新疆西天山查岗诺尔和智博火山岩型铁矿矿床地质特征与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆西天山阿吾拉勒成矿带位于伊犁地块北缘,隶属于博罗科努-伊犁成矿区。近年来,随着多个亿吨级铁矿陆续发现而使该成矿带成为地质学界研究的热点。雾嶺-查岗诺尔-智博-敦德-备战铁矿位于同一构造岩浆带上,含矿围岩均为下石炭统火山岩,所以,这五个铁矿床构成了一条铁矿带。本文选择查岗诺尔铁矿和智博铁矿为重点研究对象,以矿区火山岩岩石学、岩相学、岩石地球化学、同位素年代学以及同位素地球化学研究为基础,通过对矿床地质特征、矿相学、矿床地球化学等方面的系统研究,探讨矿区火山岩岩石成因,矿床形成的大地构造背景、铁矿床母岩浆性质以及矿床成因类型。在此基础上,总结本区铁矿床成矿作用及其规律,建立该区铁矿床成矿模式。
     查岗诺尔铁矿和智博铁矿位于西天山伊犁地块东北缘博罗科努山系主脊线上,属中天山北缘活动陆缘带。二者受同一个面积为314km2的破火山口控制。岩石学、岩石地球化学表明,这一地区的火山岩主要为下石炭统大哈拉军山组,少部分属上石炭统伊什基里克组。查岗诺尔矿区广泛出露的石炭纪火山岩由玄武岩、粗面玄武岩、玄武质粗面安山岩、粗面安山岩、粗面岩、流纹岩和火山碎屑岩组成,安山质岩石的数量明显多于其他岩石类型。智博铁矿区的主要火山岩岩石类型为玄武岩、玄武质粗面安山岩和粗面安山岩,还有少量的英安岩和流纹岩。两个矿区绝大部分火山岩的岩石化学组成属于钾玄岩系列和高钾钙碱性系列,少数玄武岩和安山岩属于钙碱性和低钾拉斑玄武岩系列。它们相对富集轻稀土元素和大离子亲石元素(Rb、Ba、Th和U),相对亏损高场强元素(Nb、Ta和Ti),具有活动陆缘型火山岩的亲和性。查岗诺尔铁矿区流纹岩LA-ICP-MS锆石U-Pb谐和年龄(321±1.4Ma)表明,该套火山岩形成于早石炭世末期北天山大洋型岩石圈向伊犁地块之下俯冲的活动陆缘带。尽管由消减板片脱水作用或部分熔融形成的流体或熔体反复交代地幔楔而导致玄武岩的Sr同位素组成变化大且多呈富集型,但玄武岩εNd(t)>0,仍可证明其源区在被交代前处于亏损状态的地幔楔。在莫霍面附近的岛弧型地壳根部,聚集的幔源岩浆和与其混杂的原有陆壳物质被以后贯入或穿过其上升的幔源岩浆加热发生部分熔融产生安山质岩浆。流纹岩的岩浆源区应该位于岛弧型下部地壳,主要由原有陆壳物质和幔源岩浆混合形成。
     查岗诺尔铁矿区矿体产状受火山穹窿构造制约。该铁矿成矿期可划分为矿浆期和热液期,隐爆作用伴随成矿全过程。矿浆成矿期形成了浮渣状、斑点状、致密块状、贯入角砾状和阴影状等矿石;热液成矿期形成了对称条带状、复角砾状及网脉状等矿石。矿石的稀土元素和微量元素总体特征和安山岩一致。矿石和安山岩的Pb同位素数据在Pb同位素比值图上共线。大量薄片观察表明,安山质火山岩中普遍含有数量不等的磁铁矿,且磁铁矿只出现在安山岩中。这些特征均表明了矿石和安山岩的亲和性。矿石的氧同位素数据范围和典型岩浆型矿床一致。该矿床属于以安山质岩浆为母岩浆的矿(岩)浆矿床(主要)和热液矿床(次要)的复合型矿床。智博铁矿赋矿围岩主要为大哈拉军山组玄武质岩石。铁矿成矿期可划分为矿浆期和热液期。矿浆期形成隐爆角砾状、致密块状、浸染状、海绵陨铁状、斑杂状和条带状矿石,热液成矿期形成网脉状矿石。矿石的稀土元素和微量元素总体特征和玄武岩一致,且矿石和玄武岩的Pb同位素数据在Pb同位素比值图上共线。大量的薄片观察表明,在浸染状矿石中,原生硅酸盐矿物为单斜辉石和斜长石。智博铁矿同样以岩浆阶段的成矿作用为主,晚期叠加有高温火山热液阶段的成矿作用,成因类型亦属以玄武质岩浆为母岩浆的岩浆矿床为主的矿(岩)浆-热液复合型矿床。
     基于上述研究,本文建立本区铁矿床成矿模式如下:俯冲板片脱水并交代俯冲带上方的地幔楔,继而使地幔楔的橄榄岩部分熔融,形成富铁的玄武质岩浆。岛弧型地壳根部由于受幔源岩浆活动影响而部分熔融生成富铁的安山岩质岩浆。经深大断裂上侵的岩浆,沿火山口中心部位及锥状向心断裂喷溢形成火山岩。由于岩浆分异及不混溶作用而形成矿浆或富含矿浆的岩浆。这些富铁的岩浆和矿浆沿同一通道上侵,在破火山口中心部位及锥状向心断裂带产生隐爆成矿作用。由于大量岩浆、矿浆喷发,岩浆房处于高温、负压状态,雨水、地下水向负压带汇聚并与火山热液混合。因而矿浆成矿期形成的矿体又受到后期热液叠加矿化,并在其周围形成强烈的面型蚀变。成矿作用结束后,矿体受区域构造控制。
Western Tianshan is one of the most famous metallogenetic belt in China with lots oftypes of mineral deposits. Awulale Metallogenetic Belt (AMB) belongs to the metallogenicprovince of Bonuokenu-Yili, which is located in the northern corner of the Yili block in theWestern Tianshan Mountains (NW-China). The metallogenic belt has become a hot spot ofresearch on geological field because of discovery and exploration of several iron deposits inhundred million ton. These iron deposits including the Wuling Fe, the Chagangnuoer Fe-Cu,Zhibo Fe and Dunde Fe-Pb-Zn deposits are situated at the same tectonic magmatic zone.They are all hosted in Carboniferous volcanic and volcanoclastic rocks and so they composea Fe metallogenetic belt. Research of the paper focused on the Chagangnuoer and Zhibo irondeposits, with the study of volcanic petrology, petrography, petrochemistry, isotopicchronology and isotopic geochemistry. After study of the mineragraphy, geological featuresof iron deposits and geochemistry, we will further discuss the key issues, such as thepetrogenesis of volcanic rocks, the type of mother magma of iron ore, the tectonic setting ofiron deposits, the source of minerals and the genetic types of iron deposit. On this basis, wewill summarize mineralization and regularity of iron ore formation in this area, and thenestablish the model for iron ore formation.
     Region of Chagangnuoer and Zhibo iron deposit, which are situated at Bonuokenumountains in northeast part of the Yili block in western Tianshan, belongs to activecontinental margin in northern corner of central Tianshan. Both of them are controlled by thesame caldera whose area is314km2. Petrology and petrochemistry indicated that most ofvolcanic and volcanoclastic rocks in this region belong to Dahalajunshan Formation and alittle of them belong to Yishijilike Formation. Carboniferous volcanic rocks are exposedwidely in region of Chagannur iron deposit, such as basalt, andesite, trachyte, rhyolite andvolcaniclastic