日光温室燃池—地中热交换系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冬季,为保证在出现极端天气条件下日光温室能够正常生产,一般都采取了人工加温的方式。目前常用的加温方式有热水加温系统、热风炉加温系统、电加热系统、电热泵等,采用的主要能源为燃煤、燃油、燃气以及电能,设备费用高,运行费用高,使得其应用受到很大程度的限制。
     日光温室燃池.地中热交换系统将日光温室燃池加热系统、地中热交换系统有机结合起来,通过系统的运行,提高地温、温室内气温,并能有效的降低温室内湿度。在冬季白天,通过风机、地下热交换管道进行循环,把燃池释放出来的热量传入地下,贮存起来,以达到提高地温的目的;夜间通过风机、地中热交换管道及地上管道,把燃池释放的热量、白天贮存到地下的热量释放到空气中,达到提高气温及降低空气湿度的目的。在夏季,当温室内的空气温度较高时,通过风机、地中热交换管道进行循环,达到降低温室内空气温度的目的。
     本研究的主要内容包括:(1)分析目光温室燃池-地中热交换系统的传热机理,根据对流、传导及辐射的传热理论,建立日光温室燃池-地中热交换系统热量传递的数理模型,并进行数值分析;(2)根据模型分析日光温室燃池-地中热交换系统的结构参数对系统热工性能的影响,在此基础上进行结构参数的技术经济优化,设计日光温室燃池-地中热交换系统结构;(3)通过试验分析日光温室燃池-地中热交换系统的运行参数对系统热工性能的影响,研究系统的基本运行规律;(4)通过试验研究日光温室燃池-地中热交换系统的温度环境特点,并验证传热模型的正确性。通过模型(试验)研究不同布置方式的温室温度分布特点及对温室温度环境的影响;(5)分析日光温室燃池-地中热交换系统的经济性,对其做出综合评价。
     将燃池-地中热交换系统结合起来引入日光温室,作为日光温室的辅助加热设施,尚属首次,它的研究与使用对日光温室加热设施是一个补充,同时弥补了燃池、地中热交换系统加热效果及加热能力等方面的不足。本研究的创新点有以下几个方面:(1)首次将日光温室燃池-地中热交换系统应用于日光温室中。日光温室燃池.地中热交换系统加热属于地面(地板)加热方式,这种加热方式通过对作物的根区进行加热,与其它的加热方式如热水、热风等加热方式相比具有节能等优点,并且对作物的生长发育和产量、光合作用等都会产生积极的影响;(2)进行了日光温室燃池-地中热交换系统在冬季使用时的加热机理研究,并根据热力学与传热学基本理论建立了日光温室燃池.地中热交换系统加温的数学模型;通过对该系统在夏季降温时,考虑连续通风与间歇通风的不同工况下的降温机理研究,建立了利用地中热交换系统降温的数学模型,并进行了系统的理论分析和试验研究;(3)对建立的日光温室燃池-地中热交换系统数学模型进行数值分析及数学模拟;对建立的动态数学模型用二维不稳定导热微分方程及边界条件来描述,模型中把地中热交换通风管道模拟为无限长圆柱体,能够真实地反映空气沿管道长度,并随通风时间的不断变化的动态过程;给出了数学模型的求解方法,为模型的求解建立基础;最后利用ANSYS热分析软件进行了数学模拟分析;(4)进行了日光温室燃池-地中热交换系统的综合经济效益分析。利用费用现值和费用年值方法对其经济性进行评价,结合日光温室燃池-地中热交换系统的运行情况,对目光温室燃池-地中热交换系统初投资回收期进行了预测。
     本文对燃池-地中热交换加热系统进行了系统的理论分析和试验研究,得到以下主要结论:(1)分析了日光温室燃池-地中热交换系统加热机理及传热机理,建立了日光温室燃池-地中热交换系统加温数学模型;建立了利用地中热交换系统降温的数学模型。模型中把地中热交换通风管道模拟为无限长圆柱体,能够真实地反映空气沿管到长度,并随通风时间的不断变化的动态过程;给出了该数学模型的有限差分法求解方法,为模型的求解建立基础;利用ANSYS热分析软件进行了数学模拟分析,并通过试验验证了模型的正确性;(2)日光温室燃池-地中热交换系统可以有效的提高温室内的土壤温度和气温。测试结果表明,采用燃池-地中热交换系统一侧的土壤平均温度比对比侧的土壤平均温度高约2.0℃;昼夜平均气温高2.6℃,夜间平均气温高4.2℃;采用燃池-地中热交换系统土壤温度分布较均匀,沿地中热交换管道纵向方向各点最高和最低温度的温差仅为0.3℃~0.9℃;沿地中热交换管道横向方向各点最高和最低温度的温差为0.4℃~0.9℃;另外,对两侧室内湿度数据分析表明,应用日光温室燃池-地中热交换系统可以明显减少温室内相对湿度饱和时间,减少相对湿度饱和时间约2~3h;(3)燃池-地中热交换系统在夏季运行可以有效的降低温室内的气温。测试结果表明,热交换一侧与对比侧室内平均气温分别为24.7℃、25.4℃,变化不大。但在风机运行期间(测试期间风机在10:00~16:30运行),热交换侧与对比侧室内平均气温分别为30.3℃、35.4℃,平均降温5.1℃;热交换侧最高气温为32.0℃,对比侧最高气温达38.0℃;夜间的气温较对比侧略高。试验也表明,地中热交换管道进、出口空气平均温度分别为24.7℃、19.8℃,平均降低气温4.9℃;(4)利用费用现值和费用年值方法对其经济性进行评价。分析表明,日光温室燃池-地中热交换系统的费用现值和费用年值比热风加热系统分别低30.8%和57.4%;比热水加热系统分别低27.4%和55.2%。结合日光温室燃池-地中热交换系统的运行情况,预测出该系统的初投资回收期为2.1年;(5)日光温室燃池-地中热交换系统可以充分利用太阳能及生物质能资源,节能率为31.6%,具有较好的经济效益,同时也具有较好的社会和生态效益。
     把燃池-地中热交换系统作为日光温室的备用加热设施,在实践中进行了应用。本文通过理论分析和试验,进行了初步的研究。研究表明,日光温室燃池-地中热交换系统较燃池、地中热交换系统从加热效果、供热能力上均有很大的改善与提高,但也存在如加热能力仍然有限、加热的控制比较困难、初投资较大、燃池部分占用一定的温室空间等问题,这些问题如能得到妥善解决,将为日光温室燃池-地中热交换系统的应用打下更加坚实的基础。
Generally, many artificial heating systems which included hot-water heating system,hot-blast stove heating system, electric heating system, electricity heat pump heating systemand so on were adopted in order to maintenance production of the solar greenhouse under theextreme weather condition in winter. But application area of these heating systems waslimited due to the high cost of equipment and the operating.
     Fire-pit and underground heating exchange system in the greenhouse integrated fire pitheating system with underground heating exchange system, and this system can increase soiland air temperature, reduce humidity inside greenhouse during it operating. In the winterdaytime, soil temperature was increased with fire-pit releasing energy which was storedunderground through circulation of the blower and underground heating exchange pipes. Atnight, air temperature was increased and air humidity was reduced with the energy come fromthe fire-pit and part of stored underground through the blower, underground heating exchangepipes and over-ground pipes. In summer, air temperature inside greenhouse was reducedthrough circulation of the blower and underground heating exchange pipes.
