蛋白激酶Cβ_2在不同血糖模式致人内皮细胞损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究蛋白激酶C(PKC)β2、PPARα在高糖诱导人脐静脉内皮细胞(HUVECs)表达血管内皮生长因子(VEGF)、血管细胞粘附分子1(VCAM-1)mRNA中的作用及相互关系。
     方法将培养的HUVECs分为以下8组:正常糖(NG,5 mmol/L D-葡萄糖)组、高糖(HG,25 mmol/L D-葡萄糖)组、渗透压对照组(L,NG + 20 mmol/L L-葡萄糖)组、正常糖空载体转染(NN,NG + Ad5-null)组、高糖PKCβ2转染(HB,HG+Ad5-PKCβ2)组、高糖+非诺贝特组(HF,HG + 40μmol/L非诺贝特)组、高糖PKCβ2转染+非诺贝特(HBF,HB + 40μmol/L非诺贝特)组,以上各组细胞均培养6天。另高糖孵育细胞6天后再与非诺贝特共培养20min作为HF20组。以RT-PCR检测VEGF、VCAM-1 mRNA的表达水平,用Western印迹法测定PPARα蛋白表达,采用激光共聚焦检测PKCβ2蛋白的表达和转位。
     结果(1)HG组VEGF、VCAM-1 mRNA表达增加,分别为NG组的1.91倍和1.56倍(P值均<0.05);HG诱导PKCβ2核转位激活,定量分析示HG组胞浆/胞核荧光强度比值较NG组降低37%(P<0.05);HB组PKCβ2核转位与HG组相比更加明显,VEGF、VCAM-1 mRNA表达亦进一步增加,分别为NG组的2.59倍和2.07倍(P值均<0.05)。(2)HG组PPARα蛋白表达较NG组减少了20%(P <0.05);与HG组相比,HF组PPARα蛋白水平上调了13%,VEGF、VCAM-1 mRNA表达则明显下调,分别为HG组的68%和74%(P值均<0.05);与HG组相比,HF20组VEGF、VCAM-1 mRNA表达差异无统计学意义。(3)HB组PPARα蛋白水平进一步下降,为HG组的78%(P <0.05)。
     结论高糖通过诱导HUVECs PKCβ2核转位激活,进而调控PPARα表达,增加VEGF、VCAM-1 mRNA的表达。
     第二部分蛋白激酶Cβ2-活性氧交互环介导高糖致人内皮细胞损伤记忆效应
     目的以人脐静脉内皮细胞(HUVECs)作为体外模拟高血糖记忆的研究对象,观察蛋白激酶C(PKC)β2、活性氧(ROS)对其表达血管内皮生长因子(VEGF)、血管细胞粘附分子1(VCAM-1)mRNA的影响,并探讨PKCβ2、ROS在其中可能的交互作用。
     方法将培养的HUVECs分为以下5组:正常糖(NG,5 mmol/L D-葡萄糖×3周)组、高糖(HG,25 mmol/L D-葡萄糖×3周)组、记忆(M,25 mmol/L D-葡萄糖×2周+5 mmol/L D-葡萄糖×1周)组、记忆PKCβ2转染(MB,25 mmol/L D-葡萄糖×2周+5 mmol/L D-葡萄糖×1周+ Ad5-PKCβ2)组、记忆+α-硫辛酸(MA,25 mmol/L D-葡萄糖×2周+5 mmol/L D-葡萄糖×1周+62.5μmol/Lα-硫辛酸)组。以RT-PCR法检测VEGF、VCAM-1 mRNA表达水平,用荧光显微镜和荧光酶标仪测定ROS水平,采用激光共聚焦检测PKCβ2蛋白的表达和转位。
     结果(1)HG组和M组VEGF、VCAM-1 mRNA表达增加,分别为NG组的1.76倍、1.35倍和1.69倍、1.43倍(P值均<0.05)。(2)HG组和M组ROS水平分别较NG组升高了86%、80% (P值均<0.05);MA组ROS水平较M组下降了38%,同时MA组VEGF、VCAM-1mRNA表达亦较M组显著下调,分别为M组的67%、78%(P值均<0.05)。(3)HG组和M组PKCβ2核转位激活,定量分析显示,胞浆/胞核荧光强度比值均较NG组下降,分别为NG组的70%、74%( P值均<0.05);MB组PKCβ2核转位较M组更为明显,胞浆/胞核荧光强度比值为M组的77%,同时MB组VEGF、VCAM-1 mRNA表达亦较M组进一步上调,分别为M组的1.29倍、1.18倍(P值均<0.05)。(4)MA组PKCβ2核转位较M组减少,胞浆/胞核荧光强度比值为M组的1.18倍;而MB组ROS水平较M组上调了25%(P值均<0.05)。
     结论HUVECs存在高糖记忆效应,PKCβ2-ROS交互环可能介导了这个效应的发生。
     第三部分高糖波动激活蛋白激酶Cβ2损伤人内皮细胞及二甲双胍的干预作用
     目的观察波动性高糖与持续性高糖对人脐静脉内皮细胞(HUVECs)血管内皮生长因子(VEGF)、血管细胞粘附分子1(VCAM-1)mRNA表达及活性氧(ROS)水平的不同影响,探讨PKCβ2在其中的作用及二甲双胍(Metformin)的干预影响。
     方法将培养的HUVECs分为以下5组:正常糖(NG,5 mmol/L D-葡萄糖)组、持续性高糖(SHG,15 mmol/L D-葡萄糖)组、波动性高糖(IHG,5 mmol/L D-葡萄糖与25mmol/L D-葡萄糖每24h更换一次)组、波动性高糖PKCβ2转染(IHGB,IHG + Ad5-PKCβ2)组、波动性高糖+二甲双胍(IHGM,IHG+20μmol/L二甲双胍)组。以上各组细胞均培养14天。以RT-PCR法检测细胞VEGF、VCAM-1 mRNA表达水平,用荧光酶标仪测定细胞ROS水平,采用激光共聚焦检测PKCβ2蛋白表达和转位。
     结果(1)IHG组和SHG组VEGF、VCAM-1 mRNA表达及ROS水平增加,分别为NG组的1.29倍、2.32倍、3.21倍和1.17倍、1.63倍、1.75倍,且IHG组增加更明显(P值均<0.05)。(2)IHG组和SHG组PKCβ2核转位激活,定量分析显示胞浆/胞核荧光强度比值较NG组分别下降了21%和26%,且IHG组下降更加明显(P值均<0.05);IHGB组PKCβ2核转位较IHG组更显著,胞浆/胞核荧光强度比值为IHG组的75%,同时IHGB组VEGF、VCAM-1mRNA表达以及ROS水平亦显著高,分别为IHG组的1.16倍、1.26倍和1.25倍(P值均<0.05)。(3)IHGM组VEGF、VCAM-1mRNA表达及ROS水平均较IHG组明显低,为IHG组的87%、76%和39%;IHGM组PKCβ2核转位亦较IHG组减少,胞浆/胞核荧光强度比值为IHG组的1.09倍(P值均<0.05)。
     结论波动性高糖较持续性高糖更易损伤HUVECs,这与PKCβ2活化密切相关;二甲双胍可能通过抑制PKCβ2激活,减轻波动性高糖诱导的HUVECs损伤。
Objective To investigate the roles of protein kinase C (PKC)β2 and PPARαin the mRNA expression of vascular endothelial growth factor (VEGF) and vascular cell adhesion molecule-1 (VCAM-1) played in human umbilical vein endothelial cells (HUVECs) exposed to high glucose, and to explore their relationship.