rocks. The number of andesite is significantly more than other type volcanicrocks. Region of Zhibo iron deposit is mainly composed of basalt, basaltic trachyte andesite,a little dacite and rhyolite. Most of volcanic rocks of these region belong to high-Kcalc-alkaline and shoshonite series, whereas a few basalt and andesite belong to calc-alkalineand low-K tholeiitic basalt. They are enriched in LREE and LILE (Rb, Ba, Th, U) with obvious depletions of Nb, Ta and Ti. It suggests that they have a blood relation withvolcanic-arc rocks. LA-ICP-MS ziron U-Pb dating of rhyolite suggests an isotopic age of321.2±2.3Ma, which indicates that they are created by the subduction of ocean lithosphereof north Tianshan Ocean toward south beneath the Yili block. Fluids or melts derived fromthe dehydration or partial melting of subducted slab likely reacted with mantle wedgeperidotite, and the reaction leads to the variable and enriched Sr isotopic composition ofbasalt. However, Nd isotopic composition of basalt (εNd(t)<0) suggests that basaltic magmashould be generated from a depleted mantle before interaction. Magma derived form mantleintruded into crustal rocks, and then these magma became mafic migmatites. Later magmasderived from mantle would intrude into or pass through these migmatites. So the partialmelting of migmatites would generate andesitic magma by this way. Rhyolitic magma sourceshould be located in the underpart of lower crustal of continental arc, and it was generatedfrom partial melting of crustal rocks with lots of magam derived from mantle.
     The attitude of ore body in Chagangnuoer is restricted to volcanic fornix. Wall rocks,mainly consisting of andesite and andesitic volcaniclastic rock, belong to the Dahalajunshanformation. The deposit was formed during magma ore-forming period and hydrothermalmetallogenic period, with the former being dominant and cyptoexplosion in wholemetallogenic period. There are some kinds of ore formed during magma ore-forming period,such as scum ore, speckles ore, block ore, injection and breccia ore and shadow ore. Thereare many ore formed in hydrothermal metallogenic period, such as symmetrical banding ore,multi-breccia ore and netted vein-like ore. Ore and andesite are almost same in REEfractionations patterns and trace elements fractionations patterns. Pb isotopic ratios of ore andandesite are liner correlation in Pb isotopic ratios graph. Microscopic fabric indicates thatthere are varying amounts of magnetite in andesitic volcanic rocks and magnetite appearedonly in andesite. It indicates that they have a blood relation with volcanic rocks and ore.Furthermore, range of oxygen isotopic dates of ore is keeping up with these of typicalmagmatic deposits. Hence, this deposit is a polygenetic ore magmatic deposit(predominant)and hydrothermal deposit(subordinate), with the andesitic magma as primary magma. The orebody in Zhibo iron deposit is hosted in basaltic rocks of the Dahalajunshan formation.Metallogenic period includes magma ore-forming period and hydrothermal metallogenic period. Some kinds of ore, including cryptoexplosive breccia ore, block ore, impregnated ore,sideronitique ore, taxitic ore and banding ore, formed during magma ore-forming period; andnetted vein-like ore formed in hydrothermal metallogenic period. Ore and basalt are verysimilar in REE fractionations patterns and trace elements fractionations patterns. Numerousmicrographs suggest that the protogenic silicate minerals are clinopyxene and plagioclase inimpregnated ore. Magmatic metallogenesis dominated in whole metallogenic period, and thisore body forming during magma period underwent complex metasomatism which formed inhydrothermal metallogenic period. Consequently, this deposit is a polygenetic ore magmaticdeposit(predominant) and hydrothermal deposit(subordinate), with the basltic magma asprimary magma.