     This paper main research includes: (1) Heat transfer mechanism of fire-pit and undergroundheating exchange system in the greenhouse was analyzed, and mathematics models of heatingtransfer were established according to the convection, the conduction and the radiation theory,and numerical value was analyzed. (2) Influence of structure parameters of fire-pit andunderground heating exchange system in the greenhouse on system thermal performance wasanalyzed according to analysis of the mathematics models. Moreover, technology andeconomy of structure parameters was optimized structure of fire-pit and underground heatingexchange system in the greenhouse on system was designed. (3) Influence of structureparameters of fire-pit and underground heating exchange system in the greenhouse on systemthermal performance was analyzed with experiment. And basic operating law of system wasresearched. (4) Temperature environment characteristic of fire-pit and underground heatingexchange system in the greenhouse was researched and heating transfer models were verified with experimental data. Furthermore temperature distribution characteristics of differentlay-form and influence on greenhouse temperature environment characteristic wereresearched with model (experiment). (5) Economy of fire-pit and underground heatingexchange system in the greenhouse was analyzed and synthesis evaluation was performed.
     Fire-pit and underground heating exchange system was applied in greenhouse still was forthe first time, which was an assistant heating equipment and was a supplement to heatingequipment of greenhouse. Innovation of this research main content includes: (1) Fire-pit andunderground heating exchange system was applied in greenhouse still was for the first time.And fire-pit and underground heating exchange system belongs to the floor-heating, this kindheating system heats crops-root area and has saving-energy advantage compares withhot-water heating system, hot-blast stove heating system and so on. Furthermore this kindheating system has benefiting influence on growth, output and photosynthesis of crop. (2)Heating mechanism of fire-pit and underground heating exchange system in the greenhousewas researched during winter operation. And heating mathematics model of this system wasestablished according to basic theory of thermodynamics and heat transfer. And coolingmathematics models were established according to cooling mechanism research underdifferent conditions (continuous ventilation and intermission ventilation during summercooling). And theory analysis and experiment research of this system was carried out. (3)Numerical value analysis and mathematics simulation about mathematics models of fire-pitand underground heating exchange system was carried out. And dynamic mathematics modelswas described with differential coefficient equation of two-dimensional unsteady conductionand boundary conditions, and underground heating exchange pipes were simulated to infinitycylinder, which can express actually dynamic process of air continuous movement along pipeslength and ventilation time. And calculating method of mathematics models was made out.Moreover differential coefficient equation was dispersed with finity difference method,calculating regional was meshed, and derivations were substituted with difference quetient,heat transfer differential coefficient equation was transformed into difference equation, whichwas foundation for settlement of model. And mathematics simulation analysis was carried outwith ANSYS heating analysis software and was verified with experimental data. (4) Synthesis economical benefit of fire-pit and underground heating exchange system in the greenhousewas analyzed, economy was evaluated with present value and annual value of expenditure,and returning time of primary investment was forecasted to fire-pit and underground heatingexchange system in the greenhouse through it operating condition.