     Methods The HUVECs were divided into eight groups: normal glucose (NG, 5 mmol/L D-glucose) group, high glucose (HG, 25 mmol/L D-glucose) group, osmotic control (L, NG + 20 mmol/L L-Glucose) group, normal glucose transfected with empty vector (NN, NG + Ad5-null) group, high glucose transfected with PKCβ2 (HB, HG + Ad5-PKCβ2) group, high glucose plus fenofibrate (HF, HG + 40μmol/L fenofibrate) group, high glucose transfected with PKCβ2 plus fenofibrate (HBF, HB + 40μmol/L fenofibrate) group. HUVECs were incubated with fenofibrate for 20 minutes as HF20 group. All cells in various groups were cultured for 6 days. The expressions of VEGF and VCAM-1 mRNA were detected by RT-PCR. PPARαprotein expression was tested by Western blot. The expression and translocation of PKCβ2 protein was observed by confocal laser scanning microscopy.
     Results (1) HG increased VEGF and VCAM-1 mRNA expressions, with 1.91 and 1.56 folds of NG group (both P <0.05). Meanwhile, HG induced PKCβ2 translocation from cytosol to nucleus and quantitative analysis showed the ratio of cytosol/nucleus fluorescence intensity in HG group decreased by 37% compared with NG group (P <0.05); Compared with HG group, PKCβ2 in HB group translocated more obviously from cytosol to nucleus and the mRNA expressions of VEGF and VCAM-1 in HB group further increased, with 2.59 and 2.07 folds of NG group (all P<0.05). (2)The protein expression of PPARαdecreased by 20% in HG group compared with NG group (P <0.05); Compared with HG group, PPARαexpression in HF group was 13% increased and VEGF and VCAM-1 mRNA expression in HF group decreased, with 68% and 74% of HG group (all P <0.05); There was no significant differences in the expressions of VEGF and VCAM-1 mRNA between HF20 and HG groups. (3) PPARαexpression further decreased in HB group, being 78% of HG group (P <0.05).
     Conclusion High glucose stimulates VEGF and VCAM-1 mRNA expressions in HUVECs via PKCβ2 activation-dependent PPARαpathway.
     PART 2
     ‘HYPERGLYCEMIC MEMORY’IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS MEDIATED BY INTERACTING LOOP OF PROTEIN KINASE CΒ2- REACTIVE OXYGEN SPECIES
     Objective To investigate the roles of protein kinase C (PKC)β2 and reactive oxygen species (ROS) in the mRNA expression of vascular endothelial growth factor (VEGF) and vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs), imitating‘hyperglycemic memory’in vitro and the relationship between them.
     Methods The HUVECs were divided into 5 groups: normal glucose (NG, 5 mmol/L D-glucose×3 weeks) group, high glucose (HG, 25 mmol/L D-glucose×3 weeks) group, memory (M, 25 mmol/L D-glucose×2 weeks + 5 mmol/L D-glucose×1 week) group, memory transfected with PKCβ2 (MB, M + Ad5-PKCβ2) group, memory plusα-lipoic acid (MA, M + 62.5μmol/L ALA) group. The mRNA expression of VEGF and VCAM-1 was detected by RT-PCR. ROS levels was tested with fluorescence microscopy and fluorescence microplate reader. The expression and translocation of PKCβ2 protein was observed by confocal laser scanning microscopy.
