, Kusugami K, et al. Syndecan-4 deficiency increases susceptibility to _-Carrageenan-induced renal damage. Lab Invest.2001;81:509–516.
    70 Kaneider NC, Forster E, Mosheimer B, Sturn DH, Wiedermann CJ. Syndecan-4- dependent signalling in the inhibition of endotoxin-induced adherence of neutrophils by antithrombin. Thromb Haemost.2003;90:1150–1157.
    71 Carey DJ. Syndecans: Multifunctional cell-surface coreceptors. Biochem J. 1997; 327:1–16.
    72 Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulphate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991;252: 1705–1708.
    73 Robinson CJ, Harmer NJ, Goodger SJ, Blundell TL, Gallagher JT. Cooperative dimerisation of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1·FGFR2c·heparin ternary complexes. J Biol Chem. 2005;280:42274–42282.
    74 Steinfeld R, van den Berghe H, David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signalling by cell surface-associated syndecans and glypican. J Cell Biol. 1996;133:405–416.
    75 Volk R, Schwartz JJ, Li J, Rosenberg RD, Simons M.. The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem. 1999;274:22417–22424.
    76 Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol. 2002;157:715–725.
    77 Tkachenko E,Simons M. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J Biol Chem.2002;277:19946–19951.
    78 Tkachenko E, Lutgens E, Stan RV, Simons M. Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and Cdc42-dependent macropinocytic pathway. J Cell Sci. 2004;117:3189–3199.
    79 Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, et al.. Syndecan recycling is controlled by syntenin-PIP2 interaction and Arf6. Develop. Cell.2005;9:377–388.
    80 Elenius K, Vainio S, Laato M, Salmivirta M, Thesleff I, Jalkanen M. Induced expression of syndecan in healingwounds.. Cell Biol. 1991;114: 585–595.
    81 Stepp MA, Gibson HE, Gala PH, Iglesia DD, Pajoohesh- Ganji A, Pal-Ghosh S, et al.. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mice. J Cell Sci. 2002;115:4517–4531.
    82 Worapamorn W, Xiao Y, Li H, Young WG, Bartold PM. Differential expression and distribution of syndecan-1 and -2 in periodontal wound healing of the rat. J Periodont Res. 2002;37:293–299.
    83 Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest. 2001;107:R9–R14.
    84 Jaakkola P, Maatta A, Jalkanen M. The activation and composition of FiRE (an FGF-inducible response element) differ in a cell type-and growth factor-specific manner. Oncogene. 1998;17:1279–1286.
    85 Hayashida K, Johnston DR, Goldberger O,Park PW. Syndecan-1 expression in epithelial cells is induced by transforming growth factor _ through a PKA-dependent pathway. J BiolChem. 2006;281:24365–24374.
    86 Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signalling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol. 2000;148:811–824.
    87 Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem.1997;272:14713–14720.
    88 Kainulainen V, Wang H, Schick C, Bernfield M. Syndecans, heparan sulphate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem. 1998;273:11563–11569.
    89 Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM., et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med. 1998;4:691–697.
    90 Reizes O, Lincecum J, Wang Z, Goldberger O, Huang L, Kaksonen M, et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behaviour by syndecan- 3. Cell.2001;106:105–116.
    91 Stepp MA, Gibson HE, Gala PH, Iglesia DD, Pajoohesh- Ganji A, Pal-Ghosh S, et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mice. J Cell Sci. 2002;115:4517–4531.
    92 Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulphate encompass two highly sulphated domains and can be liberated by K5 lyase. J Biol Chem. 2006;281:1731–1740.
    93 Li J, Shworak NW,Simons M. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1-dependent regulation of enzymes involved in synthesis of heparan sulphate FGF2-binding sites. J Cell Sci. 2002;115: 1951–1959.
    94 Newby AC. An overviewof the vascular response to injury:A tribute to the late Russell Ross. Toxicol Lett. 2000;112–113, 519–529.
    95 Ciz、meci-Smith G, Stahl RC, Showalter LJ,Carey DJ. Differential expression of transmembrane proteoglycans in vascular smooth muscle cells. J Biol Sci.1993; 268:18740–18747.
    96 Koo BK, Jung YS, Shin J, Han I, Mortier E, Zimmermann P, et al. Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signalling. J Mol Biol. 2006;355:651–663.
    97 Gotte M. Syndecans in inflammation. FASEB J. 2003;17:575–591.
    98 Gotte M, Joussen AM, Klein C, Andre P,Wagner DD, Hinkes MT, et al. Role of syndecan-1 in leukocyte–endothelial interactions in the ocular vasculature. Invest.Ophthalmol. Vis Sci. 2002;43:1135–1141.
    99 Gotte M, Bernfield M, Joussen AM. Increased leukocyte–endothelial interactions in syndecan-1-deficient mice involve heparan sulphate-dependent and -independent steps. Curr Eye Res. 2005;30:417–422.
    100 Zhao R Z, Chen X, Yao Q, Chen C. TNF- induces interleukin-8 and endothelin-1 expression in human endothelial cells with different redox pathways. Biochem. Biophys. ResComm. 2005;327: 985–992.
    101 Huber AR, Kunkel SL, Todd RF, Weiss SJ. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science.1991;254:99–102.
    102 Uchimura K, Morimoto-Tomita M, Bistrup A, Li J,Lyon M, Gallagher J, et al. HSulf-2, an extracellular endoglucosamine-6-sulphatase, selectively mobilizes heparin-bound growth factors and chemokines: Effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 2006;7:2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700