GNSS软件接收机高动态载波跟踪环路关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拥有全球导航卫星系统(GNSS)是航天大国的重要特征,它的发展不仅代表着一个国家的科技水平,同时会给该国带来巨大的军事和经济利益。中国北斗卫星导航系统已经于2011年12月27日宣布具备初步运行能力,从而拉开了该系统从建设到应用的序幕,使GNSS接收机技术研究领域得到了难得的发展机遇,国家制定了一系列的政策和措施,用以鼓励具有自主知识产权的相关核心技术的研究。
     为了提高GNSS接收机的性能,国内外的科研人员在多个不同的方向进行了深入研究,本文的选题是高动态载波跟踪环路关键技术。高动态主要是指接收机载体具有较高的速度和加速度。在高动态的环境下,由于多普勒效应的影响,使接收机获得的载波产生较快速的频移,这将影响载波跟踪环路的稳定性,特别是当载波的频移速度超过环路的动态范围时,接收机将无法正常工作。
     由于高动态接收机主要用于军事、航空等高端领域,西方发达国家对我国在相关技术上实施封锁和限制,很多研究成果属于技术保密范畴。所以我国鼓励在该领域进行深入研究,因此本文的研究具有理论和实际意义。
     本文的研究工作主要包括以下几个方面:
     (1)为了对载波跟踪环路的动态范围进行定量的描述,提出了有效工作带宽这个概念,并发现了在GNSS软件接收机中,载波环路的有效带宽存在理论上界,并得到了该理论上界的数学公式模型。该发现为确定高动态环境下载波跟踪环路允许的最大多普勒频移变化率提供了理论依据。
     (2)为了提升载波环路对于多普勒频偏的跟踪速度,提出了一种基于自适应增益控制理论的载波环路设计方案,并给出了相应的自适应控制算法的数学模型。通过仿真实验证实,该方案对于不同幅度的多普勒频偏均能实现最优调节,提升了载波环路对于多普勒频移的响应速度,从而提高了传统载波环路的高动态跟踪性能。
     (3)为了提高载波环路对于多普勒频偏的预测能力,提出了一种基于短时循环迭代方式的多普勒参数检测算法,并给出了基于此算法的全新载波跟踪环路设计方案。通过仿真实验证实,该算法仅需要少量相位误差测量值和经典频域数字滤波器就能够估计出载波多普勒频偏的高阶变化率,使得环路具备了对载波多普勒频移的短时预测能力,实现了高动态环境下的载波跟踪。
     (4)为了在提高载波环路动态性能的同时尽可能的减少噪声干扰,提高环路的跟踪精度,提出了一种自适应卡尔曼滤波算法,并引入了多普勒参数检测算法对传统的卡尔曼滤波器进行优化,同时利用模糊控制理论对系统的观测噪声矩阵进行自适应调节。通过仿真实验证实,该算法在实现多普勒参数检测的基础上,对随机噪声序列实现了最优滤波,提升了多普勒频偏各阶变化率的估计精度,从而提高了高动态环境下载波环路的跟踪性能。
     上述研究内容在理论研究和方案设计的基础上,利用Spirent GSS8000模拟器和实际的GNSS信号,构建了软件接收机开发平台,并进行了实验验证,取得了比较理想的成果,为开发具有高动态性能的GNSS软件接收机奠定了理论和技术基础。
Global Navigation Satellite System(GNSS) is a symbol of space powers, which represents the technological and scientific level and brings tremendous military and economic benefits. The Chinese BeiDou satellite navigation system was announced to be able to initially operate in 27th Dec.2011. The application of the Beidou system brings an important development chance to the research on GNSS receiver. China has carried out a series of incentive policies and measures to encourage the research on relative core technology with independent intellectual property.
     In order to improve the performance of GNSS receiver, researches have been done in various directions. The paper focuses on the key technology of high-dynamic carrier tracking loop. High-dynamic mainly refers that the receiver has higher velocity and acceleration. In the high-dynamic environment Doppler shift makes the carrier generate large shift, which affects the stability of the carrier tracking loop. Especially when the carrier velocity exceeds the dynamic range of the loop, the receiver cannot work normally.
     As the high-dynamic receiver is mainly used in the high-end field such as military and space, and the western developed countries restrict on exporting the relative technology to China, lots of research results are remain confidential. Now, China is encouraging the deep research in this field. Therefore, the paper has both theoretical and practical applications.