     Based on the above study, a model for iron metallogenesis in this area is suggested asfollow: Fluids or melts derived from the subducted slab likely reacted with mantle wedgeperidotites, and the reaction led to mantle wedge peridotite partial melting. Partial melting ofmantle wedge peridotite formed iron-rich basaltic magma. The underneath rocks of lowercrustal of continental arc partial melted because of activity of magma derived from mantle,and these melt mass formed Iron-rich andesitic magma. These magma upward invadedthrough deep fault and the volcanic rocks formed with the eruption and overflow of magmaalong the central part of crater or pyramidal centripetal fault. Ore magma or ore-rich magmaformed due to the magmatic differentiation and immiscibility effect. These Ore magma orore-rich magma upward invaded through volcanic vent and had cryptoexplosion along thecentral part of crater or pyramidal centripetal fault. After eruption of magma or ore magma,condition of the magma chamber became high temperature and negative pressure. As a resultof this, rainwater and groundwater gathered around the negative pressure area, and then theymixed volcanic hydrothermal water. In a word, the ore body forming during magma periodunderwent complex metasomatism in hydrothermal metallogenic period, and there were lotsof area metasomatism around ore body. Ore body were restricted by regional tectonic activity.
引文
[1]贾国锋,王仁财.世界铁矿资源分布及我国投资方向分析[J].中国矿业,2011,20(1):10-14.
    [2]赵一鸣.中国铁矿资源现状、保证程度和对策[J].地质论评,2004,(4):369-417.
    [3]隗合明、吴文奎、薛春纪.新疆西天山金属矿床,成矿系列及形成演化规律[J].地质学报,1999,73(3):219-230.
    [4]董连慧.新疆地质矿产勘查回顾与展望[J].新疆地质,2011,29(1):1-6.
    [5]董连慧,李凤鸣,屈迅.2008年新疆地质矿产勘查主要成果及国土资源部与新疆维吾尔自治区“358项目”工作部署[J].新疆地质,2009,27(1):1-4.
    [6]冯金星,石福品,汪帮耀.西天山阿吾拉勒成矿带火山岩型铁矿[M].北京:地质出版社,2010,1-255.
    [7]汪帮耀,胡秀军,王江涛等.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J].矿床地质,2011,30(3):386-402.
    [8]蒋睿卿.新疆铁矿资源特征及潜力分析[J].新疆钢铁,2011,2:9-12.
    [9]程裕淇,赵一鸣,林文蔚.中国铁矿床[M].北京:地质出版社,1994,386-479.
    [10]陈毓川,盛继福,艾永德.梅山铁矿-一个矿浆热液矿床[J].中国地质科学院院报矿床地质研究所所刊,1981,2(1):26-48.
    [11]姚培慧.中国铁矿志[M].北京:冶金工业出版社,1993,1-662.
    [12]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005,20(4):242-247.
    [13]程裕淇,赵一鸣,陆松年.中国几组主要铁矿类型[J].地质学报,1978,4:253-268.
    [14]程裕淇.程裕淇文选[M].北京:地质出版社,2005.
    [15]沈保丰,翟安民,杨春亮,曹秀兰.中国前寒武纪铁矿床时空分布和演化特征[J].地质调查与研究,2005,28(4):196-206.
    [16]沈保丰,翟安民,苗培森等.华北陆块铁矿床地质特征和资源潜力展望[J].地质调查与研究,2006,29(4):243-252.
    [17]刘峰.新疆阿尔泰阿巴宫-蒙库一带铁矿床成矿作用与成矿规律研究[D].中国地质科学院,2009.
    [18]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991,1-379.
    [19]翟裕生.地球系统科学与成矿学研究[J].地学前缘,2004,11(1):1-10.
    [20]赵振华.条带状铁建造(BIF)与地球大氧化事件[J].地学前缘,2010,17(2):1-11.
    [21]沈其韩,宋会侠,杨崇辉等.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J].岩石矿物学杂志,2011,30(2):161-171.
    [22] Derry L A and Jacobsen S B. The chemical evolution of Precambrian seawater: Evidencefrom REEs in banded iron formation[J]. Geochim Cosmochim Acta,1990,54:2965-2977.
    [23] Danielson A P, M ller and Dulski P. The europium anomalies in banded iron formationsand the thermal history of the oceanic crust[J]. Chem Geol,1992,97:89-100.
    [24] Gross G A. Tectonic systems and the deposition of iron-formation[J]. Precambrian Res,1983,30:63-80.
    [25] Veizer J. Geologic evolution of the Archean-Early Proterozoic Earth[A]. Schopf JW.Earth’s Earliest Biosphere[C]. Princeton:PrincetonUniver-sity Press,1983:240-259.