     Results (1) VEGF and VCAM-1 mRNA expression in group HG and M increased, being 1.76, 1.35 and 1.69, 1.43 folds of those in group NG (all P <0.05). (2) ROS levels in group HG and M increased 86% and 80% as compared with those in group NG (both P <0.05); As compared with group M, ROS levels in group MA decreased 38%, and VEGF、VCAM-1 mRNA expression in group MA decreased significantly to 67% and 78% (all P <0.05). (3) PKCβ2 was activated and translocated from cytosol to nucleus in group HG and group M. Quantitative analysis showed the ratio of cytosol/nuclear fluorescence intensity in group HG and group M decreased to 70% and 74% of those in group NG (both P <0.05); As compared with group M, PKCβ2 in group MB translocated more obviously and the mRNA expression of VEGF and VCAM-1 in group MB significantly increased 1.29 and 1.18 folds of those in group M (both P<0.05). (4) As compared with group M, the activation of PKCβ2 in group MA was inhibited and the ratio of cytosol/nuclear fluorescence intensity increased 18%. Besides, ROS levels in group MB was 25% up-regulated as compared with those in group M (both P <0.05).
     Conclusion Persistence of‘hyperglycemic memory’exists after glucose levels are normalized in HUVECs. This may be related with the interacting loop of PKCβ2–ROS.
     PART 3 INTERMITTENT HIGH GLUCOSE ENHANCES HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS INJURY THROUGH PKCΒ2 ACTIVATION AND THE EFFECT OF METFORMIN
     Objective To investigate the role of protein kinase C (PKC)β2 in vascular endothelial growth factor (VEGF), vascular cell adhesion molecule-1(VCAM-1) mRNA expression and reactive oxygen species (ROS) leves in human umbilical vein endothelial cells (HUVECs) exposed to intermittent high glucose and the effect of Metformin.
     Methods The HUVECs were divided into five groups: normal glucose (NG, 5 mmol/L D-glucose) group, stable high glucose (SHG, 15 mmol/L D-glucose) group, Intermittent high glucose (IHG, alternating 5 mmol/L D-glucose and 25 mmol/L D-glucose every 24h) group, Intermittent high glucose transfected with PKCβ2 (IHGB, IHG+Ad5-PKCβ2) group, Intermittent high glucose plus metformin (IHGM, IHG+20μmol/L metformin) group. After 14 days, the mRNA expression of VEGF and VCAM-1 were detected with RT-PCR. ROS levels was tested with fluorescence microplate reader. The expression and translocation of PKCβ2 protein was observed by confocal laser scanning microscopy.
     Results (1) VEGF, VCAM-1 mRNA expression and ROS levels in group IHG and SHG increased, being 1.29, 2.32, 3.21 and 1.17, 1.63, 1.75 folds of those in group NG (all P <0.05) and this increase was more marked in group IHG (P<0.05). (2) PKCβ2 was activated and translocated from cytosol to nucleus in group IHG and group SHG. Quantitative analysis showed the ratio of cytosol/nucleus fluorescence intensity in group IHG and SHG was 21% and 26% decreased as compared with those in group NG, but in group IHG the decrease was more marked (all P<0.05). As compared with group IHG, PKCβ2 in group IHGB translocated more obviously and VEGF, VCAM-1 mRNA expression and ROS levels in group IHGB increased 1.16, 1.26 and 1.25 folds of those in group IHG (all P<0.05). (3) As compared with group IHG, VEGF, VCAM-1 mRNA expression and ROS levels in group IHGM decreased significantly to 87%, 76% and 39%, and the activation of PKCβ2 in group IHGM was inhibited with the ratio of cytosol/nuclear fluorescence intensity increase 1.09 fold as compared with that in group IHG (all P<0.05).
     Conclusion Intermittent high glucose and stable high glucose induce severe injury of HUVECs, especially IHG, which is closely associated with PKCβ2 activation. Metformin could alleviate HUVECs injury induced by intermittent high glucose by blocking PKCβ2 activation.