     The research consists of the following aspects:
     (1) We propose the concept of effective operating bandwidth in order to measurably describe the dynamic range of carrier tracking loop. And we find the theoretical upper bound of the effective operating bandwidth in the loop and give the mathematical model of the upper bound. This discovery provides theoretical basis for the allowable maximum Doppler shift transition in the high-dynamic environment.
     (2) In order to raise the velocity of tracking Doppler shift in the loop, we propose a carrier loop design based on the theory of self-adaptive gain control and we give the corresponding self-adaptive control algorithm. The simulation results prove that the design can maximumly optimize the Doppler shift in different extent, which raise the response speed of the loop. Thus the high-dynamic tracking performance of the loop can be enhanced.
     (3) We put forward a novel Doppler-Parameter detection algorithm based on short-term iteration and give a new tracking loop design based on the algorithm so as to improve the capability of estimating Doppler shift. The simulation results show that only a few phase error measurements and a classical frequency digital filter are required to estimate the high-order transitions of Doppler shift. As a result, the loop is capable of estimating the short term of the Doppler shift, which achieves tracking carrier in the high-dynamic environment.
     (4) We give a self-adaptive Kalman filter algorithm by introducing Doppler-Parameter detection algorithm to optimize the traditional Kalman filter and using fuzzy control to self-adaptive adjust the observed noise matrix. It can improve the tracking accuracy and reduce the noise while enhancing the high-dynamic performance. The simulation results prove that the algorithm can optimize the filter for the random noise series and improve the estimation accuracy for each order transition of Doppler shift. Therefore, the tracking performance of the carrier loop in the high-dynamic environment can be improved.
     Based on the above theoretical research and design, we adopt Spirent GSS8000 simulator and practical GNSS signal to build the software receiver platform. Through a lot of simulation experiments, we get ideal results. This research in this paper provides a theoretical and technical basis for the development of GNSS software receiver with high-dynamic performance.
引文
[1]张惠,张健,梁兴忠,等.全球定位系统(GPS)技术的发展现状及未来的发展趋势.仪器仪表标准化与计量,2011(2):38-40.
    [2]http://www.21ic.com/news/rf/201007/62532.htm.
    [3]韩世杰.GPS卫星导航系统的新发展.航空电子技术,2000(4):21-28.
    [4]席献光,张锁熊,王慧君.卫星导航系统发展动态.飞行器测控学报,2003(3):1-6.
    [5]王晓明,殷耀国,杨自明.全球导航卫星系统的现代化进展.全球定位系统,2006,31(4):39-42.
    [6]http://www.zgchb.com.cn/article/2007/1127/article_3405.html.
    [7]Dana P.Global Positioning System Overview.Boulder:Department of Geography, University of Colorado,1999.
    [8]Elliott D. Kaplan, Christopher J. Hegarty.Understanding GPS:Principles and applications. Second ed.Boston:Artech House, INC.,1996.
    [9]U.S. Department of Defense.Standard Positioning System Performance Specification.October, 2001.
    [10]Keith D. McDonald.The Modernization of GPS:Plans, New Capabilities and the Future Relationship to Galileo. Journal of Global Position Systems,2002,1(1):1-17.
    [11]Revnivykh S., Klimov V., Kossenko V. etc.Status and Development of GLON AS S.European Navigation Conference,Munichm, Germany,2005.
    [12]雒喜平,向才炳,边少锋GLONASS进展及定位性能研究.测绘通报,2012(1):1-6.
    [13]Gibbons G.GLONASS--ANew Look for the 21th Century.Inside GNSS,2008.
    [14]http://www.galileolic.org/la/files/galileo_en.pdf.
    [15]European Commission ESA.The Galileo Project--GALILEO Design Consolidation.2003.
    [16]国务院新闻办公室.《2011年中国的航天》白皮书.十二月29,2011.
    [17]http://www.cast.ac.cn/cpyyy/htqzt.htm.
    [18]吕伟,朱建军.北斗卫星导航系统发展综述.地矿测绘,2007,23(3):29-32.
    [19]http://www.beidou.gov.cn/2011/12/06/20111206e06b16a3bd8846459b969277a3317e5b.html.
    [20]http://wenku.baidu.com/view/6e763765f5335a8102d22059.html.
    [21]http://www.c114.net/research/2612/a593627.html.
    [22]寇艳红,沈吉,张其善.GPS接收机专用芯片组技术发展.全球定位系统,2005(2):15-19.
    [23]黄智伟.GPS接收机电路设计.北京:国防工业出版社,2005.
    [24]巴晓辉,李金海,陈杰.世界主流GPS芯片介绍.今日电子,2007(3):44-48.
    [25]http://baike.baidu.com/view/2677905.htm.