    [26] Trendall A F. Three great basins of Precambrian banded iron formation deposition:Asystematic comparison[J].Geol Soc Am Bull,1968,79:1527-1544.
    [27] Simonson B M, Hassler S. Was the deposition of large Precambrian iron formationslinked to major marine transgressions?[J]. Geol,1996,104:665-676.
    [28] Trendall A F, Morris R C. Transvaal Supergroup, South Africa, Iron-Formation: Factsand Problem[M]. NewYork.: Elsevier,1983:131-209.
    [29] Clout J M F and Simonson B M. Precambrian iron formations and formation-hosted ironore deposits[J]. Econ. Geol.,2005,100th annicersury Vol.:643-679.
    [30]孙启帧.论我国铁矿边缘成矿[J].地质与勘探,1993,8:13-18.
    [31]李延河,张增杰,伍家善等.冀东马兰庄条带状硅铁建造的变质时代及地质意义[J].矿床地质,2011,30(4):645-653.
    [32]陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社,1993,1-367.
    [33]钱锦和,沈远仁.云南大红山古火山岩铁铜矿[M].北京:地质出版社,1990,1-236.
    [34]冶金工业部情报标准研究所.国外火山岩型富铁矿[M].北京:冶金工业出版社,1977,1-182.
    [35] Lledo HL and Jenkins DM. Experimental Investigation of theUpper Thermal Stability ofMg-rich Actinolite; Implications for Kiruna-Type Iron Deposits[J]. Journal of petrology,2008,49(2):225-238.
    [36] Blake, DH. Geology of the Mt Isa Inlierand Environs, Queensland and Northern Territory(Bulletin)[M]. Bureau of Mineral Resources, Geology and Geophysics, Canberra,1987.
    [37] Mark G and Foster DRW. Magmatic albite-actinolite-apatite-richrocks from theCloncurry district, Northwest Queensland[J]. Australia.Lithos,2000,51:223-245.
    [38] Ryan A J. Ernest Henry copper-gold deposit. In: Berkman, DA, Mackenzie, DH(Eds),Geology of Australian and Papua New Guinean Deposits, AUSIMM Monograph22[C].Australian Institute of Miningand Metallurgy, Melbourne,1998.
    [39] Sibson RH and Scott J. Stress/Faultcontrols on the containmentandrelease ofoverpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska;Victoria, Australia; and Otago, New Zealand[J]. Ore Geol. Rev,1998,13:293-306.
    [40] Williams PJ. Metalliferous economic geology of the Mt Isa Eastern Succession,Queensland[J]. Aust. J. Earth Sci,1998,45:329-341.
    [41] Clayton RN. The use of bromine pentafluoride in the extractionof oxygen from oxidesand silicates for isotopic analysis[J]. Geochim Cosmochim Acta,1963,27(1):43-52.
    [42] Hoefs J. Stable isotope geochemistry (the forth edition)[M]. Berlin: Springer-Verlag,1997,119-120.
    [43] Ohmoto H and Rye RO. Isotopes of sulfur and carbon. In: Barnes H L, ed. Geochemistryof hydrothermal ore deposits[M]. New York: John Wiley&Sons,1979,509-567.
    [44] O’Neil JR and Epstein S. Oxygen isotope fractionation in system dolomite-calcite-carbondioxide[J]. Science,1966,152(3719):198-201.
    [45] Taylor HP. The application of oxyen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition[J]. Econ. Geol.,1974,69(6):843-883.
    [46]田敬全,胡敬涛,易习正等.西天山查岗诺尔-备战一带铁矿成矿条件及找矿分析[J].西部探矿工程,2009,8:88-91.
    [47]新疆地矿局第三地质大队.查岗诺尔详查地质报告[R].1980.
    [48]王庆明,林卓斌,黄诚等.西天山查岗诺尔地区矿床成矿系列和找矿方向[J].新疆地质,2001,19(4):263-267.
    [49]赵仁夫,程晓红,王庆明等.西天山-西南天山成矿带勘查新发现及找矿远景[J].西北地质,2006,39(2):34-56.
    [50]夏林圻,李向民,夏祖春,等.天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J].西北地质,2006,39(1):1-49.
    [51]夏林圻,夏祖春,徐学义,等.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,(9):903-910.
    [52]夏林圻,夏祖春,徐学义,等.天山石炭纪火山岩系中含有富Nb岛弧玄武岩吗?[J].地学前缘,2009,16(6):303-317.
    [53]夏林圻,夏祖春,徐学义,等.天山石炭纪大火山岩省与地幔柱[J].地质通报,2004,23:903-910.
    [54]夏林圻,张国伟,夏祖春,等.天山古生代洋盆开启、闭合时限的岩石学约束-来自震生纪、石炭纪火山岩的证据[J].地质通报。2002,21:55-63.
    [55]肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062-1076.
    [56]车自成,刘良,刘洪福,等.论伊犁古裂谷[J].岩石学报,1996,12(3):478-490.
    [57]钱青,高俊,熊贤明,等.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境[J].岩石学报,2006,22(5):1307-1323.
    [58]王博,苏良树等.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J].中国地质,2006,33(3):498-508.
    [59]朱永峰,张立飞,古丽冰等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报,2005,50(18):2004-2014.
    [60]安芳,朱永峰.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究[J].岩石学报,2008,24(12):2741-2748.