     Main conclusion was made with systemic theory analysis and experiment research on fire-pit and underground heating exchange system in the greenhouse. (1) Heat transfer mechanismwas analyzed and mathematics models of heating transfer were established of fire- pit andunderground heating exchange system in the greenhouse. And cooling mathematics modelswere established, and underground heating exchange pipes were simulated to infinity cylinder,which can express actually dynamic process of air continuous movement along pipe lengthand ventilation time. And difference calculating method of mathematics models was made out,which was foundation for calculating of model. Moreover mathematics simulation analysiswas carried out with ANSYS/THERMAL and was verified with experimental data. (2) Soiland air temperature inside greenhouse was increased greatly with fire-pit and undergroundheating exchange system in the greenhouse. Testing results indicated that soil averagetemperature, day and night average air temperature, nighttime average air temperature of areawith fire-pit and underground heating exchange system was higher respectively 2.0℃, 2.6℃,4.2℃than contrast area. And soil temperature distributing was uniformity with this system.So temperature difference from maximal to minimum was respectively 0.3℃~0.9℃, 0.4℃~0.9℃along vertical section and cross section of underground heating exchange pipes.Furthermore both side humidity data which was analyzed indicated that saturation time ofrelative humidity was shortened greatly with adopted fire-pit and underground heatingexchange system in the greenhouse, which was shortened 2~3h. (3) Air temperature insidegreenhouse was reduced greatly with fire-pit and underground heating exchange system insummer. Testing results indicated that average air temperature was respectively 24.7℃, 25.4℃both heating exchanged area and contrast area, which temperature difference was small. Butaverage air temperature was respectively 30.3℃, 35.4℃both heating exchanged area andcontrast area during blower operating (operation time of blower was from 10:00 to 16:30during testing), and average air temperature was reduced 5.1℃. maximal air temperature ofheating exchanged area was 32.0℃, and maximal air temperature of contrast area was 38.0℃. But at night air temperature was higher in heating exchanged area than contrast area.Furthermore experiment results indicated that air average temperature was respectively 24.7℃, 19.8℃at import and exit of underground heating-exchanged pipes, and average airtemperature was reduced into 4.9℃. (4) Economy was evaluated with method of present valueand annual value of expenditure. Analysis indicated that present value and annual value ofexpenditure of fire-pit and underground heating exchange system in the greenhouse was lowerrespectively 30.8%,57.4% than hot-blast stove heating system, and lower respectively 27.4%,55.2% than hot-water heating system. And returning time of primary investment wasforecasted to 2.1 years according to operating condition of fire pit-underground heatingexchange system in the greenhouse. (5) Fire-pit and underground heating exchange system inthe greenhouse was able to utilize sufficiently solar energy and biomass energy, and savingenergy rate was 31.6%. So it has healthy economical, social and ecological benefit.
     Fire-pit and underground heating exchange system was used as assistant heatingequipment in the greenhouse. In this paper, primary research was carried with theory analysisand experimental data. And research results indicated that heating effect and capability offire-pit and underground heating exchange system has more improvement than fire pit heatingsystem and underground heating-exchanged system. But this heating system have manydisadvantage, such as heating capability was still limited, heating control was difficult,primary investment was large, fire-pit area possess part of space inside greenhouse and so on.If these problems were solved, application foreground of fire-pit and underground heatingexchange system was wide.
引文
1.巴格斯罗夫斯基著,单寄平译.建筑热物理学.北京:中国建筑工业出版社,1988:403~404.
    2.白义奎,迟道才,王铁良,等.日光温室燃池.地中热交换系统加热效果的初步研究.农业工程学报,2006,22(10):178~181。
    3.白义奎,王铁良,迟道才.日光温室燃池-地中热交换系统设计.北方园艺,2006,6:63~65.
    4.白义奎,王铁良,李天来,等.日光温室燃池.地中热交换供暖装置(ZL.200420070368.7).中华人民共和国国家知识产权局,2005.