引文
[1] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 [J]. Diabetes Care. 2004, 27(5): 1047–1053
    [2] Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy [J]. Diabetes Care. 2005, 28(5): 1231-1239
    [3] Schmitz O, Juhl CB, Lund S, et al. HbA1c does not reflect prandial plasma glucose excursion in type 2 diabetes [J]. Diabetes Care. 2000, 23(12): 1859-1860
    [4] McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability: an analysis of data from the Diabetes Control and Complications Trial [J]. Diabetes Care. 2006, 29(2): 352-355
    [5] Derr R, Garrett E, Stacy GA, et al. Is HbA1c affected by glycemic instability? [J]. Diabetes Care. 2003, 26(10): 2728-2733
    [6] Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications [J]. JAMA. 2006, 295(14): 1707–1708
    [7] Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? [J]. J Diabetes Complication. 2005, 19(3): 178-181
    [8] Del Prato S. In search of normoglycemia in diabetes: control ling postprandial glucose [J]. Int J Obes Relat Metab Disord. 2002, 26 (Suppl 3): S9-S17
    [9] Inhat MA, Thorpe JE, Ceriello A. Hypothesis: the‘metabolic memory’, the new challenge of diabetes [J]. Diabet Med. 2007, 24(6): 582-286
    [10] Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications? [J]. J Clin Endocrinol Metab. 2009, 94(2): 410-415
    [11] Cooper ME. Metabolic memory: implications for diabetic vascular complications [J]. Pediatr Diabetes. 2009, 10(5): 343-346
    [12] Drzewoski J, Kasznicki J, Trojanowski Z. The role of“metabolic memory”in thenatural history of diabetes mellitus [J]. Pol Arch Med Wewn. 2009, 119(7-8): 493-500
    [13] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus [J]. N Engl J Med. 1993, 329(14): 977-986
    [14] Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study [J]. BMJ. 2000, 321(7258):405-412
    [15] Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes [J]. N Engl J Med. 2008, 359(15): 1565–1576
    [16] Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial [J]. Diabetes Care. 2008, 31(11): 2198-2202
    [17] Mohsin F, Craig ME, Cusumano J, et al. Discordant trends in microvascular complications in adolescentsn with type 1 diabetes from 1990 to 2002 [J]. Diabetes Care. 2005, 28(8): 1974-1980
    [18] Gimeno-Orna JA, Castro-Alonso FJ, Boned-Juliani B et al. Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients [J]. J Diabetes Complications. 2003, 17(2): 78-81
    [19] Shiraiwa T, Kaneto H, Miyatsuka T, et al. Postprandial hyperglycemia is a better predictor of the progression of diabetic retinopathy than HbA1c diabetic patients [J]. Diabetes Care. 2005, 28(11): 2806-2807
    [20] Shiraiwa T, Kaneto H, Miyatsuka T, et al. Post-prandial hyperglycemia is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients [J]. Biochem Biophys Res Commun. 2005, 336(1): 339–345
    [21] Writing Team for the Diabetes Control and Complication Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions andComplication (EDIC) study [J]. JAMA. 2003, 290(16): 2159-2167
    [22] Writing Team for the Diabetes Control and Complication Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus [J]. JAMA. 2002, 287(19): 2563-2569
    [23] White NH, Sun W, Cleary PA, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial [J]. Arch Ophthalmol. 2008, 126(12): 1707-1715
    [24] Nathan DM, Cleary PA, Backlund JY, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes [J]. N Engl J Med. 2005, 353(25): 2643–2653
    [25] Nathan DM, Lachin J, Cleary P, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group: Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus [J]. N Engl J Med. 2003, 348(23): 2294–2303
    [26] UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [J]. Lancet. 1998, 352(9131): 837-853
    [27] Colagiuri S, Cull CA, Holman RR. UKPDS Group. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcome? : U.K. Prospective Diabetes Study 61 [J]. Diabetes Care. 2002, 25(8): 1410-1417
    [28] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res. 2007, 55(6): 498-510
    [29] Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients [J]. Diabetes. 2008, 57(5): 1349-1354.
    [30] Quagliaro L, Piconi L, Assalini R, et al. Intermittent high glucose enhancesICAM-1 ,VCAM-1 and E-selectin expression in human umbilical endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production [J]. Atherosclerosis. 2005, 183 (2): 259-267
    [31] Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats [J]. Diabetes. 2003, 52(3): 818–823
    [32] Kowluru RA, Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities [J]. Invest Ophthalmol Vis Sci. 2002, 43(10): 3287–3291
    [33] Chan PS, Kanwar M, Kowluru RA. Resistance of retinal in?ammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory [J]. J Diabetes Complications. 2008, 24(1): 55-63
    [34] Ihnat MA, Thorpe JE, Ceriello A, et al. Reactive oxygen species mediate a cellular‘memory’of high glucose stress signaling [J]. Diabetologia. 2007, 50(7): 1523-1531
    [35] Kowluru RA, Chan PS. Metabolic memory in diabetes– from in vitro oddity to in vivo problem: Role of Apoptosis [J]. Brain Res Bull. 2010, 81(2): 297-302
    [36] Corgnali M, Piconi L, Ihnat M, et al. Evaluation of gliclazide ability to attenuate the hyperglycemic‘memory’induced by high glucose in isolated human endothelial cells [J]. Diabetes Metab Res Rev. 2008, 24(4): 301-309
    [37] Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy [J]. Diabetes. 2009, 58(1): 227-234
    [38] Kowluru RA, Chakrabarti S, Chen S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappa B) in the retina [J]. Acta Diabetol. 2004, 41(4): 194-199
    [39] El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia [J]. J Exp Med. 2008, 205(10): 2409-2417