    [61]姜常义,吴文奎,张学仁,崔尚森.从岛弧向裂谷的变迁—来自阿吾拉勒地区火山岩的证据[J].岩石矿物学杂志,1995.14(4):289-300.
    [62]姜常义,吴文奎,张学仁,崔尚森.西天山阿吾拉勒地区岩浆活动与构造演化[J].西安地质学院学报,1996,18(2):18-24
    [63]李柱苍,李永军。李景宏等.西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J].新疆地质,2006,24(2):120-124.
    [64]郭璇,朱永峰.新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究[J].高校地质学报,2006.12(1):62-73.
    [65]邵铁全,石莹,靳红,等.新疆西天山大哈拉军山组火山岩岩石化学特征及地质意义[J].新疆地质,2006,24(3):218-222.
    [66]赵长樱,荆振华,王惠民,等.新疆新源县一带大哈拉军山组火山岩形成环境探讨[J].陕西地质,2006,24(1):37-44.
    [67]王博,舒良树,Cluzel D,等.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地地质构造意义.岩石学报,2007,23(8):1885-1900.
    [68]龙灵利,高俊,钱青,等.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J].岩石学报,2008,24(4):699-710.
    [69]王庆明,林卓斌,黄诚,等.新疆西天山艾肯达坂火山机体与成矿[J].新疆地质,2000,18(3):236-244.
    [70]卢踪柳,莫江平.新疆阿吾拉勒富铁矿地质特征和矿床成因[J].地质与勘探,2006,42(5):8-12.
    [71]莫江平,黄杨明等.新疆阿吾拉勒陆相火山岩型铜矿成矿研究[J].矿产与地质,1996,10(54):217-223.
    [72]刘获,庞军.新疆新源县包尕斯铜矿地质特征及远景分析[J].新疆有色金属,2005b,3:1-14
    [73]刘获.新疆穷布拉克铜矿地质特征及远景分析[J].新疆有色金属,2005a,2(1):1-6.
    [74]曹荣龙,朱寿华,朱祥坤,等.新疆北部固体地球科学新进展[M].北京,科学出版社,1993,11~26.
    [75]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980,1-160.
    [76]舒良树,卢华复,印栋浩,等.新疆北部古生代大陆增生构造[J].新疆地质,2001,19(1):59-63.
    [77]汤耀庆等.新疆北部大地构造研究的新进展[M].新疆地质科学(第四辑),北京:地质出版社:1993,1-12.
    [78]肖序常,汤耀庆,李锦轶,等.试论新疆北部大地构造演化[M].新疆地质科学(第1辑),北京:地质出版社,1990,47-68.
    [79]肖序常,汤耀庆.古中亚复合型巨型缝合带南缘构造演化[M].北京:科学出版社,1991,1-69.
    [80]肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1-98.
    [81]陈哲夫,成守德,梁云海.新疆开合构造与成矿[M].乌鲁木齐:新强科技卫生出版社,1997.
    [82]何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,1994,50-54.
    [83]何国琦,成守德,徐新,等.中国新疆及邻区大地构造图(l:250000)说明书[M].北京:地质出版社,2004,1-68.
    [84]胡霭琴,王中刚,涂光炽,等.新疆北部地质演化及成矿规律[M].北京:科学出版社,1997,1-280.
    [85]栾新东,张兵,高永利等.西天山阿吾拉勒地区石炭系划分对比新资料[J].新疆地质,2008,26(3):231-235.
    [86]王晓刚,杨高学,李永军,等.西天山阿吾拉勒赛肯都鲁序列与大哈拉军山红火山岩地球化学对比研究[J].新疆地质,2007,15(4):345-350.
    [87]姜常义,吴文奎,谢广成.西天山北部石炭纪火山岩特征与沟弧盆体系[J].岩石矿物学杂志,1993,12(3):224-231.
    [88]成守德,王元龙.新疆大地构造演化基本特征[J].新疆地质,1998,16(2):97-107.
    [89]成守德,徐新.新疆及邻区大地构造编图研究[J].新疆地质,2001,19(1):33-37.
    [90]陈哲夫,梁云海.新疆天山地质构造几个问题的探讨[J].新疆地质,1985,3(2):1-13.
    [91]陈衍景,刘玉琳,鲍景新,等.西天山艾肯达坂组火山岩系同位素定年及其构造意义[J].矿物岩石,24(1):52-55.
    [92]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993.
    [93]姜常义,吴文奎,谢广成,李伍平.阿吾拉勒山西段二叠纪火山岩组合与构造环境分析[J].西安地质学院学报,1992,14(4):1-7.
    [94]李小军.阿吾拉勒山主要矿产分布规律及成矿远景浅析[J].矿产与地质,1994,8(43):344-347.
    [95]李伍平,姜常义,谢广成,等.博罗科努加里东褶皱带海西早期花岗岩地质特征[J].西安地质学院学报,1995,1(3):43-49.
    [96]邓洪涛.博罗科努山北坡金铜矿成因类型探讨[J].新疆地质,2001,19(2):123-126.
    [97]高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
    [98] Qian Q, Gao J and Klemd R. Early Paleozoic tectonic evolution of the Chinese SouthTianshan Orogen: constraints from SHRIMP zircon U-Pb geochronogy and geochemistryof basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of EarthSciences,2009,98:551-569.