    [26]江兴.中国首套自主知识产权GPS芯片组诞生.半导体信息,2007(1):25-25.
    [27]章从福.中科院CMOS GPS芯片研发成功.半导体信息,2008(1):23-23.
    [28]http://www.gps.org.cn/news.aspx?catID=5.
    [29]http://www.hwacreate.com.cn/cn/prolist1.aspx?NID=1065&PID=1064&PPID=594.
    [30]http://www.navchina.com/newscontent.asp?ID=394.
    [31]http://www.gotecom.com/product/show/id/724.
    [32]谢钢.GPS原理与接收机技术.北京:电子工业出版社,2009.
    [33]Jame Bao Yen Tsui.Fundamentals of Global Positioning System Receives.2 ed.Hoboken, New Jersey:John& Sons,2005.
    [34]王俊,李加琪,吴嗣亮.P码直接捕获算法的设计及资源优化.宇航学报,2011,32(12):2491-2498.
    [35]刘晓莉,李云荣.一种基于FFT的高动态GPS信号快速捕获方法.系统仿真学报,2007,19(10):2151-2155.
    [36]Richard D. J. Van Nee, A. J. R. M. Coenen.New Fast GPS Code-Acquisition Technique Using FFT. Electronics Letters,1991,27(2):158-160.
    [37]Jiang Yi, Zhang Shufang., Hu Qing, Sun Xiaowen.A New FFT-based Acquisition Alogrithm for GPS Signals.International Workshop on Geoscience and Remote Sensing,Shanghai,2008.
    [38]Lin D. J. T.Comparison of acquisition methods for software GPS receiver.ION GPS 2000,Salt Lake City, UT,2000.
    [39]Sagiraju P. K., Raju G. V. S., Akopian D.Fast acquisition implementation for high sensitivity global positioning systems receivers based on joint and reduced space search.IET Rader, Sonar and Navigation,2008,2(5):376-387.
    [40]Kelley C.OpenSource GPS.September 25,2004.
    [41]摩托罗拉公司.在卫星定位系统中改进首次定位时间的方法和系统.中国,发明专利.中请号:200780024636.8,2009.
    [42]Akos D., Normark P-L., Lee J., Gromov K., Tsui J., Schamus J.Low Global Navigation Satellite System(GNSS) Signal Detection and Processing.ION GPS,Salt Lake City, UT,2000.
    [43]Krasner N., Cloman C., Olson E., Thomas J., Kober W., Madhani P., et al.A Complete IF Software GPS Receiver:A Tutorial About the Details.ION GPS,Salt Lake City, UT,September,2001.
    [44]Bancroft S.An Algebraic Solution of the GPS Equations.IEEE Trans on Aerospace and Electronic Systems,1985,AES-21(7):56-59.
    [45]Amishima T., Ito M., Kosuge Y.Stavility Condition and Steady-State Solution of Various a-(3 Filters for Linear FM Pulse Compression Radars.Electronics and Communications in Japan,2004.
    [46]Kalata P.The Tracking Index:A Generalized Paramter for alpha-beta and alpha-beta-gamma Target Trackers.IEEE Trans on Aerospace and Electronic Systems,1984,ASE-20(2):174-182.
    [47]Kosuge Y., Ito M.α-β Filters Derived from a Tracking Method Using a Weighted Measurement Covariance Matrix.SICE Annual Conference,Sapporo, Japan,2004.
    [48]杜晓辉,任章.基于卡尔曼滤波的GPS静态定位精度分析.全球定位系统,2008(5):47-51.
    [49]Brown R., Hwang P.Introduction to Random Signals and Applied Kalman Filtering-with Matlab Exercises and Solutions.3 ed:John Wiley& Sons,1997.
    [50]Nehorai A., Morf M.A Mapping Result Between Wiener Theory and Kalman Filtering for Nonstationary Processes.IEEE Transactions on Automatic Control,1985,AC-30(2).
    [51]Levy L.Applied Kalman Filtering with Emphasis on GPS-Aided Systems.Navtech Seminars & GPS Supply,VA,2005.
    [52]Kao M. H., Eller D. H.Multiconfiguration Kalman Filter Design for High Performance GPS Navigation.IEEE Transactions on Automatic Control,1983,AC-28(3):304-314.
    [53]付梦印,邓志红,张继伟Kalman滤波理论及其在导航系统中的应用.北京:科学出版社,2003.
    [54]Wishner R. P., Tabauzynski J. A.A Comparison of Three Nonlinear Filters.Automatica,1969 (5):457-496.