    5.白义奎,王铁良,刘文合,等.日光温室燃池加热机理及加热系统数学模型.农业机械学报,2006,37(9):107~111。
    6.白义奎,王铁良,刘文合,等.东北型节能日光温室—辽沈Ⅰ型温室地下热交换系统实验研究,节能技术,2002,2:3~5.
    7.白义奎,王铁良,刘文合,等.燃池在日光温室中应用的试验研究,可再生能源,2005,3:11~13.
    8.蔡龙俊,鲁雅萍.农业温室供热系统的研究和设计.建筑热能通风空调,2001,2:23~25.
    9.曹永华,孙忠富,吴毅明,等.温室光辅助设计软件(GRLT)的研制——设施农业光环境模拟分析研究之二.农业工程学报,1992,8(4):69~77.
    10.查丁石.三连栋塑料大棚冬春季小气候.上海农业学报,1998:14(4):51~55.
    11.陈端生.我国温室气候环境研究进展.农业工程学报,2002,18(增刊):53~55.
    12.陈端生,郑海山,张建国,等.日光温室气象环境综合研究(三)——几种弧型采光屋面温室内直射光量的比较研究.农业工程学报.1992,8(4):78~82.
    13.陈端生,郑海山,刘步洲.日光温室气象环境综合研究——墙体、覆盖物热效应研究初报.农业工程学报,1990,6(2):77~81.
    14.陈青云主编.农业设施学,北京:中国农业大学出版社,2001.
    15.陈青云,汪政富.节能型日光温室热环境的动态模拟.中国农业大学学报,1996,1(1).67~72.
    16.陈振乾,施明恒.太阳辐射条件下土壤内温湿度场的动态模拟.太阳能学报,1998,19(1):13~19.
    17.崔引安主编.农业生物环境工程.北京:农业出版社,1994:203~204.
    18.戴锅生.传热学.北京:高等教育出版社,1999.
    19.地下建筑暖通空调设计手册编写组.地下建筑暖通空调设计手册.北京:中国建筑工业出版社,1983:70~72.
    20.杜军.供热日光温室气温与土温传热模型及动态模型.哈尔滨:哈尔滨大学,2000.
    21.冯玉龙,孙玉华,吴学恩.根系温度对植物的影响(Ⅱ)——根温对植物代谢的影响.东北林业大学学报,1995,23(4):94~99.
    22.冯玉龙,孙玉华,张宝友.根系温度对番茄的影响(Ⅰ)——根温对番茄生长的影响.东北林业大学学报,1996,16(1):133~139.
    23.高仓直,山川健一.地中热交换设计1.定常一次元解释.(日)农业气象,1981,37(3):187~196.
    24.高祖锟.土壤热源热泵用于夏季空调的研究.全国高等学校工程物理第四家学术会议论文集,1992,119~122.
    25.郭慧卿,李振海,张振武.日光温室温度环境动态模拟.沈阳农业大学学报,1994,(4):438~443.
    26.郭晓平,解茂昭.水平碳粒填充床上方气体热辐射对阴燃影响.大连理工大学学报,2000,40(6),702~705.
    27.韩世栋.蔬菜冬暖型日光温室建造和高效栽培技术.北京:中国农业出版社,1996.
    28.何韦.温室太阳能地下贮热系统.农村实用工程技术,1993,(6):21.
    29.胡鸣明.浅埋套管式地热源热泵地下传热模型及冬季供热实验研究.重庆大学,1992.
    30.胡上序.分布系统的数字仿真.信息与控制,1983,4:58~63.
    31.江晴,李酏洪,梅建滨.温室空气-土壤换热系统的数值模拟.太阳能学报,2002,23(2):227~232.
    32.亢树华.鞍山日光温室的沿革和改进.农业工程学报,1990,6(2):101~102.
    33.亢树华,陈端生.日光温室优型结构的研究.农业工程学报,1996,12(增刊):30~35.
    34.L.D.贝弗尔,W.H.加德纳,W.R.加德纳.土壤物理学.北京:农业出版社,1983.
    35.雷玉成,陈希章,王忠海,等.集中供热热管太阳能集热器系统的研制.甘肃工业大学学报,2002,28(1):88~91.
    36.郦伟,董仁杰,汤楚宙,等.日光温室的热环境理论模型.农业工程学报,1997,13(2):160~163.
    37.李德坚,唐轩,殷志强,等.温室太阳能供暖.太阳能学报,2002,23(5):560~563.
    38.李萍萍,胡永光.冬季塑料大棚多重覆盖及电加热增温效果研究.农业工程学报,2002,18(2):76~79.
    39.李新国,王万达.地热采暖系统的技术经济评价方法.新能源,1995,17(12):33~36.
    40.李新国.低温地热运用热泵供暖的技术经济分析.天津大学学报,1996,29(3):449~453.
    41.李毅,邵明安,王文焰,等.质地对土壤热性质的影响研究.农业工程学报,2003,19(4):62-65.