    [40] Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycemia and diabeticnephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats [J]. J Diabetes Complications. 2004, 18(5): 282-288
    [41] Villeneuve LM, Reddy MA, Lanting LL, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes [J]. Proc Natl Acad Sci U S A. 2008, 105(26): 9047-9052
    [42] Hammes HP, Klinzing I, Wiegand S, et al. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat [J]. Invest Ophthalmol Vis Sci. 1993, 34(6): 2092-2096
    [43] Kowluru RA, Kanwar M, Kennedy A. Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries [J]. Exp Diabetes Res. 2007, 2007:21976
    [44] Yan SF, Ramasamy R, Bucciarelli LG, et al. RAGE and its ligands: a lasting memory in diabetic complications? [J]. Diab Vasc Dis Res. 2004, 1(1): 10-20
    [45] Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes [J]. Med Hypotheses. 2008, 71(5): 749-751
    [1] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res. 2007, 55(6): 498-510
    [2] Grant MB, Afzal A, Spoerri P, et al. The role of growth factors in the pathogenesis of diabetic retinopathy [J]. Expert Opin Investig Drugs. 2004, 13(10): 1275-1293
    [3]周波,汪恕萍,蒋涛. D-α-生育酚调节蛋白激酶C活性对糖尿病视网膜病变的影响[J].中华内分泌代谢杂志. 2002, 18(2): 140-143
    [4] Delerive P, Bosscher K, Besnard S, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1 [J]. J Biol Chem. 1999, 274(45): 32048-32054
    [5] Zandbergen F, Plutzky J. PPARαin atherosclerosis and inflammation [J]. Biochim Biophys Acta. 2007, 1771(8): 972-982
    [6] Tan NS, Michalik L, Desvergne B, et al. Multiple expression control mechanisms of Peroxisome Proliferators Activated-receptors and their target genes [J]. J Steroid biochem Mol Biol. 2005, 93(2-5): 99-105
    [7] Altman R, Motton DD, Kota RS, et al. Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: roles of PPAR alpha and NF-kappaB [J]. Vascul Pharmacol. 2008, 48(2-3): 76-84
    [8] Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator–activated receptor alpha reduces atherosclerosis in low-density lipoprotein receptor–deficient mice [J]. Circulation. 2007, 116(12): 1404-1412
    [9] Keech AC, Mitchell P, Summanen P A, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomized controlled trial [J]. Lancet. 2007, 370(9600): 1687-1697
    [10]锻炼,周波,李启富.人蛋白激酶CβⅡ基因开放读码框的克隆及序列分析[J].重庆医科大学学报. 2008, 33(1): 18-21
    [11]段炼,林雪波,周波.高糖负荷下人蛋白激酶Cβ2基因过表达内皮细胞模型的构建及鉴定[J].第三军医大学学报. 2009, 31(20): 1993-1996
    [12] Lorinzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in retina [J]. Diabetologia. 2001, 44(7): 791-804
    [13] Potenza MA, Gagliardi S, Nacci C, et al. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets[J]. Curr Med Chem. 2009, 16(1): 94-112.
    [14] Nacci C, Tarquinio M, Montagnani M. Molecular and clinical aspects of endothelial dysfunction in diabetes [J]. Intern Emerg Med. 2009, 4(2): 107-116
    [15] Robinson GS, Pievce EA, Rook SL, et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy [J]. Proc Natl Acad Sci USA. 1996, 93(10): 4851-4856.
    [16] Simo R, Hernandez C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy [J]. Diabetologia. 2008, 51(9): 1574-1580
    [17] Kouroedov A, Eto M, Joch H, et al. Selective inhibition of protein kinase Cbeta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells [J]. Circulation. 2004, 110(1): 91-96
    [18] Altannavch TS, Kucera P, Andel M, et al. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation [J]. Physiol Res. 2004, 53(1): 77-82.
    [19] Williams B, Gallacher B, Patel H, et a1. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro [J]. Diabetes. 1997, 46(9): 1497-1503.
    [20] Murrav NR, Burns DJ, Field AP. Presence of betaⅡprotein kinase C-selectivenuclear membrane activation factor in human leukemia Cells [J]. J Biol Chem. 1994, 269(33): 21385-21390.
    [21] Rosen DM, Gordon AS. Anchoring proteins for protein kinase C: a means for isoenzyme selection [J]. FASEB J. 1998, 12(1): 35-42
    [22] Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial [J]. Lancet. 2005, 366(9500): 1849-1861
    [23] Ahmed W, Ziouzenkova O, Brown J, et al. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? [J]. J Intern Med. 2007, 262(2): 184-198
    [24] Pineda Torra I, Jamshidi Y, Flavell DM, et al. Characterization of the human PPARαpromoter: identification of a functional nuclear receptor response element [J]. Mol Endocrinol. 2002, 16(5): 1013–1028.
    [25] Panigrahy D, Kaipainen A, Huang S, et al. PPARαagonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition [J]. Proc Natl Acad Sci U S A. 2008, 105(3): 985–990.
    [26] Biscetti F, Gaetani E, Flex A , et al. Selective activation of peroxisome proliferator–activated receptor (PPAR)αand PPARγinduces neoangiogenesis through a vascular endothelial growth factor–dependent mechanism [J]. Diabetes. 2008, 57(5): 1394-1404
    [27] Gardner OS, Dewar BJ, Graves LM. Activation of mitogen-activated protein kinases by peroxisome proliferator-activated receptor ligands: an example of nongenomic signaling [J]. Mol Pharmacol. 2005, 68(4): 933-941
    [28] Murakami H, Murakami R, Kambe F, et al. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC [J]. Biochem Biophys Res Commun. 2006, 341(4): 973-978
    [29] Okayasu T, Tomizawa A, Suzuki K, et al. PPAR alpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation [J]. Life Sci. 2008, 82(15-16): 884-891
    [30] Kim J, Ahn JH, Kim JH, et al. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway [J]. Exp Eye Res. 2007, 84(5): 886-893
    [31] Araki H, Tamada Y, Imoto S, et al. Analysis of PPAR alpha-dependent and PPAR alpha-independent transcript regulation following fenofibrate treatment of human endothelia cells [J]. Angiogenesis. 2009, 12(3): 221-229
    [32] Blanquart C, Mansouri R, Paumelle R, et al. The protein kinase C signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha [J]. Mol Endocrinol. 2004, 18(8): 1906–1918.