    [55]Leondes C. T, Peller J. B., Stear E. B.Nonlinear Smoothing Theory.IEEE Trans Systems Science and Cyernetics,1970,SSC-6(1).
    [56]Bucy R. S., Renne K. D.Digital Synthesis of Nonlinear Filters.Automatica,1971,7(3): 287-289.
    [57]Julier S., Uhlmann J.A New Extension of the Kalman Filter to Nonlinear Systems. Proceedings of Aero Sense:The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls,1997.
    [58]Gustafsson F., Gunnarsson F., Bergman N., Forssell U., Jansson J., Karlsson R., et al.Particle Filters for Positioning,Navigation and Tracking.IEEE Transactions on Signal Processing,2002,50 (2).
    [59]Ristic B., Arulampalam S., Gordon N.Beyond the Kalman Filter-Particle Filter for Tracking Applications:Artech House,2004.
    [60]Caputi M.A Necessary Condition for Effective Performance of the Multiple Model Adaptive Estimator. IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):1132-1138.
    [61]Magill D.Optimal Adaptive Estimation of Sampled Stochastic Processes.IEEE Transactions on Automatic Control,1965,AC-10(4):434-439.
    [62]Bar-Shalom Y., Kirubarajan T., Lin X.Probabilistic Data Association Techniques for Target Tracking with Applications to Sona,Radar and EO Sensors.IEEE Aerospace and Electronic Systems Magazine,2005,20(8).
    [63]Bar-Shalom Y., Lin X., Kirubarajan T.Estimation with Applications to Tracking and Navigation:Theory Algorithms and Software:John Wiley& Sons,2001.
    [64]Wang X., Challa S., Evans R.Gating Techniques for Maneuvering Target Tracking in Clutter. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):1087-1097.
    [65]张君莉,田天,易欣,曹志茹.载波相位观测对传统GPS电离层模型改进研究.装备环境工程,2011,8(1):90-93.
    [66]Misra P., Enge P.Global Position System-Signals,Measurements and Performance:Ganga-Jamuna Press,2001.
    [67]Parkinson B., Spilker J., Axelrad P., Enge P.Global Positioning System:Theory and Application:American Institute of Aeronautics and Astronautics,1996.
    [68]ARINC Research Corporation.Navstar GPS Space Segment/Navigation User Interfaces, ICD-GPS-200C.January 14,2003.
    [69]http://ccmc.gsfc.nasa.gov/modelweb/ionos/iri.html.
    [70]向淑兰,何晓薇,牟奇峰.GPS电离层延迟Klobuchar与IRI模型研究.微计算机信息,2008,24(6):200-202.
    [71]余明,郭际明,过静珺.GPS电离层模型延迟Klobuchar模型与双频数据解算值的比较分析.测绘通报,2004(6):5-8.
    [72]李凯峰,欧阳永忠,陆秀平,吴太旗,任来平.静态精密单点定位中对流层延迟估计.海洋测绘,2011,31(6):12-15.
    [73]高建新.高精度全球差分GPS (GDGPS)系统.测绘科技情报,2001(3-4):14-18.
    [74]Hatch R.Instantaneous Ambiguity Resolution.Processings of Kinematic System in Geodesy, Surveying and Remote Sensing,KIS symposium,Banff, Canda,1990.
    [75]Euler H., Landau H.Fast GPS Ambiguity Resolution On-The-Fly for Real-Time Application. Processings of 6th International Geodetic Symposium on Satellite Positioning,Columbus, OH, March 17-20,1992.
    [76]Teunissen P.The Least-Squares Smbiguity DEcorrelation Adjustment:A Method for Fast GPS Integer Ambiguity Esimation. Journal of Geodesy,1995(70):65-82.
    [77]De Jonge P., Tiberius C.The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects.Delf University of Technology,The Netherlands,August,1996.
    [78]Chen D.Development of a Fast Ambiguity Search Filtering(FASF) Method for GPS Carier Phase Ambiguity Resolution:(Ph.D Thesis).Canada:University of Calgary; 1994.
    [79]Chen D., Lachapelle G.A Comparison of the FASF and Least-Squares Search Algorithms for on-the-Fly Ambiguity Resolution.Navigation:Journal of the ION,1995,42(2):371-90.
    [80]Frei E., Beulter G.Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA:Theory and First Results.Manuscripta Geodaetica,1990,15(6).
    [81]Kim D., Langley R.An Optimized Least-Squares Technique for Improving Ambiguity Resolution and Computational Efficiency.ION GPS,Nashville, TN,1999.