    42.凌继红,张于峰,涂光备,等.低温热水地板辐射供暖系统的运行调节.暖通空调,2003,33(1):125~127。
    43.刘高典.温度场的数值模拟.重庆大学出版社,1990:43~52.
    44.刘珩.电热温室的经济性分析及有效热负荷的计算.北京:北京农业大学:1998.
    45.刘珩,陈南特.电热温室土壤温度场计算.北京农业工程大学学报,1992,(1):40~44.
    46.刘圣勇,张杰,张百良,等.太阳能蓄热系统提高温室地温的试验研究.太阳能学报,2003,24(4):461~465.
    47.刘书智.温室地下热交换装置.农村能源,1990,(3):22,24.
    48.刘宪英,王勇.地源热泵地下垂直埋管换热器的试验研究.重庆建筑大学学报,1999,5(21):21~26.
    49.刘秀茹,葛晓光.地温及营养面积对番茄秧苗生育及素质的影响.沈阳农业大学学报,1998,19(3):29~36.
    50.刘泽华.地道通风降温的优化设计及运行效果预测.建筑热能通风空调,2001,(2):44~45.
    51.罗中岭.当代温室气候与花卉.北京:中国农业科技出版社,1994:10~12.
    52.马承伟.塑料大棚地下热交换系统的研究.农业工程学报,1985,1(1):54~65.
    53.马承伟,黄之栋,穆丽君.连栋温室地中热交换系统贮热加温的试验.农业工程学报,1999,15(2):160~164.
    54.毛健雄编著.煤的洁净燃烧.北京:科学出版社,1998.3.
    55.牟灵全.地道风降温计算与应用.暖通空调,1982:1~60.
    56.穆天民主编.保护地设施学.北京:中国林业出版社,2004.
    57.聂和民.我国北方日光温室的结构与建造.农村实用工程技术,1990,6(4):2~3.
    58.聂和民.日光温室的结构与发展问题探讨.农业工程学报,1990,6(2):100~101.
    59.牛若峰,何桂庭,朱希刚,等著.农业科学技术研究和利用的经济评价.北京:农业出版社,1985.
    60.潘锦泉.日光温室优化设计及综合配套技术.专题技术研究成果.农村实用工程技术,1999,15(1):7.
    61.潘锦泉,李新义,伍惠永,等.我国引进的温室设施及国内温室的发展.农业工程学报,1989,5(2):64~73.
    62.齐新政,陆亚俊,石磊.太阳能及其辅助热源低温地板辐射采暖的实验研究.节能技术,2001,19(108):2~10.
    63.曲梅.温室地板加热系统的研究.北京:中国农业大学,2002.
    64.曲梅,马承伟,李树海,等.地面加热系统温室热环境测定与经济分析.农业工程学报,2003,19(1):180~163.
    65.冉茂宇.自然通风地道最佳长度的确定.华侨大学学报(自然科学版),1999,20(2):160~163.
    66.任湘.地热能资源的开发和利用.科技导报,1993,7:45~47.
    67.任志雨,王秀峰,魏珉.不同根区温度对黄瓜幼苗矿质元素含量及根区吸收功能的影响.山东农业大学学报(自然科学版),2003,34(3):351~355.
    68.任志雨,王秀峰,魏珉,等.不同根区温度对黄瓜幼苗生长及光合参数的影响.山东农业大学学报(自然科学版),2003,34(1):64~67.
    69.山东建筑设计院编写组,地道风降温设计中几个问题的探讨.暖通空调,1975,(1):36~41.
    70.山东农学院.蔬菜栽培各论.北京:农业出版社,1979.
    71.孙文策,解茂昭.燃池内的阴燃过程的实验分析研究.工程热物理学报,2000,21(3),393~396.
    72.孙忠富.地-气热交换塑料大棚中热量平衡的研究.农业工程学报,1989,5(2):35~46.
    73.唐兴伦,范群波,张朝晖,等.ANSYS工程应用教程——热与电磁学篇.北京:中国铁道出版社,2003.3~56.
    74.陶文铨编著.数值传热学.西安:西安交通大学出版社,1995.
    75.王果强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999.1~76,166~188.
    76.王怀彬,杜军,张洪军.热管供热系统与热水供热系统技术经济性比较.节能技术,1998,(2):21~23.
    77.王瑞,深埋冷却风道最佳长度的探讨,地下空间,1990,10(3):214~219.
    78.王瑞,冷却风道经济断面的选择,地下空间,1985,20(3):30~37.
    79.王铁良,白义奎,李天来,等.节能型日光温室燃池供暖装置(ZL02210130.6).中华人民共和国国家知识产权局,2002.
    80.王铁良,白义奎,刘文合.燃池在日光温室加热的应用实验.农业工程学报,2002,18(4):98~100.