    [99] Gao J, Li M S, Xiao X C, Tang Y Q and He G Q. Paleozoic tectonic evolution of theTianshan Orgen northern China[J]. Tectonophysics,1998,287:213-231.
    [100]李向东,王庆明.天山后碰撞阶段构造演化的新信息:来自阿吾拉勒山中段动力变质的证据[J].地质论评,1998,44(4):444-445.
    [101]杨高学,周继兵,栾新东,等.西天山阿吾拉勒阔尔库岩基解体的地球化学证据及意义[J].新疆地质,2008,26(2):128-132.
    [102]杨高学,李永军,郭文杰,等.西天山阿吾拉勒阔尔库岩基解体的岩石化学证据[J].地球科学与环境学报,2008b,30(2):122-155.
    [103]李锦轶,王克卓,李亚萍,孙桂华,褚春华,李丽群,朱志新.天山山脉地貌特征、地壳组成与地质演化[J].地质通报,25(8):895-909.
    [104]李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,1999,34(4):405-419.
    [105]李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3):304-322.
    [106]张良臣.中国新疆板块构造与动力学特征.见:新疆第三届天山地质矿产学术讨论会论文集[C].乌鲁木齐:新疆人民出版社,1995,1-14.
    [107]田薇.新疆伊犁晚古生代裂谷陆相火山岩型铜(银)矿的成矿规律及其找矿前景—以阿吾拉勒地区为例[J].矿产与地质,2006,20(3):237-2424.
    [108]莫江平,黄明扬等.新疆预须开普台铁铜矿床成因探讨[J].地质与勘探,1997,33(4):7-12.
    [109]莫江平.新疆预须开普台铁铜矿床地质地球化学研究[J].有色金属矿产与勘察,1999,8(6):678-680.
    [110]王志良,毛景文,张作衡等.西天山古生代铜金多金属矿床类型、特征及其成矿地球动力学演化[J].矿床地质,2004,78(6):837-847.
    [111]旷会琳.新疆新源县包尕斯铜矿地质特征及成因分析[J].新疆有色金属,2005,2:1-6.
    [112] Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. In: Saunders AD, Norry MJ (eds)Magmatism in the Ocean Basins, vol42. Geological Society of London SpecialPublication, London,1989,313-345.
    [113]熊小林,赵振华,白正华,等.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制[J].岩石学报,2001,17(04):514-522.
    [114]温和平.博罗科努小区寒武纪地层的发现[J].新疆工学院学报,1997,18(3):227-230.
    [115]王永,李德贵等.西天山两侧前陆盆地晚新生代沉积特征及构造意义[J].新疆地质,2000,18(3):243-250.
    [116]李永军,杨高学,张天继,等.西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J].地球科学进展,2009,24(4):420-427.
    [117]凌联海,楼法生等.新疆阿吾拉勒山地区晚石炭世地层化石的新资料[J].地层学杂志,2007,31(2):169-175.
    [118]吴文奎,谢广成,姜常义,李伍平.伊犁地块构造及成矿区划刍议[J].西安地质学院学报,1994,16(4):2-9.
    [119]郭华春.伊犁地块下石炭统遗留问题的探讨[J].新疆矿产地质,1995,1(2):35-39.
    [120]高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
    [121] Qian Q, Gao J and Klemd R. Early Paleozoic tectonic evolution of the Chinese SouthTianshan Orogen: constraints from SHRIMP zircon U-Pb geochronogy and geochemistryof basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of EarthSciences,2009,98:551-569.
    [122] Gao J, Li M S, Xiao X C, Tang Y Q and He G Q. Paleozoic tectonic evolution of theTianshan Orgen northern China[J]. Tectonophysics,1998,287:213-231.
    [123]涂光炽.初议中亚成矿域[J].地质科学,1999,34(4):397-404.
    [124]单强,张兵,罗勇,等.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学[J].岩石学报,2009,25(6):1456-1464.
    [125]李小军.阿吾拉勒山主要矿产分布规律及成矿远景浅析[J].矿产与地质,1994,8(5):344-347.
    [126]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998,202-206.
    [127]车自成,刘洪福,刘良.中天山造山带的形成与演化[M].北京:地质出版社,1994,1-135.
    [128]董云鹏,周鼎武,张国伟,赵霞,罗金海,徐静刚.中天山北缘干沟蛇绿混杂岩带的地质地球化学[J].岩石学报,2006,22(1):49-56.
    [129]刘正荣,裴江平,邓东松,孙江华,陶玲.新疆托克逊新干沟奥陶纪蛇绿岩[J].新疆地质:2005,23(4):326-333.
    [130]朱志新,王克卓,徐达等.依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报,2006,25(8):986-992.
    [131]李锦轶,徐新.新疆北部地质构造和成矿作用的主要问题[J].新疆地质,2004(2):119-124.
    [132] Horn I, Rudnick R L and Mcdonough WF. Precise elemental and isotope ratiodetermination by simultaneous solution nebulization and laser ablation-Icpms:Application to U-Pb geochronologyo[J]. Chemical Geology,2000,167:405-425.
    [133]袁洪林,吴福元,高山等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [134] Muller D and Groves D I. Potassic igneous rocks and associated gold-coppermineralization[M]. Berlin: Springer-Verlag,1995,1-210.
    [135] Zindler A and Hart SR. Chemical geodynamics[J]. Annual Review of Earth andPlanetary Sciences,1986,14:493-571.