    [82]Martin-Neira M., Toledo M., Pelaez A.The Null Space Method for GPS Integer Ambiguity Resolution. Proceedings of DSNS,Norway,April 24-28,1995.
    [83]王尔中.GPS接收机及其应用的关键技术研究:(博十学位论文).大连:大连海事大学;2009.
    [84]R.G. Brown.GPS RAIM:Calculation of Thresholds and Protection Radius Using Chi-Square Methods-A Geometric Approach.RTCA Paper,1994,491-494.
    [85]Y.Lee.Analysis of Range and Position Comparison Methods as a Means to Provide GPS Integrity in the User Receiver.Proceeding of ION 42nd Annual Meeting, Washington, DC,1986.
    [86]R.G.Brown, P.W.Mcburney.Self-Contained GPS Integrity Check Using Maximum Solution Separation. Navigation:Journal of the Institute of Navigation,1998,35(1):41-43.
    [87]B.W.Parkinson, P.Axelrad.Autonomous GPS Integrity Monitoring Using the Preudorange Residual. Navigation:Journal of the Institute of Navigation,1998,35(2):255-274.
    [88]W.Michalson.GPS Carrier-Phase RAIM.Proceeding of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation,Palm Spring,CA,UNITED STATES, 1995.
    [89]R.G.Brown.A Baseline GPS RAIM Scheme and a Note on the Equivalence of Three RAIM Methods.Proceedings of the 1992 National Technical Meeting of the Institute of Navigation,San Diego,CA,1992.
    [90]陈金平.GPS完善性增强研究:(博士论文论文).郑州:解放军信息工程大学;2001.
    [91]刘准,陈哲.GPS自主式完整性检测技术研究.北京航空航天大学学报,2003(8):673-676.
    [92]Vieweg S.Integrity monitoring and failure identification within an integrated satellite/inertial navigation system.Proceeding of IEEE Position Location and Navigation Symposium,1994.
    [93]秘金钟,李毓麟RAIM算法研究.测绘通报,2001(3):7-9.
    [94]Zhang Qiang, Zhang Xiaolin, Chang Xiaoming.Research on RAIM Algorithm under the Assumption of Simultaneous Multiple Satellites Failure.Proceedings of the eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,Qingdao,China,2007.
    [95]张强,张晓林,常啸鸣.用于识别两颗故障卫星的RAIM算法.北京航空航天大学学报,2008(7):773-777.
    [96]Farrell J., Barth M.The Global Positioning System and Inertial Navigation:McGraw-Hill, 1999.
    [97]Scott C.Improved GPS Positioning for Motor Vehicles Through Map Matching.Proceedings of ION GPS,SaltLake City, UT,September 20-23,1994.
    [98]Nesreen I. Ziedan弱信号全球导航卫星系统接收机.北京:国防工业出版社,2008.
    [99]Nesreen I. Ziedan.GNSS Receiver for Weak Signals:ARTECH House,2006.
    [100]Lin D.M., J. B. Y. Tsui.Comparison of Acquisition Methods for Software GPS Receiver.ION GPS, Salt Lake City, UT,2000.
    [101]Lin D.M., J. B. Y. Tsui, D. Howell.Direct P(Y)-Code Acquisition Algorithm for Software GPS Receivers. ION GPS,Nashville, TN,1999.
    [102]Starzyk J.A., Z. Zhu.Averaging Correlation for C/A Code Acquisition and Tracking in Frequency Domain.2001 Midwest Symposium on Circuits and Systems,Dayton, OH,2001.
    [103]Lin D.M., J. B. Y. Tsui.An Efficient Weak Signal Acquisition Algorithm for a Software GPS Receiver. ION GPS,SaltLake City, UT,2001.
    [104]Lin D.M., J. B. Y. Tsui.A Software GPS Receiver for Weak Signals.IEEE MTT-S Digest, Phoenix, AZ,2001.
    [105]Psiaki K. L.Block Acquisition of Weak GPS Signals in a Software Receiver.ION GPS, Salt Lake City, UT,2001.
    [106]Psiaki M. L., H. Jung.Extended Kalman Filter Methods for Tracking Weak GPS Signals. ION GPS, Portland, OR,2002.
    [107]Lin D.M., Tsui J.A Weak Signal Tracking Technique for a Stand-Alone Software GPS Receiver. ION GPS,Portland, OR,2002.
    [108]Psiaki M.L.Smoother-Based GPS Signal Tracking in a Software Receiver.ION GPS, Salt Lake City, UT,2001.
    [109]J. B. Y. Tsui, M. H. Stockmaster, D. M. Akos.Block Adjustment of Synchronizing Signal (BASS) for Global Positioning System(GPS) Receiver Signal Processing.ION GPS,Kansas, MD, 1997.