    81.王铁良,孟少春主编.单坡温室设计与建造.沈阳:辽宁科学技术出版社,2003.
    82.王永维,苗香雯,崔绍荣,等.温室地下蓄热系统换热特性研究.农业工程学报,2003,19(6):248~251.
    83.王占民,史彭.用保角变换法计算供热管道温度场的研究.暖通空调,2003,33(5):119~120.
    84.吴德让,李元哲.日光温室地下热交换系统的理论研究。农业工程学报,1994,10(1):137~143.
    85.吴德让,李元哲.日光温室地下热交换系统的实验和优化设计研究.农业工程学报,1994,10(1):144~149.
    86.吴静怡,金鼎.蔬菜温室各种供热系统的经济性分析.上海农业学报,2001,17(2):22~26.
    87.吴静怡,金鼎.电热泵用于蔬菜温室供热的经济性分析.工程热物理学报,2002,23(1):17~19.
    88.吴挺.地源热泵用浅埋套管换热器的研究.天津:天津大学,2001.
    89.吴毅明,曹永华,孙忠富,等.温室采光设计的理论分析方法——设施农业光环境模拟分析研究之一.农业工程学报,1992,8(3):73~80.
    90.W.M.罗森诺,传热学应用手册(上册),李荫亭译,科学出版社。1985:338~364.
    91.忻尚杰.空气经地下风道凝湿冷却的降温动态模拟.地下空间,1989,9(1):44~51.
    92.杨纯,葛新石.温棚系统中传热问题的理论与实验研究.太阳能学报,1994,15(1):25~35.
    93.杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    94.杨晓光.日光温室增温措施的研究.北京:中国农业大学,1993.
    95.杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四)——日光温室地温场模拟初探.农业工程学报,1994,10(1):150~156.
    96.于竹.日光温室微气候与地下埋管热交换系统的模拟与实验研究,北京:中国农业大学,1993.
    97.袁巧霞.塑料大棚地下热交换加温系统的研究.北京:北京农业工程大学,1991.
    98.张波,陈晨,刘明利,等.中国能源安全现状及其可持续发展.地质技术经济管理,2004,26(1):56~58.
    99.张放,唐晓蕴。低温胁迫对处于不同水分状态柑桔光合作用的影响.浙江大学学报(农业与生命科学版),2001,27(4):393~397.
    100.张福墁.农业现代化与我国设施园艺工程.农业工程学报,2002,18(增刊):1~3.
    101.张福墁.欣欣向荣的中国设施园艺工程.农业工程学报,1996,10(增刊):1~5.
    102.张福墁.设施园艺学.北京:北京:中国农业大学出版社,2001.
    103.张海莲,熊培桂,赵利敏,等.温室地下蓄热太阳热能效果研究.西北农业学报,1997,6(1):54~57.
    104.张太平.温室微气候的建立与计算机模拟.天津:天津大学,1987.
    105.张锡虎.地道风降温的热工计算.地下空间,1981,4:5~10.
    106.章熙民,任泽霈,梅飞鸣.传热学.北京:中国建筑工业出版社,1993,60~63.
    107.张祥林.辣椒根部病害发生规律和防治对策.青海农技推广,2003,(4):38~40.
    108.张真和,李建伟.日光温室蔬菜高效节能栽培技术开发项目实施成果.中国蔬菜,1997,(6):30~32.
    109.赵鸿佐.地道冷风降温的计算.建筑技术通风暖通空调,1995,1:42~46.
    110.郑学林.利用地冷实现制冷节能的理论研究.上海海运学院学报,1997,18(3):39~46.
    111.赵玉文.21世纪我国太阳能利用发展趋势.中国电力,2002,33(9):73~77.
    112.周长吉.现代温室工程.北京:化学工业出版社,2003.
    113.周长吉,孙山,吴德让.日光温室前屋面采光性能的优化.农业工程学报,1993,9(4):58~61.
    114.周长吉,杨振声.准确统一“日光温室”定义的商榷.农业工程学报,2002,18(6):200~202.
    115.周风起,周大地.中国中长期能源战略.北京:中国计划出版社,1999.
    116.周军主编.农业建筑经济学.北京:中国农业出版社,1997.
    117. A.K.Athienitis. Numerical Model of Floor Heating System. ASHRAE HANDBOOK, 1994.13.3.
    118. A Kleinendorst, R Brouwer. Effect of temperature on two different clones of rye grass. Jaarb. 1 .B.S.1965: 29~39.
    119. Bikineev M.G, Lysenko Yu.P, Kamushkin D.V, Mukhamedzhanova S.B. Certain problems of computer-aided design of runnels. Geomechanics Abstracts. 1997,1997(5):31~71.
    120. Bristow K L,G S Cambpell. Simulation of heat and moisture transfer a surface-residue-soil system. Agri. And Forest Meteoro, 1986(1): 193~214.