    [33] Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation [J]. Biochim Biophys Acta. 2007, 1771(8): 952-960
    [34] Diradourian C, Girard J, Pegorier JP. Phosphorylation of PPARs: from molecular characterization to physiological relevance [J]. Biochimie. 2005, 87(1): 33-38
    [1] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. Diabetes Control and Complications Trial Research Group [J]. N Engl J Med. 1993, 329(14): 977-986
    [2] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [J]. Lancet. 1998, 352(9131): 837-853
    [3] Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study [J]. JAMA. 2003, 290(16): 2159-2167
    [4] Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes [J]. N Engl J Med. 2008, 359(15):1565–1576
    [5] Roy S, Sala R, Cagliero E, et al. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory [J]. Proc Natl Acad Sci USA. 1990, 87(1): 404–408
    [6] Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats [J]. Diabetes. 2003, 52(3): 818–823
    [7] Kowluru RA, Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities [J]. Invest Ophthalmol Vis Sci. 2002, 43(10): 3287–3291
    [8] Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycemia and diabetic nephropathy Effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats [J]. J Diabetes Complications. 2004, 18(5): 282-288
    [9] Chan PS, Kanwar M, Kowluru RA. Resistance of retinal in?ammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism formetabolic memory [J]. J Diabetes Complications. 2010, 24(1): 55-63
    [10] Ihnat MA, Thorpe JE, Ceriello A, et al. Reactive oxygen species mediate a cellular‘memory’of high glucose stress signaling [J]. Diabetologia. 2007, 50(7): 1523-1531
    [11] Corgnali M, Piconi L, Ihnat M, et al. Evaluation of gliclazide ability to attenuate the hyperglycaemic‘memory’induced by high glucose in isolated human endothelial cells [J]. Diabetes Metab Res Rev. 2008, 24(4): 301-309
    [12] Kowluru RA, Chan PS. Metabolic memory in diabetes– from in vitro oddity to in vivo problem: Role of Apoptosis [J]. Brain Res Bull. 2010, 81(2): 297-302
    [13] Kowluru RA, Chakrabarti S, Chen S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina [J]. Acta Diabetol. 2004, 41(4): 194-199
    [14] Kowluru RA, Kanwar M, Kennedy A. Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries [J]. Exp Diabetes Res. 2007, 2007: 21976
    [15] El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia [J]. J Exp Med. 2008, 205(10): 2409-2417
    [16] Nathan DM, Cleary PA, Backlund JY, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes [J]. N Engl J Med. 2005, 353(25): 2643–2653
    [17] Nathan DM, Lachin J, Cleary P, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus [J]. N Engl J Med. 2003, 348(23): 2249–2252
    [18] White NH, Sun W, Cleary PA, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial [J]. Arch Ophthalmol. 2008, 126(12): 1707-1715.
    [19] Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications? [J]. J Clin Endocrinol Metab. 2009, 94(2): 410-415
    [20] Ihnat MA, Thorpe JE, Ceriello A. Hypothesis: the‘metabolic memory’, the new challenge of diabetes [J]. Diabet Med. 2007, 24(6): 582-586. 17490424
    [21] Cooper ME. Metabolic memory: implications for diabetic vascular complications [J]. Pediatr Diabetes. 2009, 10(5): 343-346
    [22] Drzewoski J, Kasznicki J, Trojanowski Z. The role of“metabolic memory”in the natural history of diabetes mellitus [J]. Pol Arch Med Wewn. 2009, 119(7-8): 493-500
    [23] Simo R, Hernandez C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy [J]. Diabetologia. 2008, 51(9): 1574-1580
    [24] Adamiec-Mroczek J, Oficjalska-Mlynczak J, Misiuk-Hojlo M. Proliferative diabetic retinopathy-The influence of diabetes control on the activation of the intraocular molecule system [J]. Diabetes Res Clin Pract. 2009, 84(1): 46-50
    [25] Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy [J]. Am J Physiol Renal Physiol. 2005, 288(6): F1144–52
    [26] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res. 2007, 55(6): 498-510
    [27] Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy [J]. Diabetes. 2009, 58(1): 227-234
    [28] Inoguchi T, Li P, Umeda F,, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells [J]. Diabetes. 2000, 49(11): 1939–1945
    [29] Grendling KK, Sorescu D, Ushio-Fukai M. NADPH oxidase: role in cardiovascularbiology and disease [J]. Cire Res. 2000, 86(5): 494-501
    [30] Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase [J]. J Am Soc Nephrol. 2003, 14(8Suppl3): S227–232
    [31] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism [J]. Diabetes. 2005, 54(6):1615–1625
    [32] Lee HB, Yu MR, Song JS, et al. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells [J]. Kidney Int. 2004, 65(4): 1170–1179
    [1] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res. 2007, 55(6): 498-510
    [2] Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? [J]. J Diabetes Complication. 2005, 19(3): 178-181
    [3] Del Prato S. In search of normoglycemia in diabetes: controlling postprandial glucose [J]. Int J Obes Relat Metab Disord. 2002, 26 (Suppl 3): S9-S17
    [4] Hirsch B. Glycemic variability: it’s not just about HbA1c any more [J]. Diabetes Technol Ther. 2005, 7(5):780-783
    [5] Siegelaar SE, Holleman F, Hoekstra JB, et al. Glucose variability; does it matter? [J]. Endocr Rev. 2010, 31(2): 171-182
    [6] BrownleeM, HirschIB: Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications [J]. JAMA. 2006, 295(14): 1707–1708
    [7] Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial [J]. Diabetes Care. 2008, 31(11): 2198-2202.