    [110]姜毅GNSS接收机高性能跟踪与捕获环路算法研究:(博士学位论文).大连:大连海事大学;2010.
    [111]A.J. Van Dierendonck, Patrick C. Fenton, Tom Ford.Theory and Performance of Narrow Correlator Spacing in a GPS Receiver.Journal of the Institute of Navigation,1992,39(3):265-283.
    [112]Victor A. Veitsel, Alexey V. Zhdanov, Mark I. Zhodzishsky.The Mitigation of Multipath Errors by Strobe Correlators in GPS/GLONASS Receiver.GPS Solutions,1998,2(2):38-45.
    [113]R. Eric Phelts, Jonathan Stone, Per Enge, J. David Powell.Software-Based Multipath Mitigation:Sampling for Multipath Invariance.4th International Symposium on Satellite Navigation Technology and Application,Brishane,1999.
    [114]周非,黄顺吉.利用Teager_Kaiser算子的多径信号抑制.电子科技大学学报,2007,36(4):692-695.
    [115]纪元法,施浒立,孙希延.一种Storbe相关器及其多径抑制性能研究.宇航学报,2007,28(5):1094-1099.
    [116]张锦红,叶甜春,徐建华.一种改进的窄带GPS接收机的抗多径干扰技术.电子器件,2009,32(2):390-393.
    [117]Richard D.J. Van Nee, Jaap Siereveld, Patrick C. Fenton, Bryan R. Townsend.The Multipath Estimating Delay Lock Loop:Approaching Theoretical Accuracy Limits.IEEE Position Location and Navigation Symposium,Las Vegas,1994.
    [118]Mark C. Laxton, Stewart L. Devilbiss.GPS Multipath Mitigation During Code Tracking. American Control Conference,Albuquerque,1997.
    [119]Jean-Marie Sleewaegen, Frank Boon.Mitigating Short-Delay Multipath:a Promising New Technique. ION GPS,SaltLake City, UT,2001.
    [120]王江安,庄奕琪,李迪,靳钊.遗传算法最优拟合抑制GPS多径研究.西安电子科技大学学报(自然科学版),2009,36(6):1044-1048.
    [121]http://www.cti.ac.cn/chanpin_xiangxi.asp?id=279.
    [122]http://www.hwacreate.com.cn/cn/prolistl.aspx?NID=1065&PID=1064&PPID=594.
    [123]http://www.olinkstar.com/show.php?contentid=13.
    [124]http://www.navchina.com/productcontent.asp?ID=116.
    [125]董绪荣,唐斌,蒋德.卫星导航软件接收机原理与设计.北京:国防工业出版社,2008.
    [126]D. M. Akos.A Software Radio Approach to Global Navigation Satellite System Receiver Design:(Ph. D. dissertation).U.S.A.:Ohio University; 1997.
    [127]Clifford Kelley, Joel Barnes, Jingrong Cheng.OpenSource GPS Open Source Software for Learning about GPS.ION GPS 2002,Portland,2002.
    [128]http://home.earthlink.net/-cwkelley/.
    [129]Dennis M Akos, Per-Ludvig Vormark, Andreas Hansson.Global Positioning System Software Receiver (gpSrx) Implementation in Low Cost Power Programmable Processors.ION GPS 2001,Salt Lake City, UT.2001.
    [130]Ganguly S, Brown A., Kirchner M.Adbanced GPS Simulator/Receiver Prototyping System. ION GPS/GNSS 2003,Portland,2003.
    [131]Ledvina B.M., Powell S.P., Kintner P.M.A 12-Channel Real-Time GPS L1 Software Receiver. ION NTM 2003,Anaheim,2003.
    [132]Nicolaj Bertelsen, Kai Borre, Peter Rinder.The GPS Code Software Receiver at Alborg University.2nd ESA Workshop on Satellite Navigation, Navitech 2004 Proceedings,ESTEC Noordwijk, December 8-10,2004.
    [133]http://kom.aau.dk/project/softgps/.
    [134]http://gps.buaa.edu.cn/.
    [135]http://www.hellognss.com/.
    [136]http://www.caspl.cn/cn/index.asp.
    [137]左启耀.高动态GPS信号跟踪算法研究:(博士学位论文).北京:中国科学院光电研究院;2008.
    [138]汤莉,黄伟志,张峻林.伽利略系统的频率结构和信号设计研究.空间电子技术,2005(2):10-14.