    [136] Allegre CJ, Lewin E and Dupre B. A coherent crust-mantle model for theuranium-thorium-lead isotopic system[J]. Chemical Geology,1988,70:211-234.
    [137]邓晋福,罗照华,苏尚国等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004,3-50.
    [138] McCulloch MT and Gamble JA. Geochemical and geodynamical constraints onsubduction zone magmatism[J]. Earth and Planetary Science Letters,1991,102:358-374.
    [139]姜常义,卢登容,白开寅,等.大陆岩石圈地幔交代作用的产物-且干布拉克蛭石矿床[J].岩石学报,2005,21(1):201-210.
    [140]姜常义,钱壮志,姜寒冰等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报:2007,23(4):777-792.
    [141] Grove TL and Kinzler RJ. Petrogenesis of Andesites[J]. Annual Review of Earth andPlanetary Sciences.1986,14:417-454.
    [142] Nicholls JW and Carmicheal ISE. The equilibration temperature and pressure of variouslava types with spinel-and garnet-peridotite[J]. Amer. Mineral,1972,57:941-959.
    [143] Otamendi JE, Ducea MN, Tibaldi AM, Bergantz GW, De La Rosa JD and Vujovich GI.Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic andmetasedimentary rocks within the deep crust of the Famatinian magmatic arc,Argentina[J]. Journal of Petrology,2009,50(5):841-873.
    [144] Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R. Shoshoniteand sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on theRoccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy[J]. Mineralogyand Petrology,2009b,157:41-63.
    [145] Corazzato C, Francalanci L, Menna M, Petrone CM, Renzulli A, Tibaldi A, Vezzoli L.What controls sheet intrusion in volcanoes? Structure and petrology of the Strombolisheet complex, Italy[J]. Journal of Volcanology and Geothermal Research,2008,173:26-54.
    [146] Sparks RSJ. The role of crustal contamination in magma evolution through geologicaltime[J]. Earth and Planetary Science Letters,1986,78:211-223.
    [147] Davidson JP, Hora JM, Garrison JM and Dungan MA. Crustal forensics in arcmagmas[J]. Journal of Volcanology and Geothermal Research,2005,140:157-170.
    [148] Annen C and Sparks RSJ. Effects of repetitive emplacement of basaltic intrusions onthermal evolution and melt generation in the crust[J]. Earth and Planetary Science Letters,2002,203:937-955.
    [149] Otamendi JE, Tibaldi AM, Vujovich GI and Vi ao GA. Metamorphic evolution ofmigmatites from the Famatinian arc crust exposed in Sierras Valle Fértil-La Huerta, SanJuan, Argentina[J]. Journal of South American Earth Sciences,2008,25:313-315.
    [150] Bacon CR and Druitt TH. Compositional evolution of the zoned calcalkaline magmachamber of mount Mazama, Crater Lake, Oregon[J]. Contribution to Mineralogy andPetrology,1988,98:224-256.
    [151] Ingle S, Weis D and Frey FA. Indian continental crust recovered from Elan Bank,Kerguelen Plateau(ODP Leg183, Site1137)[J]. Journey of Petrology,2002,43:1241-1257.
    [152] Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E,Tommasini S, Tiepolo M, Prelevic D, Venturelli G. Trace elements and Sr-Nd-Pbisotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the WesternMediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations ina post-collisional geodynamic setting[J]. Lithos,2009a,107:68-92.
    [153] Roberts MP, and Clemens JD. Origin of high-potassium, calcalkaline, I-typegranitoids[J]. Geology,1993,21(9):825-828.
    [154] Tepper JH, Nelson BK, Bergantz GW and Irving AJ. Petrology of the Chilliwackbatholith, North Cascades, Washington: Generation of calc-alkaline granitoids bymelting of mafic lower crust with variable water fugacity[J]. Contribution to Mineralogyand Petrology,1993,113:333-351.
    [155] Guffanti M, Clynne MA and Muffler LJP. Themal and mass implications of magmaticevolution in the Lassen volcanic region, California, and constraints on basalt influx to thelower crust[J]. Journal of Geophysical Research,1996,101:3001-3013.
    [156] Creaser RA, Price RC, Wormald RJ. A-type granites revisited: assessment of a residualsource model[J]. Geology,1991,19:163-166.
    [157] Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG. Trace element andSr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source ofAldan Shield lamproites[J]. Journal of Petrology,2006,47:1119-1146.
    [158] Demény A, Dallai L, Frezzotti ML, Vennemann TW, Embey-isztin A, Dobosi G, Nagy G.Origin of CO2and carbonate veins in mantle-derived xenoliths in the Pannonian Basin[J].Lithos,2010,117:172~182.
    [159] Baker MB, Hirschmann MM, Ghiorso MS and Stolper EM. Compositions ofnear-solidus preidotite melts from experiments and thermodynamic calculations[J].Nature,1995,375:308-311.
    [160]魏富有.黄铁矿型多金属矿床地球化学异常研究[J].有色金属矿产与勘察,1993,2(4):232-236.
    [161]刘崇民,李应桂,胡树起.黄铁矿型铜多金属矿床地球化学元素组合及找矿评价标志[J].物探与化探,2000,24(6):412-417.
    [162]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000,155-162.