    [8] Xavier DO, Amaral LS, Gomes MA, et al. Metformin inhibits inflammatory angiogenesis in a murine sponge model [J]. Biomed Pharmacother. 2010, 64(3): 220-225.
    [9] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. Diabetes Control and Complications Trial Research Group [J]. N Engl J Med. 1993, 329(14): 977-986
    [10] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [J]. Lancet. 1998, 352(9131): 837-853
    [11] The Diabetes Control and Complications Trial Research Group: Early worsening ofdiabetic retinopathy in the Diabetes Control and Complications Trial [J]. Arch Ophthalmol. 1998, 116(7): 874-886.
    [12] Mohsin F, Craig ME, Cusumano J, et al. Discordant trends in microvascular complications in adolescentsn with type 1 diabetes from 1990 to 2002[J]. Diabetes Care. 2005, 28(8): 1974-1980
    [13] Gimeno—Orna JA, Castro-Alonso FJ, Boned-Juliani B et al. Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients[J]. J Diabetes Complications. 2003, 17(2): 78-81
    [14] Shiraiwa T, Kaneto H, Miyatsuka T, et a. Postprandial hyperglycemia is a better predictor of the progression of diabetic retinopathy than HbA1c diabetic patients [J]. Diabetes Care. 2005, 28(11): 2806-2807
    [15] Shiraiwa T, Kaneto H, Miyatsuka T, et al. Post-prandial hyperglycemia is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients [J]. Biochem Biophys Res Commun. 336, 2005, 336(1): 339–345
    [16] Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy [J]. Exp Diabetes Res. 2007, 2007: 43603
    [17] Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives [J]. Rev Endocr Metab Disord. 2008, 9(4): 315-327
    [18] Quagliaro L, Piconi L, Assaloni R, et a1. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells. The role of protein kinase C and NAD (P) H oxidase activation [J]. Diabetes. 2003, 52(11): 2795-2804
    [19] Piconi L, Corgnali M, Da Ros R, et al. The protective effect of rosuvastatin in human umbilical endothelial cells exposed to constant or intermittent high glucose [J]. J Diabetes Complications. 2008, 22(1): 38-45
    [20] Azuma K, Kawamori R, Toyofuku Y, et al. Repetitive fluctuations in blood glucose enhances monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol [J]. 2006, 26(10): 2275-2280
    [21] Monnier L, Mas E, Ginet C, et a1. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes [J]. JAMA. 2006, 295(14): 1681-1687
    [22] Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients [J]. Diabetes. 2008, 57(5): 1349-1354
    [23] Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells [J]. Diabetes. 2000, 49(11): 1939–1945
    [24] Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances ICAM-1 ,VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinet role of protein kinase C and mitoch ondrial superoxide production [J]. Atherosclerosis. 2005, 183 (2): 259-267
    [25] Piconi L, Quagliaro L, Da Ros R, et al. Intermittent high glucose enhances ICAM-1 ,VCAM-1 , E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase [J]. J Thromb Haemost. 2004, 2(8): 1453-459
    [26] Ersoy C, Kiyici S, Budak F, et al. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients [J]. Diabetes Res Clin Pract. 2008, 81(1): 56-60
    [27] Lund SS, Tarnow L, Stehouwer CD, et al. Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes [J]. Eur J Endocrinol. 2008, 158(5):631–641
    [28] Mahrouf-Yorgov M, Marie N, Borderie D, et al. Metformin suppresses high glucose–induced poly(adenosine diphosphate–ribose) polymerase overactivation in aortic endothelial cells [J]. Metabolism. 2009, 58(4): 525–533
    [29] Mahrouf M, Ouslimani N, Peynet J, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through theinhibition of protein kinase C [J]. Biochem Pharmacol. 2006, 72(2): 176-183
    [30] Hattori Y, Suzuki K, Hattori S, er al. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells [J]. Hypertension. 2006, 47(6): 1183-1188
    [31] Hadad SM, Fleming S, Thompson AM. Targeting AMPK: A new therapeutic opportunity in breast cancer [J]. Crit Rev Oncol Hematol. 2008, 67(1): 1-7
    [32] Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral efftct in vitro and in vivo through a decrease of cyclin D1 level [J]. Oncogene. 2008, 27(25): 3576-3586
    [33] Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth [J]. Cancer Res. 2007, 67(14): 6745-6752
    [34] Gotlieb WH, Saumet J, Beauchamp MC, et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer [J]. Gynecol Oncol. 2008, 110(2): 246-250
    [35] Grenader T, Goldberg A, Shavit L. Metformin as an addition to conventional chemotherapy in breast cancer [J]. J Clin Oncol. 2009, 27(35): e259
    [36] Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells [J]. Cancer Res. 2006, 66(21): 10269-10273.
    [37] Tomimoto A, Endo H, Sugiyama M, et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice [J]. Cancer Sci. 2008, 99(11):2136–2641.
    [38] Cantrell LA, Zhou C, Mendivil A, et al. Metformin is a potent inhibitor of endometrial cancer proliferation-implications for a novel treatment strategy[J]. Gynecol Oncol. 2010, 116(1): 92-98
    [39] Hwang YP, Jeong HG. Metformin blocks migration and invasion of tumor cells by inhibition of matrix metalloproteinase-9 activation, through a calcium and protein kinase Cα–dependent pathway [J]. British Journal of Pharmacology. 2010, 67(10): 1476-1481
    [40] Tan BK, Adya R, Chen J, et al. Metformin decreases angiogenesis via NF-kB andErk1/2/Erk5 pathways by increasing antiangiogenic thrombospodin-1 [J].Cardiovasc Res. 2009, 83(3): 566–574.