    [139]中国卫星导航系统管理办公室.北斗卫星导航系统空间信号接口控制文件(测试版).12月,2011.
    [140]Alireza Razavi, Demoz Gebre-Egziabher, Dennis M. Akos.Carrier loop architectures for tracking weak GPS signals.IEEE Trans on Aerospace and Electronic Systems,2008,44(2):697-710.
    [141]Kelley C., Baker D.OpenSource GPS-A Handware/Software Platform for Learning GPS: Part II Software.GPS World,2006(2).
    [142]邬迪,陈庭燕,张海云,谈恺.基于通用相关器的高动态GPS信号并行快速捕获.清华大学学报(自然科学版),2007,47(11):2064-2067.
    [143]王金刚.GPS数字中频信号仿真及捕获验证.重庆邮电大学学报(自然科学版),2010,22(2):252-257.
    [144]孙晓文.基于FPGA的GPS信号捕获与跟踪系统设计研究:(硕士论文).大连:大连海事大学;2007.
    [145]Jovancevic A., Brown A., Ganguly S. et al.Real-Time Dual Frequency Software Receiver. ION GPS/GNSS 2003,Portland,2003.
    [146]Hinedi S., Statman J.I.High-Dynamic GPS Tracking Final Report.JPL Publication,1988: 88-35.
    [147]张伯川,张其善.高动态接收机的关键问题研究.电子学报,2003,31(12):1844-1846.
    [148]姜毅,张淑芳,张晶泊,孙晓文,胡青.基于FPGA的GPS接收机跟踪环路设计与实现.大连海事大学学报,2009,35(3):16-20.
    [149]Ilir F. Progri, Clifford W. Kelley, Guojiang Gao, William R. Michalson, Jinling Wang, John Lavrakas.Discrete vs. Continuous Carrier Tracking Loop Theory, Implementation and Testing with Large BnT.ION GNSS 20th International Technical Meeting of the Satellite Division,Fort Worth, 2007.
    [150]Olivier Julien.Carrier-Phase Tracking of Future Data/pilot Signals.ION GNSS 18th International Technical Meeting of the Satellite Division,Long Beach,2005.
    [151]Pedro A. Roncagliolo, Cristian E. De Blasis, Carlos H. Muravchik.GPS Digital Tracking Loops Design for High Dynamic Launching Vehicles.IEEE 9th International Symposium on Spread Spectrum Techniques and Applications,Manaus,2006.
    [152]Pedro A. Roncagliolo, Javier G. Garcia, Carlos H. Muravchik.Pull-out Probability and Tracking Threshold Analysis for High Dynamic GNSS Carrier Loop.ION GNSS 21th International Technical Meeting of the Satellite Division, Savannah,2008.
    [153]Francis D. Natali.AFC Tracking Algorithms.IEEE Transactions on Communications,1984, 32(8):935-947.
    [154]Deniele Borio, Letizia Lo Presti.DTFT-Based Frequency Lock Loop for GNSS Applications. IEEE Transactions on Aerospace and Electronic Systems,2008,44(2):595-612.
    [155]Stefan Kiesel, Christian Ascher, Daniel Gramm, Gert F. Trommer.GNSS receiver with vector based FLL-assisted PLL carrier tracking loop.ION GNSS 21th International Technical Meeting of the Satellite Division,Savannah,2008.
    [156]孙礼,王银峰,何川,张其善.GPS信号捕获与跟踪策略确定及实现.北京航空航天大学学报,1999,25(2):134-137.
    [157]程乃平,任宇飞,吕金飞.高动态扩频信号的载波跟踪技术研究.电子学报,2003,31(12A):2147-2150.
    [158]罗大成,王仕成,曾洪贵,胡永霞,杨东方.一种GPS软件接收机的设计.仪器仪表学报,2008,29(9):1856-1861.
    [159]郝学坤,马文峰,方华,马刈非.三阶锁相环跟踪卫星多普勒频偏的仿真研究.系统仿真学报,2004,16(4):625-627.
    [160]Christopher R. Hamm, Warren S. Flenniken IV, David M. Bevly, Deniel E. Lawerence. Comparative Performance Analysis of Aided Carrier Tracking Loop Algorithms in High Noice/High Dynamic Environment.ION GNSS 17th International Technical Meeting of the Satellite Division,Long Beach,2004.
    [161]Rinder P., Bertelen N.Design of a Single Frequency GPS Software Receiver:(Master's dissertation). Denmark:Aalborg University;2004.
    [162]Ping Lian.Improving Tracking Performance of PLL in High Dynamic Application:(Master's dissertation). Alberta:University of Calgary;2004.