    [163]吴利仁.我国东部中生代陆相火山岩宁芜型铁矿形成的基本原理[J].地质与勘探,1978,6:1-8.
    [164]翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1992,1-189.
    [165] Clayton R N,0’Neill J R and Mayeda T K. Oxygen isotopic exchange between quartzand water[J]. Joumal of Geophysical Research,1972,77:3057-3067.
    [166] Fleischer M, Aitsehuler Z S.1969.The relationship of the rae-earth composition ofminerals to geological environment[J]. Gcochim. Cosmoohim. Acta,33:725-732.
    [167] Reynolds I M. The nature and origin of titaniferous magnetite-rich layers in the upperzone of the Bushveld Complex: a review and synthesis[J]. Economic Geology,1985,80:1089-1108.
    [168] Hanski E J. Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbrowehrlite intrusions, Kola Peninsula, Russia[J]. Geological Survey of Finland Bulletin.1992,367,192.
    [169] Jakobsen J K, Veksler IV, Tegner C. Immiscible iron-and silica-rich melts in basaltpetrogenesis documented in the Skaergaard intrusion[J]. Geology,2005,33:885-888.
    [170]王可南,姚培慧.中国铁矿床综论[M].北京:冶金工业出版社,1992,1-584.
    [171] Nystr m J O and Henriquez F. Magmatic features of iron ores of the Kiruna type inChile and Sweden: Ore textures and magnetite geochemistry[J]. Economic Geology,1994,89:820-839.
    [172] Klemm D D, Henckel J, Dehm R, Gruenewaldt G. The geochemistry of titanomagnetitein magnetite layers and their host rocks of the Eastern Bushveld Complex[J]. EconomicGeology,1985,80:1075–1088.
    [173] Campbell I H. Study of macro-rhythmic layering and cumulate processes in Jimberlanaintrusion, Western Australia[J]. Journal of Petrology,1977,18:183-215.
    [174] Alva-Valdivia L M, Rivas-Sanchez M L, Goguitchaichvili A, Urrutia-Fucugauchi J,Gonzalez A and Vivallo W. Integrated magnetic studies of the El Romeral iron-oredeposit, Chile: implications for ore genesis and modeling of magnetic anomalies[J].Journal of Applied Geophysics,2003,53(2003):137-151.
    [175] Henriquez F and Martin R F. Crystal-growth textures in magnetite flows and feederdykes, EI Laco, Chile[J]. Canadian Mineralogist,1978,16:581-589.
    [176] Tegner C, Cawthorn RG, Kruger F J. Cyclicity in the Main and Upper Zones of theBushveld Complex, South Africa: crystallization from a zoned magma sheet[J]. Journalof Petrology,2006,47:2257-2279.
    [177] Zhou M F, Robinson P T, Lesger C M, Keays R R, Zhang C J and Malpas J.Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layeredintrusion and associated Fe-Ti-V oxide deposits, Sichuan province, SW China[J].Journal of Petrology,2005,46(11):2253-2280.
    [178]徐志刚.中国东部中生代陆相火山岩型铁矿成矿北京和火山岩浆性质[J].矿床地质,1986,5(1):13-25.
    [179]余金杰,毛景文. Kiruna型铁矿床基本地质特征和成矿环境.矿床地质,2002,21:83-86.
    [180]林新多.岩浆-热液过渡型矿床[M].武汉:中国地质大学出版社,1999,1-139.
    [181]薛春纪,姬金生,杨前进.新疆磁海铁(钻)矿床次火山岩热液成矿学[J].矿床地质,2000,19(2):156-164.
    [182]李朝阳.对当前矿床地球化学研究的一点认识[J].地球科学进展,1999,14(6):449-554.
    [183]郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001,20(1):57-70.
    [184]陈义兵,胡霭琴,张国新等.西天山前寒武纪天窗花岗片麻岩的锆石U-b年龄及Nd-Sr同位素特征[J].地球化学,1999,28(6):515-520.
    [185]李继磊,苏文,张喜,刘新.西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J].地质通报,2009,28(12)1852-1862.
    [186]左国朝,张作横,王志良等.新疆西天山地区构造单元划分、地层系统及其构造演化[J].地质论评,2008,54(6):748-769.
    [187] Zhang X, Tian JQ, Gao J et al. Geochronology and geochemistry of granitoid rocksfrom the Zhibo syngenetic volcanogenic iron ore deposit in the Western TianshanMountains(NW-China): Constraints on the age of mineralization and ectonic setting[J].Gondwana Research,2011,6(7):1-12.
    [188] Zhu YF, Guo X, Song B, Zhang LF and Gu LB. Petrology, SrNdHf isotopicgeochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in thesouthwestern Tianshan Mountains, Xinjiang, NW China[J]. Journal of the GeologicalSociety,2009,166:1085-1099.
    [189]朱永峰,安芳,薛云兴,陈博,张立飞.西南天山特克斯科桑溶洞火山岩的锆石U-Pb年代学研究[J].岩石学报,2010,26:2255-2263.
    [190]刘友梅,杨蔚华,高计元.新疆特克斯县林场大哈拉军山组火山岩年代学研究[J].地球化学,1994,23(1):99-104.
    [191]薛云兴,朱永峰.西南天山哈拉达拉岩体的锆石SHRIMP年代学及地球化学研究[J].岩石学报,2009,25(6):1353-1363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700