    
    [1] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med. 2010, 362(12): 1090-1101
    [2] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. Diabetes Control and Complications Trial Research Group [J]. N Engl J Med. 1993, 329(14): 977-986
    [3] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [J]. Lancet. 1998, 352(9131): 837-853
    [4] Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study [J]. JAMA. 2003, 290(16):2159-2167
    [5] Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes [J]. N Engl J Med. 2008, 359(15):1577–1589
    [6] Writing Team for the Diabetes Control and Complication Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus [J]. JAMA. 2002, 287(19): 2563-2569
    [7] Nathan DM, Cleary PA, Backlund JY, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes [J]. N Engl J Med. 2005, 353(25): 2643–2653
    [8] Nathan DM, Lachin J, Cleary P, et al. Diabetes Control and Complications Trial, Epidemiology of Diabetes Interventions and Complications Research Group: Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetesmellitus [J]. N Engl J Med. 2003, 348(23): 2349–2352
    [9] Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control [J]. Diabetes. 1987, 36(7): 808–812
    [10] Roy S, Sala R, Cagliero E, et al. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory [J]. Proc Natl Acad Sci USA. 1990, 87(1):404–408
    [11] Hammes HP, Klinzing I, Wiegand S, et al. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen diabetic rat [J]. Invest Ophthalmol Vis Sci. 1993, 34(6): 2092–2096
    [12] Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats [J]. Diabetes. 2003, 52(3): 818–823.
    [13] Kowluru RA, Chakrabarti S, Chen S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina [J]. Acta Diabetol. 2004, 41(4): 194-199
    [14] Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycemia and diabetic nephropathy: Effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats [J]. J Diabetes Complications. 2004, 18(5):282-288 15337502
    [15] Kowluru RA, Kanwar M, Kennedy A. Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries [J]. Exp Diabetes Res. 2007, 2007: 21976
    [16] Chan PS, Kanwar M, Kowluru RA. Resistance of retinal in?ammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory [J]. J Diabetes Complications. 2010, 24(1): 55-63
    [17] Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy [J]. Diabetes. 2009, 58(1): 227-234
    [18] Kowluru RA, Chan PS. Metabolic memory in diabetes– from in vitro oddity to in vivo problem: Role of Apoptosis [J]. Brain Res Bull. 2010, 81(2): 297-302
    [19] Cerillo A, Ihnat M, Ross K, et al. Evidence for a cellular‘memory’of hyperglycemic stress [J]. Diabetes. 2005, 54(6): 218A
    [20] Ihnat MA, Thorpe JE, Ceriello A, et al. Reactive oxygen species mediate a cellular‘memory’of high glucose stress signaling [J]. Diabetologia. 2007, 50(7): 1523-1531
    [21] Mack CP. An epigenetic clue to diabetic vascular disease [J]. Circ Res. 2008, 103(6): 568–570
    [22] El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia [J]. J Exp Med. 2008, 205(10): 2409–2417
    [23] Miao F, Gonzalo IG, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions [J]. J Biol Chem. 2004, 279(17): 18091–18097
    [24] Reddy MA, Villeneuve LM, Wang M, et al. Role of the lysine-specific demethylase1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice [J]. Circ Res. 2008, 103(6): 615–623
    [25] Li SL, Reddy MA, Cai Q, et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice [J]. Diabetes. 2006, 55(9): 2611-2619
    [26] Reddy MA, Li SL, Sahar S, et al. Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells [J]. J Biol Chem. 2006, 281(19): 13685–13693
    [27] Villeneuve LM, Reddy MA, Lanting LL, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes [J]. Proc Natl Acad Sci USA. 2008, 105(26): 9047-9052
    [28] Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury [J]. Circulation. 2006, 114(6): 597–605
    [29] Monnier VM, Bautista O, Kenny D, et al. Skin collagen glycation, glycoxidation,and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial [J]. Diabetes. 1999, 48(4): 870–880.
    [30] Genuth S, Sun W, Cleary P et al. Glycation and carboxymethyl lysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type1 diabetes [J]. Diabetes. 2005, 54(11): 3103–3111
    [31] Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE [J]. Am J Physiol Endocrinol Metab. 2001, 280(5): E685–E694
    [32] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005, 54(6): 1615–1625
    [33] Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy onβ-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial [J]. Lancet. 2008, 371(9626): 1753-1760
    [34] Yoshida T, Yamagishi S, Nakamura K, et al. Telmisartan inhibits AGE-induced C-reactive protein production through down regulation of the receptor for AGE via peroxisome proliferator-activated receptor-γactivation [J]. Diabetologia. 2006, 49(12): 3094–3099
    [35] Ceriello A, Assaloni R, Da Ros R, et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients [J]. Circulation. 2005, 111(19): 2518–2524
    [36] Ceriello A, Piconi L, Esposito K, et al. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes [J]. Diabetes Care. 2007, 30(7): 1694–1698
    [37] Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes [J]. N Engl J Med. 2003, 348(5): 383-393
    [38] Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorialintervention on mortality in type 2 diabetes [J]. N Engl J Med. 2008, 358(6): 580-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700