    121. Brown, W. W. and Ormrod, D. P., Soil temperature effects on greenhouse roses in relation to air temperature and nutrition. J. Am. Soc. Hortic. Sci., 1980. 105:41~49.
    122. Carol Gauthier, Marcel lacroix. Herve bernier. Numerical simulation of soil heatexchanger-storage systems for greenhouses. Solar Energy, 1997, (60)6: 333~346.
    123. Cenk Yavuzturk, Jeffrey D.Spitler, Simon J.Rees. A transient two dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Transactions. 1999,105(1):465~474.
    124. C M Menzel, D W Tumer, V J Doogan et al.Root shoot interactions in Pasionfruit Passiflora sp under the influence of changing root volumes and soil temperature.J.Hort Sci, 1994, 69(3):553~564.
    125. Cur A Theinfluence of root temperature on apple tree.Ⅱ Clonal different in susceptitiility to damage caused by super optimal root temperature. J.Hort Sci, 1976,51: 195~202.
    126. D.L.Critten. A computer model to calculate the daily light integral and transmissivity of a greenhouse. J.Agric,Engng Res,1983,28; 61~76.
    127. D .EHart,R .Couvillion, Earth coupled heat transfer, Publication of the National Water Well Association, 1986.
    128. D R Mears,W J Roberts and J C Simpkins. New concept in greenhouse beating. ASAE paper ,1982a,No.NA74~112.
    129. D R Mears,W J Roberts and J C Simpkins. Performance of the New Jersey solar system for heating greenhouse.Proc.conf on solar system for Heating of greenhouse and greenhouse.Residence combination, Cleveland,OH,1982b, 135~148.
    130. F.L.Kempks, et al. Effect of Heating System Position on Vertical Distribution of Crop Temperature and Transpiration in Greenhouse. Tomatoes. J. agriculture engineering research.75, 2000, 57~64.
    131. Gorage C. Bakos, Kimitrios Fidanidis, Nikolans F, Tsagas. Greenhouse heating using geothermal energy. Geothermics, 1999,28:759~765.
    132. Gosselin A Trudel Marc-J. Root-zoon temperatureeeffects on pepper.J.Anler.Soc.Hort Sci, 1986, 111(2): 220~224.
    133. Hartley, J.G., Black, W.Z., Bush, R.A., Measurements, correlations and limitations of soil thermal stability, Underground Cable Thermal Backfill, S.A.Boggs,et al.,eds., Pergamon Press, Inc, Toronto,Canada, 1982:121~133.
    134. Haruo Haibuchi and Shuichi Hokoi. Basic Study of Radiative and Convective Heat Exchange in a room with Floor Heating. ASHRAE Transactions, 1998.
    135. Ingersoll and Plass. Theors of the ground pipe heat source for the heat pump. ASHVE trans, 1948,54:339~348.
    136. J.A.Edwards. Heat transfer from earth coupled heat exchangers-experimental and analytical. ASHRAE trans, HI-85-02 No2,70~80.
    137. J. Barral,P.D.Galimberti, A. Barone. Integrated thermal improvements for greenhouse cultivation in the central part of argentina. Solar Energy, 1999,Vol.67, No. 1-3:111~118.
    138. J.E. Bose, and J.D. Parker, Ground-coupled heat pump research, ASHRAE Trans, 1983, 89(2): 75~390.
    139. J M Walker. One degree increment in soil temperature affects maize seeding bihavior.Pro.Soc .Soil Sci Am.1969, 33: 729~736.
    140. Jorge A, Adaro, Pablo D.Galimberti, Alba I Lema. Geothermal contribution to greenhouse heating. Applied Energy, 1999(64): 241~249.
    141. J.R.Carroll. Natural convection in Panel Heating. Heating and Ventilating. Vol.45,1948.
    142. J W White, J A Biembaum. Efects root-zone heating on elemental compostition of calceolaria.J.Amer.Soc.Hort.Sci, 1984,109(3): 350~355.
    143. Karsten Pruess, T.N.Narasimhan, A practical method for modeling fluid and heat flow in fractured porous media, Science of Petroleum Engineers Journal, 1985, 2: 14~260.
    144. K.W.Winspear.Vertical Ttemperature Gradients and Greenhouse Energy Economy. Acta Horticulture 76,1978 97~103.
    145. L M Navas, S De La Plaza, J L Garcia, J M Duran. Formulation and sensitivity analysis of a dynamic model of the greenhouse climate.Horticultume. 1998, (456): 305~312.
    146. Meir Teitel, Janny. Natural ventilation of greenhouse: experiments and model agriculture and forest meteorology, 1999(96):59~70.
    147. M N Bargach, A S Dahman, M Boakallouch. A heating system using flat plate collectors to improve the inside greenhouse microclimate in Morocco. Renewable Energy, 1999, 16:376~381.