    [163]Wendell Sander, Brian Sander, inventors;Bandwidth Control in a Mostly-Digital PLL/FLL. United States, US2009/0108891,2009.
    [164]于海亮.基于INS辅助的GPS接收机捕获和跟踪技术研究:(博士学位论文).长沙:国防科技大学;2007.
    [165]N. Hachelef, P. Lavoie, D. Li, R. Landy.Experiments of Low-cast INS/GPS Navigation Platform Based on PC104.ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth,2007.
    [166]Guojiang Gao.INS-Assisted High Sensitivity GPS Receivers for Degraded Signal Navigation:(Ph.D. dissertation).Alberta:University of Calgary;2007.
    [167]Tsujii T., Fujiwara T., Suganuma Y. et al.Development of INS-aided GPS tracking loop and flight test evaluation.ICCAS-SICE,Fukuoka,Japan,2009.
    [168]郭遥,吴文启,罗兵,唐康华.加速度辅助的EKF跟踪环路及时间延迟影响分析.中国惯性技术学报,2011,19(4):462-466.
    [169]向洋.高动态GPS载波跟踪技术研究:(博士学位论文).武汉:华中科技大学;2010.
    [170]Hurd W., Statman J., Vilnrotter V.High dynamic GPS receiver using maximum likelihood estimation and frequency tracking.IEEE Trans on Aerospace and Electronic Systems,1987,23(4): 425-437.
    [171]王晓湘,柯有安.高动态多普勒频率的最大似然估计器.北京邮电大学学报,2000,23(1):61-65.
    [172]王晓湘.高动态多普勒频率估计及其Cramer-Rao界.电子与信息学报,2004,26(2):61-65.
    [173]Hinedi S.An Extended Kalman filter based automatic frequency control loop.TDA Progress Report,1988,42(95):219-228.
    [174]Peter J., Joanna M.An Extended Kalman filter for demodulation of polynomial phase signals. IEEE Signal Processing Letter,1998,5(3):69-70.
    [175]贾志军.GPS动态定位中的自适应扩展卡尔曼滤波算法.军械工程学院学报,2001,13(2):39-43.
    [176]王晓湘.多普勒频率跟踪的四阶加权扩展卡尔曼滤波器.北京邮电大学学报,2001,24(1):88-91.
    [177]曾富华,汪远玲,杨万麟.一种基于扩展卡尔曼滤波器的频率及频率斜率估计算法.电讯技术,2008,48(3):70-73.
    [178]Vilnrotter V., Hinedi S., Kumar R.Frequency estimation techniques for high dynamic trajectories. IEEE Trans on Aerospace and Electronic Systems,1989,25(4):559-577.
    [179]Aguirre S., Hinedi S.Two novel automatic frequency tracking loops.IEEE Transactions on Aerospace and Electronic Systems,1989,25(5):749-760.
    [180]Weilung Mao, Henwai Tsao.A New Fuzzy Bandwidth Carrier Recovery System in GPS for Robust Phase Tracking.IEEE Signal Processing Letter,2004,11(4):431-434.
    [181]Yunlong Zhu, Zhongkan Liu, Qishan Zhang, Dongkai Yang.Frequency estimation algorithm for high dynamic GPS receivers based on UFK.Proceeding of Second International Conference on Space Information Technology,2007.
    [182]Jwo D.J.Optimisation and Sensitivity Analysis of GPS Receiver Tracking Loops in Dynamic Environments. IEEE Proc, Radar, Sonar Navig,2001,148(4):241-250.
    [183]赵海龙,张健,等.基于Wigner-Ville分布的高动态频率跟踪算法.通信技术,2010,43(2):21-23.
    [184]John P. Costas.Synchronous Communications.Proceeding of the IEEE,2002,90(8): 1461-1466.
    [185]Muthuraman K., Borio D., Richard Klukas R.Adaptive Data/Pilot Carrier Phase Tracking for Modernized GNSS Signals.ION ITM,San Diego,2010.
    [186]K. Born, D. M. Ako, N. Bertelsen, P. Rinder, S. H. Jensen.A Software Defined GPS and Galileo Receiver.Boston:Birkhauser,2007.
    [187]Pejman L. Kazemi.Optimum Digital Filter for GNSS Tracking Loops.ION GNSS 2008, Savannah, GA,2008.
    [188]李崇虎.适用于不同条件的多普勒效应公式.西南师范大学学报(自然科学版),2007,32(2):145-148.
    [189]H. Lutkepohl.Handbook of Matrices.Chichester:John Wiley& Sons Ltd.,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700