    148. M N Fisch. A review of large scale Solar Heating Systemsin Europe. Solar energy, 1998, 63: 355~ 366.
    149. Moore I.D, Guan.F. Three-dimensional dynamic response of lined tunnels due to incident seismic waves. Geomechanics Abstracts. 1997,1997(1):49~50.
    150. M. Santamouris. Use of buried pipes for energy conservation in cooling of agricultural greenhouse. Solar Energy, 1995,55(2): 111~124.
    151. Nishi.A, Kikugawa.H, Matsuda.Y, Tashiro.D. Active control turbulence for an atmospheric boundary layer model in a wind tunnel. Journal of Wind Engineering and Industrial Aerodynamics. 1999,83(1-3): 409~419.
    152. ED. Metz, A simple computer program to model three-dimension underground heat flow with realistic Boundary conditions. Journal of Solar Energy Engineering, 1983, 105: 42~49.
    153. Posel Feryuson. Heat transfer modeling of screen house Solar Energy, 1999,65(5):271~284.
    154. R.L.D.Lane.Modeling of ground-source heat pump systems. ASHRAE trans, 1991,17(5): 909~925.
    155. R M Benaveme, S De la plaza, L M Navas. Establishment and validation of a model to estimate energy consumption of localized heating of greenhouse substrates. Acta Horticulturae. 1998,(456):39~346.
    156. Rylska, I. and Einstein, R., 1971. Effects of soil temperatures on the development of eggplant seedings. hassadeh, 53: 188~189.
    157. S de la Plaza, R M Benavente, J L Garcia. Modelling and Optimal Design of an Electric Substrate Heating System for Greenhouse Crops. J.Agric. Engng Res.(1999)73,131~139.
    158. Segal, I, J. And Cohen, S., 1982. Use of geothermal water for soil and space heating. Hassadeh, 64: 1845~1847.
    159. S J Ahn.Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K+-Mg++-ATPase activity of graned-cucumber and-figleaf goutd root systems.Plant Cell Physiol, 1995, 36(4):639~643.
    160. S J Tachibana. Comparison of elect root temperature on the growth and mineral nutrition of cucumber cultivars and figleaf gourd. J.Japan Soc Sci, 1982,51 (3): 299~308.
    161. Steve P. Rottmayer, William A. Beckman, John W. Mitchell. Simulation of a single vertical U-tube ground heat exchanger in an infinite medium. ASHRAE Transactions. 1997,BN-97-8-1:651-659.
    162. Takakura, T. Climate under cover-Digital dynamic simulation in plant bio-engineering. Dordrecht, The Netherlands: Kluwer Academic Publishers. 1993.
    163. Tantaus.H.J. 1985. Greenhouse climate control. Acta Horticulture 174:449~459.
    164. T.C.Min, L.F.Schutrum and J.D.Vouris. Natural Convection and Radiation in a Panel-Heated room. ASHRAE Transactions, 1953.
    165. T.KUsuda. Earth temperature and thermal diffusely atselected stations in the United States. ASHVE trans,1965,71 (1):61-75.
    166. Trudel M J and Gosselin A, Influence of soil temperature in greenhouse tomato production. Horticultural Science 1982, 17:928~929.
    167. Udink ten Care, A.J. Analysis and synthesis of greenhouse climate controllers. In computer Applications in Agricultural Environments, 1987: 1~19.
    168. U.Schmidt. Greenhouse climate control with a combine model of greenhouse and plant by using online measurement of leaf temperature and transpiration. Acta Horticulture. 1996,(406):89~98.
    169. V.C.Mei. Heat transfer of buried pipe for heat pump applications. Journal of solar engineering, 1986,113: 51~55.
    170. V.C.Mei. Effect of backfilling material on ground coil performance. ASHRAE trans, 1987, 19(2):1845~1857.
    171. V.C.Mei. Vertical concentric tube ground coupled heat exchangers. ASHRAE trans, 1983, 8(2):391~405.
    172. V.C. Mei, Theoretical heat pump ground coil analysis with Variable ground far-field boundary conditions, AICHE Journal, 1986, 32(7): 1211~1215.
    173. Vie Ball. Ball Redbook.16thedition, Ball Publishing. 1998, 39~43.
    174. Vladimir Jirka, Vladimir, Kuceravy. Energy flow in a greenhouse equipped with glass raster lenses. 1999(16): 660~664.
    175. V.M.Puri, Greenhouse floor heating system optimization using long-term thermal performance design curves, Solar energy, 1982, 28, 6, 469~481.
    176. Wang Shaojin, J.Deltour. Impact of main structural parameters on greenhouse climate. Trans of the CSAE, Vol.11,No.3, 1995:101~107.
    177. Wang Shaojin, J.Deltour. Simulation of application of different control methods to greenhouse heating system.浙江农业大学学报,1992,18(4):97~102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700